123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- from functools import partial
- import logging
- import os
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torchocr.networks.backbones.Transformer import DropPath
- class Block(nn.Module):
- r""" ConvNeXt Block. There are two equivalent implementations:
- (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
- (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
- We use (2) as we find it slightly faster in PyTorch
- Args:
- dim (int): Number of input channels.
- drop_path (float): Stochastic depth rate. Default: 0.0
- layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
- """
- def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
- super().__init__()
- self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
- self.norm = LayerNorm(dim, eps=1e-6)
- self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
- self.act = nn.GELU()
- self.pwconv2 = nn.Linear(4 * dim, dim)
- self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
- requires_grad=True) if layer_scale_init_value > 0 else None
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- def forward(self, x):
- input = x
- x = self.dwconv(x)
- x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
- x = self.norm(x)
- x = self.pwconv1(x)
- x = self.act(x)
- x = self.pwconv2(x)
- if self.gamma is not None:
- x = self.gamma * x
- x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
- x = input + self.drop_path(x)
- return x
- class ConvNeXt(nn.Module):
- r""" ConvNeXt
- A PyTorch impl of : `A ConvNet for the 2020s` -
- https://arxiv.org/pdf/2201.03545.pdf
- Args:
- in_chans (int): Number of input image channels. Default: 3
- num_classes (int): Number of classes for classification head. Default: 1000
- depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
- dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
- drop_path_rate (float): Stochastic depth rate. Default: 0.
- layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
- head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
- """
- def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
- drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], **kwargs
- ):
- super().__init__()
- self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
- stem = nn.Sequential(
- nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
- LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
- )
- self.downsample_layers.append(stem)
- for i in range(3):
- downsample_layer = nn.Sequential(
- LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
- nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
- )
- self.downsample_layers.append(downsample_layer)
- self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
- self.pretrained = kwargs.get('pretrained', True)
- dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
- self.out_channels = [96, 192, 384, 768]
- cur = 0
- for i in range(4):
- stage = nn.Sequential(
- *[Block(dim=dims[i], drop_path=dp_rates[cur + j],
- layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
- )
- self.stages.append(stage)
- cur += depths[i]
- self.out_indices = out_indices
- norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
- for i_layer in range(4):
- layer = norm_layer(dims[i_layer])
- layer_name = f'norm{i_layer}'
- self.add_module(layer_name, layer)
- if self.pretrained:
- ckpt_path = f'./weights/convnext_tiny_1k_512x512.pth'
- logger = logging.getLogger('torchocr')
- if os.path.exists(ckpt_path):
- logger.info('load convnext weights')
- self.load_state_dict(torch.load(ckpt_path), strict=True)
- else:
- logger.info(f'{ckpt_path} not exists')
- self.apply(self._init_weights)
- else:
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- nn.init.trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- def forward_features(self, x):
- outs = []
- for i in range(4):
- x = self.downsample_layers[i](x)
- x = self.stages[i](x)
- if i in self.out_indices:
- norm_layer = getattr(self, f'norm{i}')
- x_out = norm_layer(x)
- outs.append(x_out)
- return tuple(outs)
- def forward(self, x):
- x = self.forward_features(x)
- return x
- class LayerNorm(nn.Module):
- r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
- The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
- shape (batch_size, height, width, channels) while channels_first corresponds to inputs
- with shape (batch_size, channels, height, width).
- """
- def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
- super().__init__()
- self.weight = nn.Parameter(torch.ones(normalized_shape))
- self.bias = nn.Parameter(torch.zeros(normalized_shape))
- self.eps = eps
- self.data_format = data_format
- if self.data_format not in ["channels_last", "channels_first"]:
- raise NotImplementedError
- self.normalized_shape = (normalized_shape,)
- def forward(self, x):
- if self.data_format == "channels_last":
- return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
- elif self.data_format == "channels_first":
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.eps)
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
- return x
|