rec_train.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. # -*- coding: utf-8 -*-
  2. # @Time : 2020/5/19 21:44
  3. # @Author : xiangjing
  4. import os
  5. import sys
  6. import pathlib
  7. # 将 torchocr路径加到python路径里
  8. __dir__ = pathlib.Path(os.path.abspath(__file__))
  9. sys.path.append(str(__dir__))
  10. sys.path.append(str(__dir__.parent.parent))
  11. import random
  12. import time
  13. import shutil
  14. import traceback
  15. from importlib import import_module
  16. import numpy as np
  17. import torch
  18. from tqdm import tqdm
  19. from torch import nn
  20. from torch import optim
  21. from torchocr.networks import build_model, build_loss
  22. from torchocr.datasets import build_dataloader
  23. from torchocr.utils import get_logger, weight_init, load_checkpoint, save_checkpoint
  24. def parse_args():
  25. import argparse
  26. parser = argparse.ArgumentParser(description='train')
  27. parser.add_argument('--config', type=str, default='/data2/znj/PytorchOCR/config/cfg_rec_crnn.py', help='train config file path')
  28. args = parser.parse_args()
  29. # 解析.py文件
  30. config_path = os.path.abspath(os.path.expanduser(args.config))
  31. assert os.path.isfile(config_path)
  32. if config_path.endswith('.py'):
  33. module_name = os.path.basename(config_path)[:-3]
  34. config_dir = os.path.dirname(config_path)
  35. sys.path.insert(0, config_dir)
  36. mod = import_module(module_name)
  37. sys.path.pop(0)
  38. return mod.config
  39. # cfg_dict = {
  40. # name: value
  41. # for name, value in mod.__dict__.items()
  42. # if not name.startswith('__')
  43. # }
  44. # return cfg_dict
  45. else:
  46. raise IOError('Only py type are supported now!')
  47. def set_random_seed(seed, use_cuda=True, deterministic=False):
  48. """Set random seed.
  49. Args:
  50. seed (int): Seed to be used.
  51. use_cuda: whether depend on cuda
  52. deterministic (bool): Whether to set the deterministic option for
  53. CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
  54. to True and `torch.backends.cudnn.benchmark` to False.
  55. Default: False.
  56. """
  57. random.seed(seed)
  58. np.random.seed(seed)
  59. if use_cuda:
  60. torch.manual_seed(seed)
  61. torch.cuda.manual_seed_all(seed)
  62. if deterministic:
  63. torch.backends.cudnn.deterministic = True
  64. torch.backends.cudnn.benchmark = False
  65. def build_optimizer(params, config):
  66. """
  67. 优化器
  68. Returns:
  69. """
  70. opt_type = config.pop('type')
  71. opt = getattr(optim, opt_type)(params, **config)
  72. return opt
  73. def build_scheduler(optimizer, config):
  74. """
  75. """
  76. scheduler = None
  77. sch_type = config.pop('type')
  78. if sch_type == 'LambdaLR':
  79. burn_in, steps = config['burn_in'], config['steps']
  80. # Learning rate setup
  81. def burnin_schedule(i):
  82. if i < burn_in:
  83. factor = pow(i / burn_in, 4)
  84. elif i < steps[0]:
  85. factor = 1.0
  86. elif i < steps[1]:
  87. factor = 0.1
  88. else:
  89. factor = 0.01
  90. return factor
  91. scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule)
  92. elif sch_type == 'StepLR':
  93. # 等间隔调整学习率, 调整倍数为gamma倍,调整间隔为step_size,间隔单位是step,step通常是指epoch。
  94. step_size, gamma = config['step_size'], config['gamma']
  95. scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
  96. elif sch_type == 'ReduceLROnPlateau':
  97. # 当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。例如,当验证集的loss不再下降时,进行学习率调整;或者监测验证集的accuracy,当accuracy不再上升时,则调整学习率。
  98. scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1,
  99. patience=3, verbose=True, threshold=1e-4)
  100. return scheduler
  101. def get_fine_tune_params(net, finetune_stage):
  102. """
  103. 获取需要优化的参数
  104. Args:
  105. net:
  106. Returns: 需要优化的参数
  107. """
  108. to_return_parameters = []
  109. for stage in finetune_stage:
  110. attr = getattr(net.module, stage, None)
  111. for element in attr.parameters():
  112. to_return_parameters.append(element)
  113. return to_return_parameters
  114. def evaluate(net, val_loader, loss_func, to_use_device, logger, converter, metric):
  115. """
  116. 在验证集上评估模型
  117. :param net: 网络
  118. :param val_loader: 验证集 dataloader
  119. :param loss_func: 损失函数
  120. :param to_use_device: device
  121. :param logger: logger类对象
  122. :param converter: label转换器类对象
  123. :param metric: 根据网络输出和 label 计算 acc 等指标的类对象
  124. :return: 一个包含 eval_loss,eval_acc和 norm_edit_dis 的 dict,
  125. 例子: {
  126. 'eval_loss':0,
  127. 'eval_acc': 0.99,
  128. 'norm_edit_dis': 0.9999,
  129. }
  130. """
  131. logger.info('start evaluate')
  132. net.eval()
  133. nums = 0
  134. result_dict = {'eval_loss': 0., 'eval_acc': 0., 'norm_edit_dis': 0.}
  135. show_str = []
  136. with torch.no_grad():
  137. for batch_data in tqdm(val_loader):
  138. targets, targets_lengths = converter.encode(batch_data['label'])
  139. batch_data['targets'] = targets
  140. batch_data['targets_lengths'] = targets_lengths
  141. output = net.forward(batch_data['img'].to(to_use_device))
  142. loss = loss_func(output, batch_data)
  143. nums += batch_data['img'].shape[0]
  144. acc_dict = metric(output[1], batch_data['label'])
  145. result_dict['eval_loss'] += loss['loss'].item()
  146. result_dict['eval_acc'] += acc_dict['n_correct']
  147. result_dict['norm_edit_dis'] += acc_dict['norm_edit_dis']
  148. show_str.extend(acc_dict['show_str'])
  149. print('nums:',nums,'right_nums:',result_dict['eval_acc'])
  150. result_dict['eval_loss'] /= len(val_loader)
  151. result_dict['eval_acc'] /= nums
  152. result_dict['norm_edit_dis'] = 1 - result_dict['norm_edit_dis'] / nums
  153. logger.info(f"eval_loss:{result_dict['eval_loss']}")
  154. logger.info(f"eval_acc:{result_dict['eval_acc']}")
  155. logger.info(f"norm_edit_dis:{result_dict['norm_edit_dis']}")
  156. for s in show_str[:10]:
  157. logger.info(s)
  158. net.train()
  159. return result_dict
  160. def train(net, optimizer, scheduler, loss_func, train_loader, eval_loader, to_use_device,
  161. cfg, global_state, logger):
  162. """
  163. 训练函数
  164. :param net: 网络
  165. :param optimizer: 优化器
  166. :param scheduler: 学习率更新器
  167. :param loss_func: loss函数
  168. :param train_loader: 训练数据集 dataloader
  169. :param eval_loader: 验证数据集 dataloader
  170. :param to_use_device: device
  171. :param cfg: 当前训练所使用的配置
  172. :param global_state: 训练过程中的一些全局状态,如cur_epoch,cur_iter,最优模型的相关信息
  173. :param logger: logger 对象
  174. :return: None
  175. """
  176. from torchocr.metrics import RecMetric
  177. from torchocr.utils import CTCLabelConverter
  178. converter = CTCLabelConverter(cfg.dataset.alphabet)
  179. train_options = cfg.train_options
  180. metric = RecMetric(converter)
  181. # ===>
  182. logger.info('Training...')
  183. # ===> print loss信息的参数
  184. all_step = len(train_loader)
  185. logger.info(f'train dataset has {train_loader.dataset.__len__()} samples,{all_step} in dataloader')
  186. logger.info(f'eval dataset has {eval_loader.dataset.__len__()} samples,{len(eval_loader)} in dataloader')
  187. if len(global_state) > 0:
  188. best_model = global_state['best_model']
  189. start_epoch = global_state['start_epoch']
  190. global_step = global_state['global_step']
  191. else:
  192. best_model = {'best_acc': 0, 'eval_loss': 0, 'model_path': '', 'eval_acc': 0., 'eval_ned': 0.}
  193. start_epoch = 0
  194. global_step = 0
  195. # 开始训练
  196. try:
  197. for epoch in range(start_epoch, train_options['epochs']): # traverse each epoch
  198. net.train() # train mode
  199. start = time.time()
  200. for i, batch_data in enumerate(train_loader): # traverse each batch in the epoch
  201. current_lr = optimizer.param_groups[0]['lr']
  202. cur_batch_size = batch_data['img'].shape[0]
  203. targets, targets_lengths = converter.encode(batch_data['label'])
  204. batch_data['targets'] = targets
  205. batch_data['targets_lengths'] = targets_lengths
  206. # 清零梯度及反向传播
  207. optimizer.zero_grad()
  208. output = net.forward(batch_data['img'].to(to_use_device))
  209. loss_dict = loss_func(output, batch_data)
  210. loss_dict['loss'].backward()
  211. torch.nn.utils.clip_grad_norm_(net.parameters(), 5)
  212. optimizer.step()
  213. # statistic loss for print
  214. acc_dict = metric(output[1], batch_data['label'])
  215. acc = acc_dict['n_correct'] / cur_batch_size
  216. norm_edit_dis = 1 - acc_dict['norm_edit_dis'] / cur_batch_size
  217. if (i + 1) % train_options['print_interval'] == 0:
  218. interval_batch_time = time.time() - start
  219. logger.info(f"[{epoch}/{train_options['epochs']}] - "
  220. f"[{i + 1}/{all_step}] - "
  221. f"lr:{current_lr} - "
  222. f"loss:{loss_dict['loss'].item():.4f} - "
  223. f"acc:{acc:.4f} - "
  224. f"norm_edit_dis:{norm_edit_dis:.4f} - "
  225. f"time:{interval_batch_time:.4f}")
  226. start = time.time()
  227. if (i + 1) >= train_options['val_interval'] and (i + 1) % train_options['val_interval'] == 0:
  228. global_state['start_epoch'] = epoch
  229. global_state['best_model'] = best_model
  230. global_state['global_step'] = global_step
  231. net_save_path = f"{train_options['checkpoint_save_dir']}/latest.pth"
  232. save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state)
  233. if train_options['ckpt_save_type'] == 'HighestAcc':
  234. # val
  235. eval_dict = evaluate(net, eval_loader, loss_func, to_use_device, logger, converter, metric)
  236. if eval_dict['eval_acc'] > best_model['eval_acc']:
  237. best_model.update(eval_dict)
  238. best_model['best_model_epoch'] = epoch
  239. best_model['models'] = net_save_path
  240. global_state['start_epoch'] = epoch
  241. global_state['best_model'] = best_model
  242. global_state['global_step'] = global_step
  243. net_save_path = f"{train_options['checkpoint_save_dir']}/best.pth"
  244. save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state)
  245. elif train_options['ckpt_save_type'] == 'FixedEpochStep' and epoch % train_options['ckpt_save_epoch'] == 0:
  246. shutil.copy(net_save_path, net_save_path.replace('latest.pth', f'{epoch}.pth'))
  247. global_step += 1
  248. scheduler.step()
  249. except KeyboardInterrupt:
  250. import os
  251. save_checkpoint(os.path.join(train_options['checkpoint_save_dir'], 'final.pth'), net, optimizer, logger, cfg, global_state=global_state)
  252. except:
  253. error_msg = traceback.format_exc()
  254. logger.error(error_msg)
  255. finally:
  256. for k, v in best_model.items():
  257. logger.info(f'{k}: {v}')
  258. def main():
  259. # ===> 获取配置文件参数
  260. cfg = parse_args()
  261. os.makedirs(cfg.train_options['checkpoint_save_dir'], exist_ok=True)
  262. logger = get_logger('torchocr', log_file=os.path.join(cfg.train_options['checkpoint_save_dir'], 'train.log'))
  263. # ===> 训练信息的打印
  264. train_options = cfg.train_options
  265. logger.info(cfg)
  266. # ===>
  267. to_use_device = torch.device(
  268. train_options['device'] if torch.cuda.is_available() and ('cuda' in train_options['device']) else 'cpu')
  269. set_random_seed(cfg['SEED'], 'cuda' in train_options['device'], deterministic=True)
  270. # ===> build network
  271. net = build_model(cfg['model'])
  272. # ===> 模型初始化及模型部署到对应的设备
  273. if not cfg['model']['backbone']['pretrained']: # 使用 pretrained
  274. net.apply(weight_init)
  275. # if torch.cuda.device_count() > 1:
  276. net = nn.DataParallel(net)
  277. net = net.to(to_use_device)
  278. net.train()
  279. # ===> get fine tune layers
  280. params_to_train = get_fine_tune_params(net, train_options['fine_tune_stage'])
  281. # ===> solver and lr scheduler
  282. optimizer = build_optimizer(params_to_train, cfg['optimizer'])
  283. scheduler = build_scheduler(optimizer, cfg['lr_scheduler'])
  284. # ===> whether to resume from checkpoint
  285. resume_from = train_options['resume_from']
  286. if resume_from:
  287. net, _resumed_optimizer,global_state = load_checkpoint(net, resume_from, to_use_device, optimizer,
  288. third_name=train_options['third_party_name'])
  289. if _resumed_optimizer:
  290. optimizer = _resumed_optimizer
  291. logger.info(f'net resume from {resume_from}')
  292. else:
  293. global_state = {}
  294. logger.info(f'net resume from scratch.')
  295. # ===> loss function
  296. loss_func = build_loss(cfg['loss'])
  297. loss_func = loss_func.to(to_use_device)
  298. # ===> data loader
  299. cfg.dataset.train.dataset.alphabet = cfg.dataset.alphabet
  300. train_loader = build_dataloader(cfg.dataset.train)
  301. cfg.dataset.eval.dataset.alphabet = cfg.dataset.alphabet
  302. eval_loader = build_dataloader(cfg.dataset.eval)
  303. # ===> train
  304. train(net, optimizer, scheduler, loss_func, train_loader, eval_loader, to_use_device, cfg, global_state, logger)
  305. if __name__ == '__main__':
  306. main()