123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- # encoding: utf-8
- """
- @time: 2021/3/6 19:48
- @author: Bourne-M
- """
- # -*- coding: utf-8 -*-
- # @Time : 2020/5/19 21:44
- # @Author : xiangjing
- # ####################rec_train_options 参数说明##########################
- # 识别训练参数
- # base_lr:初始学习率
- # fine_tune_stage:
- # if you want to freeze some stage, and tune the others.
- # ['backbone', 'neck', 'head'], 所有参数都参与调优
- # ['backbone'], 只调优backbone部分的参数
- # 后续更新: 1、添加bn层freeze的代码
- # optimizer 和 optimizer_step:
- # 优化器的配置, 成对
- # example1: 'optimizer':['SGD'], 'optimizer_step':[],表示一直用SGD优化器
- # example2: 'optimizer':['SGD', 'Adam'], 'optimizer_step':[160], 表示前[0,160)个epoch使用SGD优化器,
- # [160,~]采用Adam优化器
- # lr_scheduler和lr_scheduler_info:
- # 学习率scheduler的设置
- # ckpt_save_type作用是选择模型保存的方式
- # HighestAcc:只保存在验证集上精度最高的模型(还是在训练集上loss最小)
- # FixedEpochStep: 按一定间隔保存模型
- ###
- # from addict import Dict
- #
- # config = Dict()
- # config.exp_name = 'DBNet_res18_init'
- # config.train_options = {
- # # for train
- # 'resume_from': '', # 继续训练地址
- # 'third_party_name': '', # 加载paddle模型可选
- # 'checkpoint_save_dir': f"./output/{config.exp_name}/checkpoint", # 模型保存地址,log文件也保存在这里
- # 'device': 'cuda:0', # 不建议修改
- # 'epochs': 1200,
- # 'fine_tune_stage': ['backbone', 'neck', 'head'],
- # 'print_interval': 32, # step为单位
- # 'val_interval': 10, # epoch为单位
- # 'ckpt_save_type': 'HighestAcc', # HighestAcc:只保存最高准确率模型 ;FixedEpochStep:每隔ckpt_save_epoch个epoch保存一个
- # 'ckpt_save_epoch': 4, # epoch为单位, 只有ckpt_save_type选择FixedEpochStep时,该参数才有效
- # }
- #
- # config.SEED = 927
- # config.optimizer = {
- # 'type': 'Adam',
- # 'lr': 0.001,
- # 'weight_decay': 1e-4,
- # }
- #
- # config.model = {
- # 'type': "DetModel",
- # 'backbone': {"type": "ResNet", 'layers': 18, 'pretrained': True}, # ResNet or MobileNetV3
- # 'neck': {"type": 'DB_fpn', 'out_channels': 256},
- # 'head': {"type": "DBHead"},
- # 'in_channels': 3,
- # }
- #
- # config.loss = {
- # 'type': 'DBLoss',
- # 'alpha': 1,
- # 'beta': 10
- # }
- #
- # config.post_process = {
- # 'type': 'DBPostProcess',
- # 'thresh': 0.3, # 二值化输出map的阈值
- # 'box_thresh': 0.7, # 低于此阈值的box丢弃
- # 'unclip_ratio': 1.5 # 扩大框的比例
- # }
- # # for dataset
- # # ##lable文件
- # ### 存在问题,gt中str-->label 是放在loss中还是放在dataloader中
- # config.dataset = {
- # 'train': {
- # 'dataset': {
- # 'type': 'JsonDataset',
- # 'file': r'/home/zhouyufei/Work/DataSet/icdar2015/detection/train.json',
- # 'mean': [0.485, 0.456, 0.406],
- # 'std': [0.229, 0.224, 0.225],
- # # db 预处理,不需要修改
- # 'pre_processes': [{'type': 'IaaAugment', 'args': [{'type': 'Fliplr', 'args': {'p': 0.5}},
- # {'type': 'Affine', 'args': {'rotate': [-10, 10]}},
- # {'type': 'Resize', 'args': {'size': [0.5, 3]}}]},
- # {'type': 'EastRandomCropData', 'args': {'size': [640, 640], 'max_tries': 50, 'keep_ratio': True}},
- # {'type': 'MakeBorderMap', 'args': {'shrink_ratio': 0.4, 'thresh_min': 0.3, 'thresh_max': 0.7}},
- # {'type': 'MakeShrinkMap', 'args': {'shrink_ratio': 0.4, 'min_text_size': 8}}],
- # 'filter_keys': ['img_path', 'img_name', 'text_polys', 'texts', 'ignore_tags', 'shape'], # 需要从data_dict里过滤掉的key
- # 'ignore_tags': ['*', '###'],
- # 'img_mode': 'RGB'
- # },
- # 'loader': {
- # 'type': 'DataLoader', # 使用torch dataloader只需要改为 DataLoader
- # 'batch_size': 32,
- # 'shuffle': True,
- # 'num_workers': 30,
- # 'collate_fn': {
- # 'type': ''
- # }
- # }
- # },
- # 'eval': {
- # 'dataset': {
- # 'type': 'JsonDataset',
- # 'file': r'/home/zhouyufei/Work/DataSet/icdar2015/detection/test.json',
- # 'mean': [0.485, 0.456, 0.406],
- # 'std': [0.229, 0.224, 0.225],
- # 'pre_processes': [{'type': 'ResizeShortSize', 'args': {'short_size': 736, 'resize_text_polys': False}}],
- # 'filter_keys': [], # 需要从data_dict里过滤掉的key
- # 'ignore_tags': ['*', '###'],
- # 'img_mode': 'RGB'
- # },
- # 'loader': {
- # 'type': 'DataLoader',
- # 'batch_size': 1, # 必须为1
- # 'shuffle': False,
- # 'num_workers': 20,
- # 'collate_fn': {
- # 'type': 'DetCollectFN'
- # }
- # }
- # }
- # }
- #
- # # 转换为 Dict
- # for k, v in config.items():
- # if isinstance(v, dict):
- # config[k] = Dict(v)
- from addict import Dict
- config = Dict()
- config.exp_name = 'psenet_mbv3'
- config.train_options = {
- # for train
- 'resume_from': '', # 继续训练地址
- 'third_party_name': '', # 加载paddle模型可选
- 'checkpoint_save_dir': f"./output/{config.exp_name}/checkpoint", # 模型保存地址,log文件也保存在这里
- 'device': 'cuda:0', # 不建议修改
- 'epochs': 1200,
- 'fine_tune_stage': ['backbone', 'neck', 'head'],
- 'print_interval': 20, # step为单位
- 'val_interval': 1, # epoch为单位
- 'ckpt_save_type': 'HighestAcc', # HighestAcc:只保存最高准确率模型 ;FixedEpochStep:每隔ckpt_save_epoch个epoch保存一个
- 'ckpt_save_epoch': 4, # epoch为单位, 只有ckpt_save_type选择FixedEpochStep时,该参数才有效
- }
- config.SEED = 927
- config.optimizer = {
- 'type': 'Adam',
- 'lr': 0.001,
- 'weight_decay': 0,
- }
- config.model = {
- 'type': "DetModel",
- 'backbone': {"type": "MobileNetV3", 'pretrained': True}, # ResNet or MobileNetV3
- 'neck': {"type": 'pse_fpn', 'out_channels': 256},
- 'head': {"type": "PseHead"},
- 'in_channels': 3,
- }
- config.loss = {
- 'type': 'PSELoss',
- 'Lambda': 0.7
- }
- config.post_process = {
- 'type': 'pse_postprocess'
- }
- # for dataset
- # ##lable文件
- ### 存在问题,gt中str-->label 是放在loss中还是放在dataloader中
- config.dataset = {
- 'train': {
- 'dataset': {
- 'type': 'MyDataset',
- 'file': r'/DataSet/icdar2015/detection/train.json',
- 'data_shape':640,
- 'n':6,
- 'm':0.5,
- 'mean': [0.485, 0.456, 0.406],
- 'std': [0.229, 0.224, 0.225],
- 'filter_keys': ['text_polys', 'ignore_tags', 'shape','texts'], # 需要从data_dict里过滤掉的key
- 'ignore_tags': ['*', '###'],
- 'img_mode': 'RGB'
- },
- 'loader': {
- 'type': 'DataLoader', # 使用torch dataloader只需要改为 DataLoader
- 'batch_size': 20,
- 'shuffle': True,
- 'num_workers': 20
- }
- },
- 'eval': {
- 'dataset': {
- 'type': 'MyDataset',
- 'file': r'/DataSet/icdar2015/detection/test.json',
- 'mean': [0.485, 0.456, 0.406],
- 'std': [0.229, 0.224, 0.225],
- 'n':6,
- 'm':0.5,
- 'data_shape':640,
- 'filter_keys': ['score_maps','training_mask'], # 需要从data_dict里过滤掉的key
- 'ignore_tags': ['*', '###'],
- 'img_mode': 'RGB'
- },
- 'loader': {
- 'type': 'DataLoader',
- 'batch_size': 1, # 必须为1
- 'shuffle': False,
- 'num_workers': 10
- }
- }
- }
- # 转换为 Dict
- for k, v in config.items():
- if isinstance(v, dict):
- config[k] = Dict(v)
|