# -*- coding: utf-8 -*- # @Time : 2020/5/21 13:50 # @Author : zhoujun import torch from torch import nn import torch.nn.functional as F class ConvBnRelu(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', inplace=True): super().__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=inplace) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x class FPN(nn.Module): def __init__(self, in_channels, out_channels=256, **kwargs): """ :param in_channels: 基础网络输出的维度 :param kwargs: """ super().__init__() inplace = True self.conv_out = out_channels out_channels = out_channels // 4 # reduce layers self.reduce_conv_c2 = ConvBnRelu(in_channels[0], out_channels, kernel_size=1, inplace=inplace) self.reduce_conv_c3 = ConvBnRelu(in_channels[1], out_channels, kernel_size=1, inplace=inplace) self.reduce_conv_c4 = ConvBnRelu(in_channels[2], out_channels, kernel_size=1, inplace=inplace) self.reduce_conv_c5 = ConvBnRelu(in_channels[3], out_channels, kernel_size=1, inplace=inplace) # Smooth layers self.smooth_p4 = ConvBnRelu(out_channels, out_channels, kernel_size=3, padding=1, inplace=inplace) self.smooth_p3 = ConvBnRelu(out_channels, out_channels, kernel_size=3, padding=1, inplace=inplace) self.smooth_p2 = ConvBnRelu(out_channels, out_channels, kernel_size=3, padding=1, inplace=inplace) self.conv = nn.Sequential( nn.Conv2d(self.conv_out, self.conv_out, kernel_size=3, padding=1, stride=1), nn.BatchNorm2d(self.conv_out), nn.ReLU(inplace=inplace) ) self.out_channels = self.conv_out def forward(self, x): c2, c3, c4, c5 = x # Top-down p5 = self.reduce_conv_c5(c5) p4 = self._upsample_add(p5, self.reduce_conv_c4(c4)) p4 = self.smooth_p4(p4) p3 = self._upsample_add(p4, self.reduce_conv_c3(c3)) p3 = self.smooth_p3(p3) p2 = self._upsample_add(p3, self.reduce_conv_c2(c2)) p2 = self.smooth_p2(p2) x = self._upsample_cat(p2, p3, p4, p5) x = self.conv(x) return x def _upsample_add(self, x, y): return F.interpolate(x, size=y.size()[2:]) + y def _upsample_cat(self, p2, p3, p4, p5): h, w = p2.size()[2:] p3 = F.interpolate(p3, size=(h, w)) p4 = F.interpolate(p4, size=(h, w)) p5 = F.interpolate(p5, size=(h, w)) return torch.cat([p2, p3, p4, p5], dim=1)