123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- # -*- coding: utf-8 -*-
- # @Time : 2020/5/19 21:44
- # @Author : xiangjing
- import os
- import sys
- import pathlib
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
- os.environ['CUDA_VISIBLE_DEVICES'] = '3'
- # 将 torchocr路径加到python路径里
- __dir__ = pathlib.Path(os.path.abspath(__file__))
- sys.path.append(str(__dir__))
- sys.path.append(str(__dir__.parent.parent))
- import random
- import time
- import shutil
- import traceback
- from importlib import import_module
- import numpy as np
- import torch
- from tqdm import tqdm
- from torch import nn
- from torchocr.networks import build_model, build_loss
- from torchocr.postprocess import build_post_process
- from torchocr.datasets import build_dataloader
- from torchocr.utils import get_logger, weight_init, load_checkpoint, save_checkpoint
- from torchocr.metrics import build_metric
- def parse_args():
- import argparse
- parser = argparse.ArgumentParser(description='train')
- parser.add_argument('--config', type=str, default='config/cfg_det_dis.py', help='train config file path')
- args = parser.parse_args()
- # 解析.py文件
- config_path = os.path.abspath(os.path.expanduser(args.config))
- assert os.path.isfile(config_path)
- if config_path.endswith('.py'):
- module_name = os.path.basename(config_path)[:-3]
- config_dir = os.path.dirname(config_path)
- sys.path.insert(0, config_dir)
- mod = import_module(module_name)
- sys.path.pop(0)
- return mod.config
- else:
- raise IOError('Only py type are supported now!')
- def set_random_seed(seed, use_cuda=True, deterministic=False):
- """Set random seed.
- Args:
- seed (int): Seed to be used.
- use_cuda: whether depend on cuda
- deterministic (bool): Whether to set the deterministic option for
- CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
- to True and `torch.backends.cudnn.benchmark` to False.
- Default: False.
- """
- random.seed(seed)
- np.random.seed(seed)
- if use_cuda:
- torch.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- if deterministic:
- torch.backends.cudnn.deterministic = True
- torch.backends.cudnn.benchmark = False
- def build_optimizer(params, config):
- """
- 优化器
- Returns:
- """
- from torch import optim
- opt_type = config.pop('type')
- opt = getattr(optim, opt_type)(filter(lambda p: p.requires_grad,params), **config)
- return opt
- def adjust_learning_rate(optimizer, base_lr, iter, all_iters, factor, warmup_iters=0, warmup_factor=1.0 / 3):
- """
- 带 warmup 的学习率衰减
- :param optimizer: 优化器
- :param base_lr: 开始的学习率
- :param iter: 当前迭代次数
- :param all_iters: 总的迭代次数
- :param factor: 学习率衰减系数
- :param warmup_iters: warmup 迭代数
- :param warmup_factor: warmup 系数
- :return:
- """
- """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
- if iter < warmup_iters:
- alpha = float(iter) / warmup_iters
- rate = warmup_factor * (1 - alpha) + alpha
- else:
- rate = np.power(1.0 - iter / float(all_iters + 1), factor)
- lr = rate * base_lr
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
- return lr
- def get_fine_tune_params(net, finetune_stage):
- """
- 获取需要优化的参数
- Args:
- net:
- Returns: 需要优化的参数
- """
- to_return_parameters = []
- for stage in finetune_stage:
- attr = getattr(net.module, stage, None)
- for element in attr.parameters():
- to_return_parameters.append(element)
- return to_return_parameters
- def evaluate(net, val_loader, to_use_device, logger, post_process, metric):
- """
- 在验证集上评估模型
- :param net: 网络
- :param val_loader: 验证集 dataloader
- :param to_use_device: device
- :param logger: logger类对象
- :param post_process: 后处理类对象
- :param metric: 根据网络输出和 label 计算 acc 等指标的类对象
- :return: 一个包含 eval_loss,eval_acc和 norm_edit_dis 的 dict,
- 例子: {
- 'recall':0,
- 'precision': 0.99,
- 'fmeasure': 0.9999,
- }
- """
- logger.info('start evaluate')
- net.eval()
- total_frame = 0.0
- total_time = 0.0
- with torch.no_grad():
- for batch_data in tqdm(val_loader):
- start = time.time()
- output = net.forward(batch_data['img'].to(to_use_device))
- box_score_tuple = post_process(output, batch_data['shape'])
- total_frame += batch_data['img'].size()[0]
- total_time += time.time() - start
- metric(batch_data, box_score_tuple)
- metrics = metric.get_metric()
- net.train()
- net.module.model_dict['Teacher'].eval()
- metrics = {key: val.avg for key, val in metrics.items()}
- for k, v in metrics.items():
- logger.info(f'{k}:{v}')
- logger.info('FPS:{}'.format(total_frame / total_time))
- return metrics
- def train(net, optimizer, loss_func, train_loader, eval_loader, to_use_device,
- cfg, global_state, logger, post_process, metric):
- """
- 训练函数
- :param net: 网络
- :param optimizer: 优化器
- :param scheduler: 学习率更新器
- :param loss_func: loss函数
- :param train_loader: 训练数据集 dataloader
- :param eval_loader: 验证数据集 dataloader
- :param to_use_device: device
- :param cfg: 当前训练所使用的配置
- :param global_state: 训练过程中的一些全局状态,如cur_epoch,cur_iter,最优模型的相关信息
- :param logger: logger 对象
- :param post_process: 后处理类对象
- :param metric: 评测方法
- :return: None
- """
- train_options = cfg.train_options
- logger.info('Train beginning...')
- # ===> print loss信息的参数
- all_step = len(train_loader)
- logger.info(f'train dataset has {train_loader.dataset.__len__()} samples,{all_step} in dataloader')
- logger.info(f'eval dataset has {eval_loader.dataset.__len__()} samples,{len(eval_loader)} in dataloader')
- if len(global_state) > 0:
- best_model = global_state['best_model']
- start_epoch = global_state['start_epoch']
- global_step = global_state['global_step']
- else:
- best_model = {'recall': 0, 'precision': 0, 'fmeasure': 0, 'best_model_epoch': 0}
- start_epoch = 0
- global_step = 0
- # 开始训练
- base_lr = cfg['optimizer']['lr']
- all_iters = all_step * train_options['epochs']
- warmup_iters = 3 * all_step
- # eval_dict = evaluate(net, eval_loader, to_use_device, logger, post_process, metric)
- try:
- for epoch in range(start_epoch, train_options['epochs']): # traverse each epoch
- net.train() # train mode
- net.module.model_dict['Teacher'].eval()
- train_loss = 0.
- start = time.time()
- for i, batch_data in enumerate(train_loader): # traverse each batch in the epoch
- current_lr = adjust_learning_rate(optimizer, base_lr, global_step, all_iters, 0.9,
- warmup_iters=warmup_iters)
- # 数据进行转换和丢到gpu
- for key, value in batch_data.items():
- if value is not None:
- if isinstance(value, torch.Tensor):
- batch_data[key] = value.to(to_use_device)
- # 清零梯度及反向传播
- optimizer.zero_grad()
- output = net.forward(batch_data['img'].to(to_use_device))
- loss_dict = loss_func(output, batch_data)
- loss_dict['loss'].backward()
- optimizer.step()
- # statistic loss for print
- train_loss += loss_dict['loss'].item()
- loss_str = 'loss: {:.4f} - '.format(loss_dict.pop('loss').item())
- for idx, (key, value) in enumerate(loss_dict.items()):
- loss_dict[key] = value.item()
- loss_str += '{}: {:.4f}'.format(key, loss_dict[key])
- if idx < len(loss_dict) - 1:
- loss_str += ' - '
- if (i + 1) % train_options['print_interval'] == 0:
- interval_batch_time = time.time() - start
- logger.info(f"[{epoch}/{train_options['epochs']}] - "
- f"[{i + 1}/{all_step}] - "
- f"lr:{current_lr} - "
- f"{loss_str} - "
- f"time:{interval_batch_time:.4f}")
- start = time.time()
- global_step += 1
- logger.info(f'train_loss: {train_loss / len(train_loader)}')
- if (epoch + 1) % train_options['val_interval'] == 0:
- global_state['start_epoch'] = epoch
- global_state['best_model'] = best_model
- global_state['global_step'] = global_step
- net_save_path = f"{train_options['checkpoint_save_dir']}/latest.pth"
- save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state)
- if train_options['ckpt_save_type'] == 'HighestAcc':
- # val
- eval_dict = evaluate(net, eval_loader, to_use_device, logger, post_process, metric)
- if eval_dict['fmeasure'] > best_model['fmeasure']:
- best_model.update(eval_dict)
- best_model['best_model_epoch'] = epoch
- best_model['models'] = net_save_path
- global_state['start_epoch'] = epoch
- global_state['best_model'] = best_model
- global_state['global_step'] = global_step
- net_save_path = f"{train_options['checkpoint_save_dir']}/best.pth"
- save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state)
- elif train_options['ckpt_save_type'] == 'FixedEpochStep' and epoch % train_options['ckpt_save_epoch'] == 0:
- shutil.copy(net_save_path, net_save_path.replace('latest.pth', f'{epoch}.pth'))
- best_str = 'current best, '
- for k, v in best_model.items():
- best_str += '{}: {}, '.format(k, v)
- logger.info(best_str)
- except KeyboardInterrupt:
- import os
- save_checkpoint(os.path.join(train_options['checkpoint_save_dir'], 'final.pth'), net, optimizer, logger, cfg,
- global_state=global_state)
- except:
- error_msg = traceback.format_exc()
- logger.error(error_msg)
- finally:
- for k, v in best_model.items():
- logger.info(f'{k}: {v}')
- def main():
- # ===> 获取配置文件参数
- cfg = parse_args()
- os.makedirs(cfg.train_options['checkpoint_save_dir'], exist_ok=True)
- # ===> 训练信息的打印
- logger = get_logger('torchocr', log_file=os.path.join(cfg.train_options['checkpoint_save_dir'], 'train.log'))
- logger.info(cfg)
- # ===>
- train_options = cfg.train_options
- to_use_device = torch.device(
- train_options['device'] if torch.cuda.is_available() and ('cuda' in train_options['device']) else 'cpu')
- set_random_seed(cfg['SEED'], 'cuda' in train_options['device'], deterministic=True)
- # ===> build network
- net = build_model(cfg['model'])
- # ===> 模型部署到对应的设备
- net = nn.DataParallel(net)
- net = net.to(to_use_device)
- # ===> 创建metric
- metric = build_metric(cfg['metric'])
- # ===> get fine tune layers
- # params_to_train = get_fine_tune_params(net, train_options['fine_tune_stage'])
- # ===> solver and lr scheduler
- optimizer = build_optimizer(net.parameters(), cfg['optimizer'])
- net.train()
- net.module.model_dict['Teacher'].eval()
- # ===> whether to resume from checkpoint
- resume_from = train_options['resume_from']
- if resume_from:
- net, _resumed_optimizer, global_state = load_checkpoint(net, resume_from, to_use_device, optimizer)
- if _resumed_optimizer:
- optimizer = _resumed_optimizer
- logger.info(f'net resume from {resume_from}')
- else:
- global_state = {}
- logger.info(f'net resume from scratch.')
- # ===> loss function
- loss_func = build_loss(cfg['loss'])
- loss_func = loss_func.to(to_use_device)
- # ===> data loader
- train_loader = build_dataloader(cfg.dataset.train)
- eval_loader = build_dataloader(cfg.dataset.eval)
- # ===> post_process
- post_process = build_post_process(cfg['post_process'])
- # ===> train
- train(net, optimizer, loss_func, train_loader, eval_loader, to_use_device, cfg, global_state, logger, post_process,metric)
- if __name__ == '__main__':
- main()
|