DB_fpn.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. # -*- coding: utf-8 -*-
  2. """
  3. @time: 2021/2/8 21:28
  4. @author: Bourne-M
  5. """
  6. import torch
  7. from torch import nn
  8. import torch.nn.functional as F
  9. import numpy as np
  10. import torch.nn.init as init
  11. from torchocr.networks.CommonModules import SEBlock
  12. class DSConv(nn.Module):
  13. def __init__(self,
  14. in_channels,
  15. out_channels,
  16. kernel_size,
  17. padding,
  18. stride=1,
  19. groups=None,
  20. if_act=True,
  21. act="relu",
  22. **kwargs):
  23. super(DSConv, self).__init__()
  24. if groups == None:
  25. groups = in_channels
  26. self.if_act = if_act
  27. self.act = act
  28. self.conv1 = nn.Conv2d(
  29. in_channels=in_channels,
  30. out_channels=in_channels,
  31. kernel_size=kernel_size,
  32. stride=stride,
  33. padding=padding,
  34. groups=groups,
  35. bias=False)
  36. self.bn1 = nn.BatchNorm2d(in_channels)
  37. self.conv2 = nn.Conv2d(
  38. in_channels=in_channels,
  39. out_channels=int(in_channels * 4),
  40. kernel_size=1,
  41. stride=1,
  42. bias=False)
  43. self.bn2 = nn.BatchNorm2d(in_channels * 4)
  44. self.conv3 = nn.Conv2d(
  45. in_channels=int(in_channels * 4),
  46. out_channels=out_channels,
  47. kernel_size=1,
  48. stride=1,
  49. bias=False)
  50. self._c = [in_channels, out_channels]
  51. if in_channels != out_channels:
  52. self.conv_end = nn.Conv2d(
  53. in_channels=in_channels,
  54. out_channels=out_channels,
  55. kernel_size=1,
  56. stride=1,
  57. bias=False)
  58. def forward(self, inputs):
  59. x = self.conv1(inputs)
  60. x = self.bn1(x)
  61. x = self.conv2(x)
  62. x = self.bn2(x)
  63. if self.if_act:
  64. if self.act == "relu":
  65. x = F.relu(x)
  66. elif self.act == "hardswish":
  67. x = F.hardswish(x)
  68. else:
  69. print("The activation function({}) is selected incorrectly.".
  70. format(self.act))
  71. exit()
  72. x = self.conv3(x)
  73. if self._c[0] != self._c[1]:
  74. x = x + self.conv_end(inputs)
  75. return x
  76. def weights_init(m):
  77. if isinstance(m, nn.Conv2d):
  78. init.kaiming_normal_(m.weight.data)
  79. if m.bias is not None:
  80. init.normal_(m.bias.data)
  81. elif isinstance(m, nn.ConvTranspose2d):
  82. init.kaiming_normal_(m.weight.data)
  83. if m.bias is not None:
  84. init.normal_(m.bias.data)
  85. elif isinstance(m, nn.BatchNorm2d):
  86. init.normal_(m.weight.data, mean=1, std=0.02)
  87. init.constant_(m.bias.data, 0)
  88. class DB_fpn(nn.Module):
  89. def __init__(self, in_channels, out_channels=256, **kwargs):
  90. """
  91. :param in_channels: 基础网络输出的维度
  92. :param kwargs:
  93. """
  94. super().__init__()
  95. inplace = True
  96. self.out_channels = out_channels
  97. # reduce layers
  98. self.in2_conv = nn.Conv2d(in_channels[0], self.out_channels, kernel_size=1, bias=False)
  99. self.in3_conv = nn.Conv2d(in_channels[1], self.out_channels, kernel_size=1, bias=False)
  100. self.in4_conv = nn.Conv2d(in_channels[2], self.out_channels, kernel_size=1, bias=False)
  101. self.in5_conv = nn.Conv2d(in_channels[3], self.out_channels, kernel_size=1, bias=False)
  102. # Smooth layers
  103. self.p5_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
  104. self.p4_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
  105. self.p3_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
  106. self.p2_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
  107. self.in2_conv.apply(weights_init)
  108. self.in3_conv.apply(weights_init)
  109. self.in4_conv.apply(weights_init)
  110. self.in5_conv.apply(weights_init)
  111. self.p5_conv.apply(weights_init)
  112. self.p4_conv.apply(weights_init)
  113. self.p3_conv.apply(weights_init)
  114. self.p2_conv.apply(weights_init)
  115. def _interpolate_add(self, x, y):
  116. return F.interpolate(x, scale_factor=2) + y
  117. def _interpolate_cat(self, p2, p3, p4, p5):
  118. p3 = F.interpolate(p3, scale_factor=2)
  119. p4 = F.interpolate(p4, scale_factor=4)
  120. p5 = F.interpolate(p5, scale_factor=8)
  121. return torch.cat([p5, p4, p3, p2], dim=1)
  122. def forward(self, x):
  123. c2, c3, c4, c5 = x
  124. in5 = self.in5_conv(c5)
  125. in4 = self.in4_conv(c4)
  126. in3 = self.in3_conv(c3)
  127. in2 = self.in2_conv(c2)
  128. out4 = self._interpolate_add(in5, in4)
  129. out3 = self._interpolate_add(out4, in3)
  130. out2 = self._interpolate_add(out3, in2)
  131. p5 = self.p5_conv(in5)
  132. p4 = self.p4_conv(out4)
  133. p3 = self.p3_conv(out3)
  134. p2 = self.p2_conv(out2)
  135. x = self._interpolate_cat(p2, p3, p4, p5)
  136. return x
  137. class RSELayer(nn.Module):
  138. def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
  139. super(RSELayer, self).__init__()
  140. self.out_channels = out_channels
  141. self.in_conv = nn.Conv2d(
  142. in_channels=in_channels,
  143. out_channels=self.out_channels,
  144. kernel_size=kernel_size,
  145. padding=int(kernel_size // 2),
  146. bias=False)
  147. self.se_block = SEBlock(self.out_channels)
  148. self.shortcut = shortcut
  149. def forward(self, ins):
  150. x = self.in_conv(ins)
  151. if self.shortcut:
  152. out = x + self.se_block(x)
  153. else:
  154. out = self.se_block(x)
  155. return out
  156. class RSEFPN(nn.Module):
  157. def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
  158. super(RSEFPN, self).__init__()
  159. self.out_channels = out_channels
  160. self.ins_conv = nn.ModuleList()
  161. self.inp_conv = nn.ModuleList()
  162. for i in range(len(in_channels)):
  163. self.ins_conv.append(
  164. RSELayer(
  165. in_channels[i],
  166. out_channels,
  167. kernel_size=1,
  168. shortcut=shortcut))
  169. self.inp_conv.append(
  170. RSELayer(
  171. out_channels,
  172. out_channels // 4,
  173. kernel_size=3,
  174. shortcut=shortcut))
  175. def forward(self, x):
  176. c2, c3, c4, c5 = x
  177. in5 = self.ins_conv[3](c5)
  178. in4 = self.ins_conv[2](c4)
  179. in3 = self.ins_conv[1](c3)
  180. in2 = self.ins_conv[0](c2)
  181. # out4 = in4 + F.interpolate(
  182. # in5, scale_factor=2, mode="nearest") # 1/16
  183. # out3 = in3 + F.interpolate(
  184. # out4, scale_factor=2, mode="nearest") # 1/8
  185. # out2 = in2 + F.interpolate(
  186. # out3, scale_factor=2, mode="nearest") # 1/4
  187. out4 = in4 + F.interpolate(in5, scale_factor=2)
  188. out3 = in3 + F.interpolate(
  189. out4, scale_factor=2) # 1/8
  190. out2 = in2 + F.interpolate(
  191. out3, scale_factor=2) # 1/4
  192. p5 = self.inp_conv[3](in5)
  193. p4 = self.inp_conv[2](out4)
  194. p3 = self.inp_conv[1](out3)
  195. p2 = self.inp_conv[0](out2)
  196. p5 = F.interpolate(p5, scale_factor=8, mode="nearest")
  197. p4 = F.interpolate(p4, scale_factor=4, mode="nearest")
  198. p3 = F.interpolate(p3, scale_factor=2, mode="nearest")
  199. fuse = torch.cat([p5, p4, p3, p2], dim=1)
  200. return fuse
  201. class LKPAN(nn.Module):
  202. def __init__(self, in_channels, out_channels, mode='large', **kwargs):
  203. super(LKPAN, self).__init__()
  204. self.out_channels = out_channels
  205. self.ins_conv = nn.ModuleList()
  206. self.inp_conv = nn.ModuleList()
  207. # pan head
  208. self.pan_head_conv = nn.ModuleList()
  209. self.pan_lat_conv = nn.ModuleList()
  210. if mode.lower() == 'lite':
  211. p_layer = DSConv
  212. elif mode.lower() == 'large':
  213. p_layer = nn.Conv2d
  214. else:
  215. raise ValueError(
  216. "mode can only be one of ['lite', 'large'], but received {}".
  217. format(mode))
  218. for i in range(len(in_channels)):
  219. self.ins_conv.append(
  220. nn.Conv2d(
  221. in_channels=in_channels[i],
  222. out_channels=self.out_channels,
  223. kernel_size=1,
  224. bias=False))
  225. self.inp_conv.append(
  226. p_layer(
  227. in_channels=self.out_channels,
  228. out_channels=self.out_channels // 4,
  229. kernel_size=9,
  230. padding=4,
  231. bias=False))
  232. if i > 0:
  233. self.pan_head_conv.append(
  234. nn.Conv2d(
  235. in_channels=self.out_channels // 4,
  236. out_channels=self.out_channels // 4,
  237. kernel_size=3,
  238. padding=1,
  239. stride=2,
  240. bias=False))
  241. self.pan_lat_conv.append(
  242. p_layer(
  243. in_channels=self.out_channels // 4,
  244. out_channels=self.out_channels // 4,
  245. kernel_size=9,
  246. padding=4,
  247. bias=False))
  248. def forward(self, x):
  249. c2, c3, c4, c5 = x
  250. in5 = self.ins_conv[3](c5)
  251. in4 = self.ins_conv[2](c4)
  252. in3 = self.ins_conv[1](c3)
  253. in2 = self.ins_conv[0](c2)
  254. out4 = in4 + F.interpolate(
  255. in5, scale_factor=2, mode="nearest") # 1/16
  256. out3 = in3 + F.interpolate(
  257. out4, scale_factor=2, mode="nearest") # 1/8
  258. out2 = in2 + F.interpolate(
  259. out3, scale_factor=2, mode="nearest") # 1/4
  260. f5 = self.inp_conv[3](in5)
  261. f4 = self.inp_conv[2](out4)
  262. f3 = self.inp_conv[1](out3)
  263. f2 = self.inp_conv[0](out2)
  264. pan3 = f3 + self.pan_head_conv[0](f2)
  265. pan4 = f4 + self.pan_head_conv[1](pan3)
  266. pan5 = f5 + self.pan_head_conv[2](pan4)
  267. p2 = self.pan_lat_conv[0](f2)
  268. p3 = self.pan_lat_conv[1](pan3)
  269. p4 = self.pan_lat_conv[2](pan4)
  270. p5 = self.pan_lat_conv[3](pan5)
  271. p5 = F.interpolate(p5, scale_factor=8, mode="nearest")
  272. p4 = F.interpolate(p4, scale_factor=4, mode="nearest")
  273. p3 = F.interpolate(p3, scale_factor=2, mode="nearest")
  274. fuse = torch.cat([p5, p4, p3, p2], dim=1)
  275. return fuse