123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- import numpy as np
- import pandas as pd
- import tensorflow as tf
- from entity import *
- # np.random.seed(1)
- # tf.set_random_seed(1)
- class DQN():
- def __init__(self,
- n_actions,
- n_features,
- learning_rate=0.001,
- reward_decay=0.9,
- e_greedy=1,
- replace_target_iter=300,
- memory_size=600,
- batch_size=64,
- e_greedy_increment=None,
- output_graph=False
- ):
- self.n_actions = n_actions
- self.n_features = n_features
- self.lr = learning_rate
- self.gamma = reward_decay
- self.epsilon_max = e_greedy
- self.replace_target_iter = replace_target_iter
- self.memory_size = memory_size
- self.batch_size = batch_size
- self.epsilon_increment = e_greedy_increment
- self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
- # total learning step
- self.learn_step_counter = 0
- # initialize zero memory [s, a, r, s_]
- self.memory = np.zeros((self.memory_size, n_features * 2 + 3))
- # consist of [target_net, evaluate_net]
- self._build_net()
- t_params = tf.get_collection('target_net_params')
- e_params = tf.get_collection('eval_net_params')
- self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
- self.sess = tf.Session()
- if output_graph:
- # $ tensorboard --logdir=logs
- # tf.train.SummaryWriter soon be deprecated, use following
- tf.summary.FileWriter("logs/", self.sess.graph)
- self.sess.run(tf.global_variables_initializer())
- self.cost_his = []
- def _build_net(self):
- # ------------------ build evaluate_net ------------------
- self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input
- self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
- with tf.variable_scope('eval_net'):
- # c_names(collections_names) are the collections to store variables
- c_names, n_l1, w_initializer, b_initializer = \
- ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
- tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
- # first layer. collections is used later when assign to target net
- with tf.variable_scope('l1'):
- w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
- b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
- l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
- # second layer. collections is used later when assign to target net
- with tf.variable_scope('l2'):
- w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
- b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
- self.q_eval = tf.matmul(l1, w2) + b2
- with tf.variable_scope('loss'):
- self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
- with tf.variable_scope('train'):
- self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
- # ------------------ build target_net ------------------
- self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
- with tf.variable_scope('target_net'):
- # c_names(collections_names) are the collections to store variables
- c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
- # first layer. collections is used later when assign to target net
- with tf.variable_scope('l1'):
- w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
- b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
- l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)
- # second layer. collections is used later when assign to target net
- with tf.variable_scope('l2'):
- w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
- b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
- self.q_next = tf.matmul(l1, w2) + b2
- def store_transition(self, s, a, r,travel_time, s_):
- if not hasattr(self, 'memory_counter'):
- self.memory_counter = 0
- transition = np.hstack((s, [a, r,travel_time], s_))
- # replace the old memory with new memory
- index = self.memory_counter % self.memory_size
- self.memory[index, :] = transition
- self.memory_counter += 1
- def choose_action(self, observation):
- # to have batch dimension when feed into tf placeholder
- observation = observation[np.newaxis, :]
- if np.random.uniform() < self.epsilon:
- # forward feed the observation and get q value for every actions
- actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
- action = np.argmax(actions_value)
- else:
- action = np.random.randint(0, self.n_actions)
- return action
- def learn(self):
- # check to replace target parameters
- if self.learn_step_counter % self.replace_target_iter == 0:
- self.sess.run(self.replace_target_op)
- print('target_params_replaced\n')
- # sample batch memory from all memory
- if self.memory_counter > self.memory_size:
- sample_index = np.random.choice(self.memory_size, size=self.batch_size)
- else:
- sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
- batch_memory = self.memory[sample_index, :]
- q_next, q_eval = self.sess.run(
- [self.q_next, self.q_eval],
- feed_dict={
- self.s_: batch_memory[:, -self.n_features:], # fixed params
- self.s: batch_memory[:, :self.n_features], # newest params
- })
- # change q_target w.r.t q_eval's action
- q_target = q_eval.copy()
- batch_index = np.arange(self.batch_size, dtype=np.int32)
- eval_act_index = batch_memory[:, self.n_features].astype(int)
- reward = batch_memory[:, self.n_features + 1]
- # 间隔时间段
- travel_time = batch_memory[:, self.n_features + 2]
- gamma = np.array([self.gamma ** t for t in travel_time])
- # gamma = gamma.reshape((self.batch_size,1))
- # q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)
- q_target[batch_index, eval_act_index] = reward + gamma * np.max(q_next, axis=1)
- # train eval network
- _, self.cost = self.sess.run([self._train_op, self.loss],
- feed_dict={self.s: batch_memory[:, :self.n_features],
- self.q_target: q_target})
- self.cost_his.append(self.cost)
- # increasing epsilon
- self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
- self.learn_step_counter += 1
- def plot_cost(self):
- import matplotlib.pyplot as plt
- print("min_loss:",min(self.cost_his))
- plt.plot(np.arange(len(self.cost_his)), self.cost_his)
- plt.ylabel('Cost')
- plt.xlabel('training steps')
- plt.show()
- def predict(self,model_path=None):
- if model_path:
- model = load(model_path)
|