Sem descrição

sierkinhane 04e34ec3fb update há 4 anos atrás
.idea 352bc7dde8 update há 5 anos atrás
images 02b2597a38 add config há 5 anos atrás
lib 04e34ec3fb update há 4 anos atrás
output 0854e87a2a update há 5 anos atrás
README.md 648bf8014a update readme há 5 anos atrás
demo.py 0854e87a2a update há 5 anos atrás
train.py 0854e87a2a update há 5 anos atrás

README.md

Characters Recognition

A Chinese characters recognition repository based on convolutional recurrent networks.

Performance

Recognize characters in pictures

Dev Environments

  1. WIN 10 or Ubuntu 16.04
  2. PyTorch 1.2.0 (may fix ctc loss) with cuda 10.0 🔥
  3. yaml
  4. easydict
  5. tensorboardX

Data

Synthetic Chinese String Dataset

  1. Download the dataset
  2. Edit lib/config/360CC_config.yaml DATA:ROOT to you image path

    DATASET:
      ROOT: 'to/your/images/path'
    
  3. Download the labels (password: eaqb)

  4. Put char_std_5990.txt in lib/dataset/txt/

  5. And put train.txt and test.txt in lib/dataset/txt/

    eg. test.txt

    20456343_4045240981.jpg 89 201 241 178 19 94 19 22 26 656
    20457281_3395886438.jpg 120 1061 2 376 78 249 272 272 120 1061
    ...
    

    Or your own data

  6. Edit lib/config/OWN_config.yaml DATA:ROOT to you image path

    DATASET:
      ROOT: 'to/your/images/path'
    
  7. And put your train_own.txt and test_own.txt in lib/dataset/txt/

    eg. test_own.txt

    20456343_4045240981.jpg 你好啊!祖国!
    20457281_3395886438.jpg 晚安啊!世界!
    ...
    

    note: fixed-length training is supported. yet you can modify dataloader to support random length training.

Train

   [run] python train.py --cfg lib/config/360CC_config.yaml
or [run] python train.py --cfg lib/config/OWN_config.yaml
#### loss curve

angular2html [run] cd output/360CC/crnn/xxxx-xx-xx-xx-xx/ [run] tensorboard --logdir log


#### loss overview(first epoch)
<center/>
<img src='images/train_loss.png' title='loss1' style='max-width:800px'></img>
</center>
<p>
<img src='images/tb_loss.png' title='loss1' style='max-width:600px'></img>
</p>

## Demo

angular2html [run] python demo.py --image_path images/test.png --checkpoints output/checkpoints/mixed_second_finetune_acc_97P7.pth ```

References