123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # -*- coding: utf-8 -*-
- # @Time : 2020/5/21 13:50
- # @Author : zhoujun
- import torch
- from torch import nn
- import torch.nn.functional as F
- class ConvBnRelu(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', inplace=True):
- super().__init__()
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation,
- groups=groups, bias=bias, padding_mode=padding_mode)
- self.bn = nn.BatchNorm2d(out_channels)
- self.relu = nn.ReLU(inplace=inplace)
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
- class FPN(nn.Module):
- def __init__(self, in_channels, out_channels=256, **kwargs):
- """
- :param in_channels: 基础网络输出的维度
- :param kwargs:
- """
- super().__init__()
- inplace = True
- self.conv_out = out_channels
- out_channels = out_channels // 4
- # reduce layers
- self.reduce_conv_c2 = ConvBnRelu(in_channels[0], out_channels, kernel_size=1, inplace=inplace)
- self.reduce_conv_c3 = ConvBnRelu(in_channels[1], out_channels, kernel_size=1, inplace=inplace)
- self.reduce_conv_c4 = ConvBnRelu(in_channels[2], out_channels, kernel_size=1, inplace=inplace)
- self.reduce_conv_c5 = ConvBnRelu(in_channels[3], out_channels, kernel_size=1, inplace=inplace)
- # Smooth layers
- self.smooth_p4 = ConvBnRelu(out_channels, out_channels, kernel_size=3, padding=1, inplace=inplace)
- self.smooth_p3 = ConvBnRelu(out_channels, out_channels, kernel_size=3, padding=1, inplace=inplace)
- self.smooth_p2 = ConvBnRelu(out_channels, out_channels, kernel_size=3, padding=1, inplace=inplace)
- self.conv = nn.Sequential(
- nn.Conv2d(self.conv_out, self.conv_out, kernel_size=3, padding=1, stride=1),
- nn.BatchNorm2d(self.conv_out),
- nn.ReLU(inplace=inplace)
- )
- self.out_channels = self.conv_out
- def forward(self, x):
- c2, c3, c4, c5 = x
- # Top-down
- p5 = self.reduce_conv_c5(c5)
- p4 = self._upsample_add(p5, self.reduce_conv_c4(c4))
- p4 = self.smooth_p4(p4)
- p3 = self._upsample_add(p4, self.reduce_conv_c3(c3))
- p3 = self.smooth_p3(p3)
- p2 = self._upsample_add(p3, self.reduce_conv_c2(c2))
- p2 = self.smooth_p2(p2)
- x = self._upsample_cat(p2, p3, p4, p5)
- x = self.conv(x)
- return x
- def _upsample_add(self, x, y):
- return F.interpolate(x, size=y.size()[2:]) + y
- def _upsample_cat(self, p2, p3, p4, p5):
- h, w = p2.size()[2:]
- p3 = F.interpolate(p3, size=(h, w))
- p4 = F.interpolate(p4, size=(h, w))
- p5 = F.interpolate(p5, size=(h, w))
- return torch.cat([p2, p3, p4, p5], dim=1)
|