from __future__ import absolute_import import time import lib.utils.utils as utils import torch class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def train(config, train_loader, dataset, converter, model, criterion, optimizer, device, epoch, writer_dict=None, output_dict=None): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() model.train() end = time.time() for i, (inp, idx) in enumerate(train_loader): # measure data time data_time.update(time.time() - end) labels = utils.get_batch_label(dataset, idx) inp = inp.to(device) # inference preds = model(inp).cpu() # compute loss batch_size = inp.size(0) text, length = converter.encode(labels) # length = 一个batch中的总字符长度, text = 一个batch中的字符所对应的下标 preds_size = torch.IntTensor([preds.size(0)] * batch_size) # timestep * batchsize loss = criterion(preds, text, preds_size, length) optimizer.zero_grad() loss.backward() optimizer.step() losses.update(loss.item(), inp.size(0)) batch_time.update(time.time()-end) if i % config.PRINT_FREQ == 0: msg = 'Epoch: [{0}][{1}/{2}]\t' \ 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Speed {speed:.1f} samples/s\t' \ 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ 'Loss {loss.val:.5f} ({loss.avg:.5f})\t'.format( epoch, i, len(train_loader), batch_time=batch_time, speed=inp.size(0)/batch_time.val, data_time=data_time, loss=losses) print(msg) if writer_dict: writer = writer_dict['writer'] global_steps = writer_dict['train_global_steps'] writer.add_scalar('train_loss', losses.avg, global_steps) writer_dict['train_global_steps'] = global_steps + 1 end = time.time() def validate(config, val_loader, dataset, converter, model, criterion, device, epoch, writer_dict, output_dict): losses = AverageMeter() model.eval() n_correct = 0 with torch.no_grad(): for i, (inp, idx) in enumerate(val_loader): labels = utils.get_batch_label(dataset, idx) inp = inp.to(device) # inference preds = model(inp).cpu() # compute loss batch_size = inp.size(0) text, length = converter.encode(labels) preds_size = torch.IntTensor([preds.size(0)] * batch_size) loss = criterion(preds, text, preds_size, length) losses.update(loss.item(), inp.size(0)) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) sim_preds = converter.decode(preds.data, preds_size.data, raw=False) for pred, target in zip(sim_preds, labels): if pred == target: n_correct += 1 if (i + 1) % config.PRINT_FREQ == 0: print('Epoch: [{0}][{1}/{2}]'.format(epoch, i, len(val_loader))) if i == config.TEST.NUM_TEST: break raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:config.TEST.NUM_TEST_DISP] for raw_pred, pred, gt in zip(raw_preds, sim_preds, labels): print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt)) num_test_sample = config.TEST.NUM_TEST_BATCH * config.TEST.BATCH_SIZE_PER_GPU if num_test_sample > len(dataset): num_test_sample = len(dataset) print("[#correct:{} / #total:{}]".format(n_correct, num_test_sample)) accuracy = n_correct / float(num_test_sample) print('Test loss: {:.4f}, accuray: {:.4f}'.format(losses.avg, accuracy)) if writer_dict: writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] writer.add_scalar('valid_acc', accuracy, global_steps) writer_dict['valid_global_steps'] = global_steps + 1 return accuracy