説明なし

sierkinhane 128e47a5df modified demo.py 5 年 前
.idea 128e47a5df modified demo.py 5 年 前
images 02b2597a38 add config 5 年 前
lib 02b2597a38 add config 5 年 前
output bb7b87d260 delete log 5 年 前
README.md 602b27a5d3 update readme 5 年 前
demo.py 128e47a5df modified demo.py 5 年 前
train.py 128e47a5df modified demo.py 5 年 前

README.md

Characters Recognition

A Chinese characters recognition repository based on convolutional recurrent networks.

Performance

Recognize characters in pictures

Dev Environments

  1. WIN 10 or Ubuntu 16.04
  2. PyTorch 1.2.0 (may fix ctc loss) with cuda 10.0 🔥
  3. yaml
  4. easydict
  5. tensorboardX

Data

Synthetic Chinese String Dataset

  1. Download the dataset in here
  2. Edit lib/config/360CC_config.yaml DATA:ROOT to you image path

    DATASET:
      ROOT: 'to/your/images/path'
    
  3. Put char_std_5990.txt in lib/dataset/txt/

  4. Download the labels in here (password: w877)

  5. And put train.txt and test.txt in lib/dataset/txt/

    eg. test.txt

    20456343_4045240981.jpg 89 201 241 178 19 94 19 22 26 656
    20457281_3395886438.jpg 120 1061 2 376 78 249 272 272 120 1061
    ...
    

    Or your own data

  6. Edit lib/config/OWN_config.yaml DATA:ROOT to you image path

    DATASET:
      ROOT: 'to/your/images/path'
    
  7. And put your train_own.txt and test_own.txt in lib/dataset/txt/

    eg. test_own.txt

    20456343_4045240981.jpg 你好啊!祖国!
    20457281_3395886438.jpg 晚安啊!世界!
    ...
    

    note: fixed-length supported. yet you can modify dataloader to support random length.

Train

   [run] python train.py --cfg lib/config/360CC_config.yaml
or [run] python train.py --cfg lib/config/OWN_config.yaml
#### loss curve

angular2html [run] cd output/360CC/crnn/xxxx-xx-xx-xx-xx/ [run] tensorboard --logdir log


#### loss overview(first epoch)
<center/>
<img src='images/train_loss.png' title='loss1' style='max-width:800px'></img>
</center>
<p>
<img src='images/tb_loss.png' title='loss1' style='max-width:600px'></img>
</p>

## Demo

angular2html [run] python demo.py --image_path images/test.png --checkpoints output/checkpoints/mixed_second_finetune_acc_97P7.pth ```

References