FCEHead.py 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. from torch import nn
  2. import torch.nn.functional as F
  3. import torch
  4. from functools import partial
  5. def multi_apply(func, *args, **kwargs):
  6. pfunc = partial(func, **kwargs) if kwargs else func
  7. map_results = map(pfunc, *args)
  8. return tuple(map(list, zip(*map_results)))
  9. class FCEHead(nn.Module):
  10. """The class for implementing FCENet head.
  11. FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped Text
  12. Detection.
  13. [https://arxiv.org/abs/2104.10442]
  14. Args:
  15. in_channels (int): The number of input channels.
  16. scales (list[int]) : The scale of each layer.
  17. fourier_degree (int) : The maximum Fourier transform degree k.
  18. """
  19. def __init__(self, in_channels, fourier_degree=5):
  20. super().__init__()
  21. assert isinstance(in_channels, int)
  22. self.downsample_ratio = 1.0
  23. self.in_channels = in_channels
  24. self.fourier_degree = fourier_degree
  25. self.out_channels_cls = 4
  26. self.out_channels_reg = (2 * self.fourier_degree + 1) * 2
  27. self.out_conv_cls = nn.Conv2d(
  28. in_channels=self.in_channels,
  29. out_channels=self.out_channels_cls,
  30. kernel_size=3,
  31. stride=1,
  32. padding=1,
  33. groups=1,
  34. bias=True)
  35. self.out_conv_reg = nn.Conv2d(
  36. in_channels=self.in_channels,
  37. out_channels=self.out_channels_reg,
  38. kernel_size=3,
  39. stride=1,
  40. padding=1,
  41. groups=1,
  42. bias=True)
  43. def forward(self, feats, targets=None):
  44. cls_res, reg_res = multi_apply(self.forward_single, feats)
  45. level_num = len(cls_res)
  46. outs = {}
  47. if not self.training:
  48. for i in range(level_num):
  49. tr_pred = F.softmax(cls_res[i][:, 0:2, :, :], dim=1)
  50. tcl_pred = F.softmax(cls_res[i][:, 2:, :, :], dim=1)
  51. outs['level_{}'.format(i)] = torch.cat(
  52. [tr_pred, tcl_pred, reg_res[i]], dim=1)
  53. else:
  54. preds = [[cls_res[i], reg_res[i]] for i in range(level_num)]
  55. outs['levels'] = preds
  56. return outs
  57. def forward_single(self, x):
  58. cls_predict = self.out_conv_cls(x)
  59. reg_predict = self.out_conv_reg(x)
  60. return cls_predict, reg_predict