123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- # -*- coding: utf-8 -*-
- """
- @time: 2021/2/8 21:28
- @author: Bourne-M
- """
- import torch
- from torch import nn
- import torch.nn.functional as F
- import numpy as np
- import torch.nn.init as init
- from torchocr.networks.CommonModules import SEBlock
- class DSConv(nn.Module):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- padding,
- stride=1,
- groups=None,
- if_act=True,
- act="relu",
- **kwargs):
- super(DSConv, self).__init__()
- if groups == None:
- groups = in_channels
- self.if_act = if_act
- self.act = act
- self.conv1 = nn.Conv2d(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- bias=False)
- self.bn1 = nn.BatchNorm2d(in_channels)
- self.conv2 = nn.Conv2d(
- in_channels=in_channels,
- out_channels=int(in_channels * 4),
- kernel_size=1,
- stride=1,
- bias=False)
- self.bn2 = nn.BatchNorm2d(in_channels * 4)
- self.conv3 = nn.Conv2d(
- in_channels=int(in_channels * 4),
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- bias=False)
- self._c = [in_channels, out_channels]
- if in_channels != out_channels:
- self.conv_end = nn.Conv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- bias=False)
- def forward(self, inputs):
- x = self.conv1(inputs)
- x = self.bn1(x)
- x = self.conv2(x)
- x = self.bn2(x)
- if self.if_act:
- if self.act == "relu":
- x = F.relu(x)
- elif self.act == "hardswish":
- x = F.hardswish(x)
- else:
- print("The activation function({}) is selected incorrectly.".
- format(self.act))
- exit()
- x = self.conv3(x)
- if self._c[0] != self._c[1]:
- x = x + self.conv_end(inputs)
- return x
- def weights_init(m):
- if isinstance(m, nn.Conv2d):
- init.kaiming_normal_(m.weight.data)
- if m.bias is not None:
- init.normal_(m.bias.data)
- elif isinstance(m, nn.ConvTranspose2d):
- init.kaiming_normal_(m.weight.data)
- if m.bias is not None:
- init.normal_(m.bias.data)
- elif isinstance(m, nn.BatchNorm2d):
- init.normal_(m.weight.data, mean=1, std=0.02)
- init.constant_(m.bias.data, 0)
- class DB_fpn(nn.Module):
- def __init__(self, in_channels, out_channels=256, **kwargs):
- """
- :param in_channels: 基础网络输出的维度
- :param kwargs:
- """
- super().__init__()
- inplace = True
- self.out_channels = out_channels
- # reduce layers
- self.in2_conv = nn.Conv2d(in_channels[0], self.out_channels, kernel_size=1, bias=False)
- self.in3_conv = nn.Conv2d(in_channels[1], self.out_channels, kernel_size=1, bias=False)
- self.in4_conv = nn.Conv2d(in_channels[2], self.out_channels, kernel_size=1, bias=False)
- self.in5_conv = nn.Conv2d(in_channels[3], self.out_channels, kernel_size=1, bias=False)
- # Smooth layers
- self.p5_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.p4_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.p3_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.p2_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.in2_conv.apply(weights_init)
- self.in3_conv.apply(weights_init)
- self.in4_conv.apply(weights_init)
- self.in5_conv.apply(weights_init)
- self.p5_conv.apply(weights_init)
- self.p4_conv.apply(weights_init)
- self.p3_conv.apply(weights_init)
- self.p2_conv.apply(weights_init)
- def _interpolate_add(self, x, y):
- return F.interpolate(x, scale_factor=2) + y
- def _interpolate_cat(self, p2, p3, p4, p5):
- p3 = F.interpolate(p3, scale_factor=2)
- p4 = F.interpolate(p4, scale_factor=4)
- p5 = F.interpolate(p5, scale_factor=8)
- return torch.cat([p5, p4, p3, p2], dim=1)
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.in5_conv(c5)
- in4 = self.in4_conv(c4)
- in3 = self.in3_conv(c3)
- in2 = self.in2_conv(c2)
- out4 = self._interpolate_add(in5, in4)
- out3 = self._interpolate_add(out4, in3)
- out2 = self._interpolate_add(out3, in2)
- p5 = self.p5_conv(in5)
- p4 = self.p4_conv(out4)
- p3 = self.p3_conv(out3)
- p2 = self.p2_conv(out2)
- x = self._interpolate_cat(p2, p3, p4, p5)
- return x
- class RSELayer(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
- super(RSELayer, self).__init__()
- self.out_channels = out_channels
- self.in_conv = nn.Conv2d(
- in_channels=in_channels,
- out_channels=self.out_channels,
- kernel_size=kernel_size,
- padding=int(kernel_size // 2),
- bias=False)
- self.se_block = SEBlock(self.out_channels)
- self.shortcut = shortcut
- def forward(self, ins):
- x = self.in_conv(ins)
- if self.shortcut:
- out = x + self.se_block(x)
- else:
- out = self.se_block(x)
- return out
- class RSEFPN(nn.Module):
- def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
- super(RSEFPN, self).__init__()
- self.out_channels = out_channels
- self.ins_conv = nn.ModuleList()
- self.inp_conv = nn.ModuleList()
- for i in range(len(in_channels)):
- self.ins_conv.append(
- RSELayer(
- in_channels[i],
- out_channels,
- kernel_size=1,
- shortcut=shortcut))
- self.inp_conv.append(
- RSELayer(
- out_channels,
- out_channels // 4,
- kernel_size=3,
- shortcut=shortcut))
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.ins_conv[3](c5)
- in4 = self.ins_conv[2](c4)
- in3 = self.ins_conv[1](c3)
- in2 = self.ins_conv[0](c2)
- # out4 = in4 + F.interpolate(
- # in5, scale_factor=2, mode="nearest") # 1/16
- # out3 = in3 + F.interpolate(
- # out4, scale_factor=2, mode="nearest") # 1/8
- # out2 = in2 + F.interpolate(
- # out3, scale_factor=2, mode="nearest") # 1/4
- out4 = in4 + F.interpolate(in5, scale_factor=2)
- out3 = in3 + F.interpolate(
- out4, scale_factor=2) # 1/8
- out2 = in2 + F.interpolate(
- out3, scale_factor=2) # 1/4
- p5 = self.inp_conv[3](in5)
- p4 = self.inp_conv[2](out4)
- p3 = self.inp_conv[1](out3)
- p2 = self.inp_conv[0](out2)
- p5 = F.interpolate(p5, scale_factor=8, mode="nearest")
- p4 = F.interpolate(p4, scale_factor=4, mode="nearest")
- p3 = F.interpolate(p3, scale_factor=2, mode="nearest")
- fuse = torch.cat([p5, p4, p3, p2], dim=1)
- return fuse
- class LKPAN(nn.Module):
- def __init__(self, in_channels, out_channels, mode='large', **kwargs):
- super(LKPAN, self).__init__()
- self.out_channels = out_channels
- self.ins_conv = nn.ModuleList()
- self.inp_conv = nn.ModuleList()
- # pan head
- self.pan_head_conv = nn.ModuleList()
- self.pan_lat_conv = nn.ModuleList()
- if mode.lower() == 'lite':
- p_layer = DSConv
- elif mode.lower() == 'large':
- p_layer = nn.Conv2d
- else:
- raise ValueError(
- "mode can only be one of ['lite', 'large'], but received {}".
- format(mode))
- for i in range(len(in_channels)):
- self.ins_conv.append(
- nn.Conv2d(
- in_channels=in_channels[i],
- out_channels=self.out_channels,
- kernel_size=1,
- bias=False))
- self.inp_conv.append(
- p_layer(
- in_channels=self.out_channels,
- out_channels=self.out_channels // 4,
- kernel_size=9,
- padding=4,
- bias=False))
- if i > 0:
- self.pan_head_conv.append(
- nn.Conv2d(
- in_channels=self.out_channels // 4,
- out_channels=self.out_channels // 4,
- kernel_size=3,
- padding=1,
- stride=2,
- bias=False))
- self.pan_lat_conv.append(
- p_layer(
- in_channels=self.out_channels // 4,
- out_channels=self.out_channels // 4,
- kernel_size=9,
- padding=4,
- bias=False))
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.ins_conv[3](c5)
- in4 = self.ins_conv[2](c4)
- in3 = self.ins_conv[1](c3)
- in2 = self.ins_conv[0](c2)
- out4 = in4 + F.interpolate(
- in5, scale_factor=2, mode="nearest") # 1/16
- out3 = in3 + F.interpolate(
- out4, scale_factor=2, mode="nearest") # 1/8
- out2 = in2 + F.interpolate(
- out3, scale_factor=2, mode="nearest") # 1/4
- f5 = self.inp_conv[3](in5)
- f4 = self.inp_conv[2](out4)
- f3 = self.inp_conv[1](out3)
- f2 = self.inp_conv[0](out2)
- pan3 = f3 + self.pan_head_conv[0](f2)
- pan4 = f4 + self.pan_head_conv[1](pan3)
- pan5 = f5 + self.pan_head_conv[2](pan4)
- p2 = self.pan_lat_conv[0](f2)
- p3 = self.pan_lat_conv[1](pan3)
- p4 = self.pan_lat_conv[2](pan4)
- p5 = self.pan_lat_conv[3](pan5)
- p5 = F.interpolate(p5, scale_factor=8, mode="nearest")
- p4 = F.interpolate(p4, scale_factor=4, mode="nearest")
- p3 = F.interpolate(p3, scale_factor=2, mode="nearest")
- fuse = torch.cat([p5, p4, p3, p2], dim=1)
- return fuse
|