123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- # -*- coding: utf-8 -*-
- # @Time : 2020/5/19 21:44
- # @Author : xiangjing
- import os
- import sys
- import pathlib
- # 将 torchocr路径加到python路径里
- __dir__ = pathlib.Path(os.path.abspath(__file__))
- sys.path.append(str(__dir__))
- sys.path.append(str(__dir__.parent.parent))
- import random
- import time
- import shutil
- import traceback
- from importlib import import_module
- import numpy as np
- import torch
- from tqdm import tqdm
- from torch import nn
- from torch import optim
- from torchocr.networks import build_model, build_loss
- from torchocr.datasets import build_dataloader
- from torchocr.utils import get_logger, weight_init, load_checkpoint, save_checkpoint
- def parse_args():
- import argparse
- parser = argparse.ArgumentParser(description='train')
- parser.add_argument('--config', type=str, default='/data2/znj/PytorchOCR/config/cfg_rec_crnn_doc_fineturn.py',
- help='train config file path')
- args = parser.parse_args()
- # 解析.py文件
- config_path = os.path.abspath(os.path.expanduser(args.config))
- assert os.path.isfile(config_path)
- if config_path.endswith('.py'):
- module_name = os.path.basename(config_path)[:-3]
- config_dir = os.path.dirname(config_path)
- sys.path.insert(0, config_dir)
- mod = import_module(module_name)
- sys.path.pop(0)
- return mod.config
- # cfg_dict = {
- # name: value
- # for name, value in mod.__dict__.items()
- # if not name.startswith('__')
- # }
- # return cfg_dict
- else:
- raise IOError('Only py type are supported now!')
- def set_random_seed(seed, use_cuda=True, deterministic=False):
- """Set random seed.
- Args:
- seed (int): Seed to be used.
- use_cuda: whether depend on cuda
- deterministic (bool): Whether to set the deterministic option for
- CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
- to True and `torch.backends.cudnn.benchmark` to False.
- Default: False.
- """
- random.seed(seed)
- np.random.seed(seed)
- if use_cuda:
- torch.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- if deterministic:
- torch.backends.cudnn.deterministic = True
- torch.backends.cudnn.benchmark = False
- def build_optimizer(params, config):
- """
- 优化器
- Returns:
- """
- opt_type = config.pop('type')
- opt = getattr(optim, opt_type)(params, **config)
- return opt
- def build_scheduler(optimizer, config):
- """
- """
- scheduler = None
- sch_type = config.pop('type')
- if sch_type == 'LambdaLR':
- burn_in, steps = config['burn_in'], config['steps']
- # Learning rate setup
- def burnin_schedule(i):
- if i < burn_in:
- factor = pow(i / burn_in, 4)
- elif i < steps[0]:
- factor = 1.0
- elif i < steps[1]:
- factor = 0.1
- else:
- factor = 0.01
- return factor
- scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule)
- elif sch_type == 'StepLR':
- # 等间隔调整学习率, 调整倍数为gamma倍,调整间隔为step_size,间隔单位是step,step通常是指epoch。
- step_size, gamma = config['step_size'], config['gamma']
- scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
- elif sch_type == 'ReduceLROnPlateau':
- # 当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。例如,当验证集的loss不再下降时,进行学习率调整;或者监测验证集的accuracy,当accuracy不再上升时,则调整学习率。
- scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1,
- patience=3, verbose=True, threshold=1e-4)
- return scheduler
- def get_fine_tune_params(net, finetune_stage):
- """
- 获取需要优化的参数
- Args:
- net:
- Returns: 需要优化的参数
- """
- to_return_parameters = []
- for stage in finetune_stage:
- attr = getattr(net.module, stage, None)
- for element in attr.parameters():
- to_return_parameters.append(element)
- return to_return_parameters
- def evaluate(net, val_loader, loss_func, to_use_device, logger, converter, metric):
- """
- 在验证集上评估模型
- :param net: 网络
- :param val_loader: 验证集 dataloader
- :param loss_func: 损失函数
- :param to_use_device: device
- :param logger: logger类对象
- :param converter: label转换器类对象
- :param metric: 根据网络输出和 label 计算 acc 等指标的类对象
- :return: 一个包含 eval_loss,eval_acc和 norm_edit_dis 的 dict,
- 例子: {
- 'eval_loss':0,
- 'eval_acc': 0.99,
- 'norm_edit_dis': 0.9999,
- }
- """
- logger.info('start evaluate')
- net.eval()
- nums = 0
- result_dict = {'eval_loss': 0., 'eval_acc': 0., 'norm_edit_dis': 0.}
- show_str = []
- with torch.no_grad():
- for batch_data in tqdm(val_loader):
- targets, targets_lengths = converter.encode(batch_data['label'])
- batch_data['targets'] = targets
- batch_data['targets_lengths'] = targets_lengths
- output = net.forward(batch_data['img'].to(to_use_device))
- loss = loss_func(output, batch_data)
- nums += batch_data['img'].shape[0]
- acc_dict = metric(output[1], batch_data['label'])
- result_dict['eval_loss'] += loss['loss'].item()
- result_dict['eval_acc'] += acc_dict['n_correct']
- result_dict['norm_edit_dis'] += acc_dict['norm_edit_dis']
- show_str.extend(acc_dict['show_str'])
- print('nums:', nums, 'right_nums:', result_dict['eval_acc'])
- result_dict['eval_loss'] /= len(val_loader)
- result_dict['eval_acc'] /= nums
- result_dict['norm_edit_dis'] = 1 - result_dict['norm_edit_dis'] / nums
- logger.info(f"eval_loss:{result_dict['eval_loss']}")
- logger.info(f"eval_acc:{result_dict['eval_acc']}")
- logger.info(f"norm_edit_dis:{result_dict['norm_edit_dis']}")
- for s in show_str[:10]:
- logger.info(s)
- net.train()
- return result_dict
- def train(net, optimizer, scheduler, loss_func, train_loader, eval_loader, to_use_device,
- cfg, global_state, logger):
- """
- 训练函数
- :param net: 网络
- :param optimizer: 优化器
- :param scheduler: 学习率更新器
- :param loss_func: loss函数
- :param train_loader: 训练数据集 dataloader
- :param eval_loader: 验证数据集 dataloader
- :param to_use_device: device
- :param cfg: 当前训练所使用的配置
- :param global_state: 训练过程中的一些全局状态,如cur_epoch,cur_iter,最优模型的相关信息
- :param logger: logger 对象
- :return: None
- """
- from torchocr.metrics import RecMetric
- from torchocr.utils import CTCLabelConverter
- converter = CTCLabelConverter(cfg.dataset.alphabet)
- train_options = cfg.train_options
- metric = RecMetric(converter)
- # ===>
- logger.info('Training...')
- # ===> print loss信息的参数
- all_step = len(train_loader)
- logger.info(f'train dataset has {train_loader.dataset.__len__()} samples,{all_step} in dataloader')
- logger.info(f'eval dataset has {eval_loader.dataset.__len__()} samples,{len(eval_loader)} in dataloader')
- if len(global_state) > 0:
- best_model = global_state['best_model']
- start_epoch = global_state['start_epoch']
- global_step = global_state['global_step']
- else:
- best_model = {'best_acc': 0, 'eval_loss': 0, 'model_path': '', 'eval_acc': 0., 'eval_ned': 0.}
- start_epoch = 0
- global_step = 0
- # 开始训练
- try:
- for epoch in range(start_epoch, train_options['epochs']): # traverse each epoch
- net.train() # train mode
- start = time.time()
- for i, batch_data in enumerate(train_loader): # traverse each batch in the epoch
- current_lr = optimizer.param_groups[0]['lr']
- cur_batch_size = batch_data['img'].shape[0]
- targets, targets_lengths = converter.encode(batch_data['label'])
- batch_data['targets'] = targets
- batch_data['targets_lengths'] = targets_lengths
- # 清零梯度及反向传播
- optimizer.zero_grad()
- output = net.forward(batch_data['img'].to(to_use_device))
- loss_dict = loss_func(output, batch_data)
- loss_dict['loss'].backward()
- torch.nn.utils.clip_grad_norm_(net.parameters(), 5)
- optimizer.step()
- # statistic loss for print
- acc_dict = metric(output[1], batch_data['label'])
- acc = acc_dict['n_correct'] / cur_batch_size
- norm_edit_dis = 1 - acc_dict['norm_edit_dis'] / cur_batch_size
- if (i + 1) % train_options['print_interval'] == 0:
- interval_batch_time = time.time() - start
- logger.info(f"[{epoch}/{train_options['epochs']}] - "
- f"[{i + 1}/{all_step}] - "
- f"lr:{current_lr} - "
- f"loss:{loss_dict['loss'].item():.4f} - "
- f"acc:{acc:.4f} - "
- f"norm_edit_dis:{norm_edit_dis:.4f} - "
- f"time:{interval_batch_time:.4f}")
- start = time.time()
- if (i + 1) >= train_options['val_interval'] and (i + 1) % train_options['val_interval'] == 0:
- global_state['start_epoch'] = epoch
- global_state['best_model'] = best_model
- global_state['global_step'] = global_step
- net_save_path = f"{train_options['checkpoint_save_dir']}/latest.pth"
- save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state)
- if train_options['ckpt_save_type'] == 'HighestAcc':
- # val
- eval_dict = evaluate(net, eval_loader, loss_func, to_use_device, logger, converter, metric)
- if eval_dict['eval_acc'] > best_model['eval_acc']:
- best_model.update(eval_dict)
- best_model['best_model_epoch'] = epoch
- best_model['models'] = net_save_path
- global_state['start_epoch'] = epoch
- global_state['best_model'] = best_model
- global_state['global_step'] = global_step
- net_save_path = f"{train_options['checkpoint_save_dir']}/best.pth"
- save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state)
- elif train_options['ckpt_save_type'] == 'FixedEpochStep' and epoch % train_options[
- 'ckpt_save_epoch'] == 0:
- shutil.copy(net_save_path, net_save_path.replace('latest.pth', f'{epoch}.pth'))
- global_step += 1
- scheduler.step()
- except KeyboardInterrupt:
- import os
- save_checkpoint(os.path.join(train_options['checkpoint_save_dir'], 'final.pth'), net, optimizer, logger, cfg,
- global_state=global_state)
- except:
- error_msg = traceback.format_exc()
- logger.error(error_msg)
- finally:
- for k, v in best_model.items():
- logger.info(f'{k}: {v}')
- def main():
- # ===> 获取配置文件参数
- cfg = parse_args()
- os.makedirs(cfg.train_options['checkpoint_save_dir'], exist_ok=True)
- logger = get_logger('torchocr', log_file=os.path.join(cfg.train_options['checkpoint_save_dir'], 'train.log'))
- # ===> 训练信息的打印
- train_options = cfg.train_options
- logger.info(cfg)
- # ===>
- to_use_device = torch.device(
- train_options['device'] if torch.cuda.is_available() and ('cuda' in train_options['device']) else 'cpu')
- set_random_seed(cfg['SEED'], 'cuda' in train_options['device'], deterministic=True)
- # ===> build network
- net = build_model(cfg['model'])
- # ===> 模型初始化及模型部署到对应的设备
- if not cfg['model']['backbone']['pretrained']: # 使用 pretrained
- net.apply(weight_init)
- # if torch.cuda.device_count() > 1:
- net = nn.DataParallel(net)
- net = net.to(to_use_device)
- net.train()
- # ===> get fine tune layers
- params_to_train = get_fine_tune_params(net, train_options['fine_tune_stage'])
- # ===> solver and lr scheduler
- optimizer = build_optimizer(params_to_train, cfg['optimizer'])
- scheduler = build_scheduler(optimizer, cfg['lr_scheduler'])
- # ===> whether to resume from checkpoint
- resume_from = train_options['resume_from']
- if resume_from:
- net, _resumed_optimizer, global_state = load_checkpoint(net, resume_from, to_use_device, optimizer,
- third_name=train_options['third_party_name'])
- if _resumed_optimizer:
- optimizer = _resumed_optimizer
- logger.info(f'net resume from {resume_from}')
- else:
- global_state = {}
- logger.info(f'net resume from scratch.')
- # ===> loss function
- loss_func = build_loss(cfg['loss'])
- loss_func = loss_func.to(to_use_device)
- # ===> data loader
- cfg.dataset.train.dataset.alphabet = cfg.dataset.alphabet
- train_loader = build_dataloader(cfg.dataset.train)
- cfg.dataset.eval.dataset.alphabet = cfg.dataset.alphabet
- eval_loader = build_dataloader(cfg.dataset.eval)
- # ===> train
- train(net, optimizer, scheduler, loss_func, train_loader, eval_loader, to_use_device, cfg, global_state, logger)
- if __name__ == '__main__':
- main()
|