123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # -*- coding: utf-8 -*-
- # @Time : 2020/5/19 21:44
- # @Author : xiangjing
- # ####################rec_train_options 参数说明##########################
- # 识别训练参数
- # base_lr:初始学习率
- # fine_tune_stage:
- # if you want to freeze some stage, and tune the others.
- # ['backbone', 'neck', 'head'], 所有参数都参与调优
- # ['backbone'], 只调优backbone部分的参数
- # 后续更新: 1、添加bn层freeze的代码
- # optimizer 和 optimizer_step:
- # 优化器的配置, 成对
- # example1: 'optimizer':['SGD'], 'optimizer_step':[],表示一直用SGD优化器
- # example2: 'optimizer':['SGD', 'Adam'], 'optimizer_step':[160], 表示前[0,160)个epoch使用SGD优化器,
- # [160,~]采用Adam优化器
- # lr_scheduler和lr_scheduler_info:
- # 学习率scheduler的设置
- # ckpt_save_type作用是选择模型保存的方式
- # HighestAcc:只保存在验证集上精度最高的模型(还是在训练集上loss最小)
- # FixedEpochStep: 按一定间隔保存模型
- ###
- from addict import Dict
- config = Dict()
- config.exp_name = 'CRNN'
- config.train_options = {
- # for train
- 'resume_from': 'C:\\Users\\Administrator\\Desktop\\OCR_pytorch\\PytorchOCR1\\best.pth', # 继续训练地址
- 'third_party_name': '', # 加载paddle模型可选
- 'checkpoint_save_dir': f"./output/{config.exp_name}/checkpoint_resnet3", # 模型保存地址,log文件也保存在这里
- 'device': 'cuda:0', # 不建议修改
- 'epochs': 20,
- 'fine_tune_stage': ['backbone', 'neck', 'head'],
- 'print_interval': 500, # step为单位
- 'val_interval': 100000, # step为单位
- 'ckpt_save_type': 'HighestAcc', # HighestAcc:只保存最高准确率模型 ;FixedEpochStep:每隔ckpt_save_epoch个epoch保存一个
- 'ckpt_save_epoch': 4, # epoch为单位, 只有ckpt_save_type选择FixedEpochStep时,该参数才有效
- }
- config.SEED = 927
- config.optimizer = {
- 'type': 'Adam',
- 'lr': 0.0001,
- 'weight_decay': 1e-4,
- }
- config.lr_scheduler = {
- 'type': 'StepLR',
- 'step_size': 2,
- 'gamma': 0.5
- }
- config.model = {
- # backbone 可以设置'pretrained': False/True
- 'type': "RecModel",
- # 'backbone': {"type": "ResNet", 'layers': 34},
- # 'neck': {"type": 'PPaddleRNN',"hidden_size": 256},
- # 'head': {"type": "CTC", 'n_class': 93},
- # 'in_channels': 3,
- 'backbone': {"type": "ResNet", 'layers':34},
- 'neck': {"type": 'PPaddleRNN', "hidden_size": 256},
- 'head': {"type": "CTC", 'n_class': 7782},
- 'in_channels': 3,
- }
- config.loss = {
- 'type': 'CTCLoss',
- 'blank_idx': 0,
- }
- # for dataset
- # ##lable文件
- ### 存在问题,gt中str-->label 是放在loss中还是放在dataloader中
- config.dataset = {
- 'alphabet': r'C:/Users/Administrator/Desktop/OCR_pytorch/PytorchOCR1/char_std_7782.txt',
- 'train': {
- 'dataset': {
- 'type': 'RecTextLineDataset',
- 'file': r'/data2/znj/CRNN_Chinese_Characters_Rec/lib/dataset/txt/train.txt',
- 'input_h': 32,
- 'mean': 0.5,
- 'std': 0.5,
- 'augmentation': False,
- },
- 'loader': {
- 'type': 'DataLoader', # 使用torch dataloader只需要改为 DataLoader
- 'batch_size': 16,
- 'shuffle': True,
- 'num_workers': 3,
- 'collate_fn': {
- 'type': 'RecCollateFn',
- 'img_w': 640
- }
- }
- },
- 'eval': {
- 'dataset': {
- 'type': 'RecTextLineDataset',
- 'file': r'C:/Users/Administrator/Desktop/OCR_pytorch/PytorchOCR1/test_image/test.txt',
- 'input_h': 32,
- 'mean': 0.5,
- 'std': 0.5,
- 'augmentation': False,
- },
- 'loader': {
- 'type': 'RecDataLoader',
- 'batch_size': 2,
- 'shuffle': False,
- 'num_workers': 2,
- 'collate_fn': {
- 'type': 'RecCollateFn',
- 'img_w': 640
- }
- }
- }
- }
- # 转换为 Dict
- for k, v in config.items():
- if isinstance(v, dict):
- config[k] = Dict(v)
|