# -*- coding: utf-8 -*- # @Time : 2020/5/19 21:44 # @Author : xiangjing import os import sys import pathlib # 将 torchocr路径加到python路径里 __dir__ = pathlib.Path(os.path.abspath(__file__)) sys.path.append(str(__dir__)) sys.path.append(str(__dir__.parent.parent)) import random import time import shutil import traceback from importlib import import_module import numpy as np import torch from tqdm import tqdm from torch import nn from torchocr.networks import build_model, build_loss from torchocr.postprocess import build_post_process from torchocr.datasets import build_dataloader from torchocr.utils import get_logger, weight_init, load_checkpoint, save_checkpoint from torchocr.metrics import DetMetric def parse_args(): import argparse parser = argparse.ArgumentParser(description='train') parser.add_argument('--config', type=str, default='config/cfg_det_db.py', help='train config file path') args = parser.parse_args() # 解析.py文件 config_path = os.path.abspath(os.path.expanduser(args.config)) assert os.path.isfile(config_path) if config_path.endswith('.py'): module_name = os.path.basename(config_path)[:-3] config_dir = os.path.dirname(config_path) sys.path.insert(0, config_dir) mod = import_module(module_name) sys.path.pop(0) return mod.config # cfg_dict = { # name: value # for name, value in mod.__dict__.items() # if not name.startswith('__') # } # return cfg_dict else: raise IOError('Only py type are supported now!') def set_random_seed(seed, use_cuda=True, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. use_cuda: whether depend on cuda deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) if use_cuda: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def build_optimizer(params, config): """ 优化器 Returns: """ from torch import optim opt_type = config.pop('type') opt = getattr(optim, opt_type)(params, **config) return opt def adjust_learning_rate(optimizer, base_lr, iter, all_iters, factor, warmup_iters=0, warmup_factor=1.0 / 3): """ 带 warmup 的学习率衰减 :param optimizer: 优化器 :param base_lr: 开始的学习率 :param iter: 当前迭代次数 :param all_iters: 总的迭代次数 :param factor: 学习率衰减系数 :param warmup_iters: warmup 迭代数 :param warmup_factor: warmup 系数 :return: """ """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" if iter < warmup_iters: alpha = float(iter) / warmup_iters rate = warmup_factor * (1 - alpha) + alpha else: rate = np.power(1.0 - iter / float(all_iters + 1), factor) lr = rate * base_lr for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def get_fine_tune_params(net, finetune_stage): """ 获取需要优化的参数 Args: net: Returns: 需要优化的参数 """ to_return_parameters = [] for stage in finetune_stage: attr = getattr(net.module, stage, None) for element in attr.parameters(): to_return_parameters.append(element) return to_return_parameters def evaluate(net, val_loader, to_use_device, logger, post_process, metric): """ 在验证集上评估模型 :param net: 网络 :param val_loader: 验证集 dataloader :param to_use_device: device :param logger: logger类对象 :param post_process: 后处理类对象 :param metric: 根据网络输出和 label 计算 acc 等指标的类对象 :return: 一个包含 eval_loss,eval_acc和 norm_edit_dis 的 dict, 例子: { 'recall':0, 'precision': 0.99, 'hmean': 0.9999, } """ logger.info('start evaluate') net.eval() raw_metrics = [] total_frame = 0.0 total_time = 0.0 with torch.no_grad(): for batch_data in tqdm(val_loader): start = time.time() output = net.forward(batch_data['img'].to(to_use_device)) boxes, scores = post_process(output.cpu().numpy(), batch_data['shape']) total_frame += batch_data['img'].size()[0] total_time += time.time() - start raw_metric = metric(batch_data, (boxes, scores)) raw_metrics.append(raw_metric) metrics = metric.gather_measure(raw_metrics) net.train() result_dict = {'recall': metrics['recall'].avg, 'precision': metrics['precision'].avg, 'hmean': metrics['fmeasure'].avg} for k, v in result_dict.items(): logger.info(f'{k}:{v}') logger.info('FPS:{}'.format(total_frame / total_time)) return result_dict def train(net, optimizer, loss_func, train_loader, eval_loader, to_use_device, cfg, global_state, logger, post_process): """ 训练函数 :param net: 网络 :param optimizer: 优化器 :param scheduler: 学习率更新器 :param loss_func: loss函数 :param train_loader: 训练数据集 dataloader :param eval_loader: 验证数据集 dataloader :param to_use_device: device :param cfg: 当前训练所使用的配置 :param global_state: 训练过程中的一些全局状态,如cur_epoch,cur_iter,最优模型的相关信息 :param logger: logger 对象 :param post_process: 后处理类对象 :return: None """ train_options = cfg.train_options metric = DetMetric() # ===> logger.info('Training...') # ===> print loss信息的参数 all_step = len(train_loader) logger.info(f'train dataset has {train_loader.dataset.__len__()} samples,{all_step} in dataloader') logger.info(f'eval dataset has {eval_loader.dataset.__len__()} samples,{len(eval_loader)} in dataloader') if len(global_state) > 0: best_model = global_state['best_model'] start_epoch = global_state['start_epoch'] global_step = global_state['global_step'] else: best_model = {'recall': 0, 'precision': 0, 'hmean': 0, 'best_model_epoch': 0} start_epoch = 0 global_step = 0 # 开始训练 base_lr = cfg['optimizer']['lr'] all_iters = all_step * train_options['epochs'] warmup_iters = 3 * all_step try: for epoch in range(start_epoch, train_options['epochs']): # traverse each epoch net.train() # train mode train_loss = 0. start = time.time() for i, batch_data in enumerate(train_loader): # traverse each batch in the epoch current_lr = adjust_learning_rate(optimizer, base_lr, global_step, all_iters, 0.9, warmup_iters=warmup_iters) # 数据进行转换和丢到gpu for key, value in batch_data.items(): if value is not None: if isinstance(value, torch.Tensor): batch_data[key] = value.to(to_use_device) # 清零梯度及反向传播 optimizer.zero_grad() output = net.forward(batch_data['img'].to(to_use_device)) loss_dict = loss_func(output, batch_data) loss_dict['loss'].backward() optimizer.step() # statistic loss for print train_loss += loss_dict['loss'].item() loss_str = 'loss: {:.4f} - '.format(loss_dict.pop('loss').item()) for idx, (key, value) in enumerate(loss_dict.items()): loss_dict[key] = value.item() loss_str += '{}: {:.4f}'.format(key, loss_dict[key]) if idx < len(loss_dict) - 1: loss_str += ' - ' if (i + 1) % train_options['print_interval'] == 0: interval_batch_time = time.time() - start logger.info(f"[{epoch}/{train_options['epochs']}] - " f"[{i + 1}/{all_step}] - " f"lr:{current_lr} - " f"{loss_str} - " f"time:{interval_batch_time:.4f}") start = time.time() global_step += 1 logger.info(f'train_loss: {train_loss / len(train_loader)}') if (epoch + 1) % train_options['val_interval'] == 0: global_state['start_epoch'] = epoch global_state['best_model'] = best_model global_state['global_step'] = global_step net_save_path = f"{train_options['checkpoint_save_dir']}/latest.pth" save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state) if train_options['ckpt_save_type'] == 'HighestAcc': # val eval_dict = evaluate(net, eval_loader, to_use_device, logger, post_process, metric) if eval_dict['hmean'] > best_model['hmean']: best_model.update(eval_dict) best_model['best_model_epoch'] = epoch best_model['models'] = net_save_path global_state['start_epoch'] = epoch global_state['best_model'] = best_model global_state['global_step'] = global_step net_save_path = f"{train_options['checkpoint_save_dir']}/best.pth" save_checkpoint(net_save_path, net, optimizer, logger, cfg, global_state=global_state) elif train_options['ckpt_save_type'] == 'FixedEpochStep' and epoch % train_options[ 'ckpt_save_epoch'] == 0: shutil.copy(net_save_path, net_save_path.replace('latest.pth', f'{epoch}.pth')) best_str = 'current best, ' for k, v in best_model.items(): best_str += '{}: {}, '.format(k, v) logger.info(best_str) except KeyboardInterrupt: import os save_checkpoint(os.path.join(train_options['checkpoint_save_dir'], 'final.pth'), net, optimizer, logger, cfg, global_state=global_state) except: error_msg = traceback.format_exc() logger.error(error_msg) finally: for k, v in best_model.items(): logger.info(f'{k}: {v}') def main(): # ===> 获取配置文件参数 cfg = parse_args() os.makedirs(cfg.train_options['checkpoint_save_dir'], exist_ok=True) logger = get_logger('torchocr', log_file=os.path.join(cfg.train_options['checkpoint_save_dir'], 'train.log')) # ===> 训练信息的打印 train_options = cfg.train_options logger.info(cfg) # ===> to_use_device = torch.device( train_options['device'] if torch.cuda.is_available() and ('cuda' in train_options['device']) else 'cpu') set_random_seed(cfg['SEED'], 'cuda' in train_options['device'], deterministic=True) # ===> build network net = build_model(cfg['model']) # ===> 模型初始化及模型部署到对应的设备 if not cfg['model']['backbone']['pretrained']: # 使用 pretrained net.apply(weight_init) # if torch.cuda.device_count() > 1: net = nn.DataParallel(net) net = net.to(to_use_device) net.train() # ===> get fine tune layers params_to_train = get_fine_tune_params(net, train_options['fine_tune_stage']) # ===> solver and lr scheduler optimizer = build_optimizer(net.parameters(), cfg['optimizer']) # ===> whether to resume from checkpoint resume_from = train_options['resume_from'] if resume_from: net, _resumed_optimizer, global_state = load_checkpoint(net, resume_from, to_use_device, optimizer, third_name=train_options['third_party_name']) if _resumed_optimizer: optimizer = _resumed_optimizer logger.info(f'net resume from {resume_from}') else: global_state = {} logger.info(f'net resume from scratch.') # ===> loss function loss_func = build_loss(cfg['loss']) loss_func = loss_func.to(to_use_device) # ===> data loader train_loader = build_dataloader(cfg.dataset.train) eval_loader = build_dataloader(cfg.dataset.eval) # post_process post_process = build_post_process(cfg['post_process']) # ===> train train(net, optimizer, loss_func, train_loader, eval_loader, to_use_device, cfg, global_state, logger, post_process) if __name__ == '__main__': main()