import numpy as np from torchocr.metrics.iou_utils import DetectionIoUEvaluator class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count return self class DetMetric(): def __init__(self, is_output_polygon=False): self.is_output_polygon = is_output_polygon self.evaluator = DetectionIoUEvaluator(is_output_polygon=is_output_polygon) def __call__(self, batch, output, box_thresh=0.6): ''' batch: (image, polygons, ignore_tags batch: a dict produced by dataloaders. image: tensor of shape (N, C, H, W). polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions. ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not. shape: the original shape of images. filename: the original filenames of images. output: (polygons, ...) ''' results = [] gt_polyons_batch = batch['text_polys'] ignore_tags_batch = batch['ignore_tags'] pred_polygons_batch = np.array(output[0]) pred_scores_batch = np.array(output[1]) for polygons, pred_polygons, pred_scores, ignore_tags in zip(gt_polyons_batch, pred_polygons_batch, pred_scores_batch, ignore_tags_batch): gt = [dict(points=np.int64(polygons[i]), ignore=ignore_tags[i]) for i in range(len(polygons))] if self.is_output_polygon: pred = [dict(points=pred_polygons[i]) for i in range(len(pred_polygons))] else: pred = [] # print(pred_polygons.shape) for i in range(pred_polygons.shape[0]): if pred_scores[i] >= box_thresh: # print(pred_polygons[i,:,:].tolist()) pred.append(dict(points=pred_polygons[i, :, :].astype(np.int))) # pred = [dict(points=pred_polygons[i,:,:].tolist()) if pred_scores[i] >= box_thresh for i in range(pred_polygons.shape[0])] results.append(self.evaluator.evaluate_image(gt, pred)) return results def gather_measure(self, raw_metrics): raw_metrics = [image_metrics for batch_metrics in raw_metrics for image_metrics in batch_metrics] result = self.evaluator.combine_results(raw_metrics) precision = AverageMeter() recall = AverageMeter() fmeasure = AverageMeter() precision.update(result['precision'], n=len(raw_metrics)) recall.update(result['recall'], n=len(raw_metrics)) fmeasure_score = 2 * precision.val * recall.val / (precision.val + recall.val + 1e-8) fmeasure.update(fmeasure_score) return { 'precision': precision, 'recall': recall, 'fmeasure': fmeasure }