1234567891011121314151617181920212223242526272829303132333435363738394041 |
- from entity import *
- import random
- import numpy as np
- import gc
- from sklearn.externals import joblib
- def get_data():
- data = load("train_data_02.pkl")
- new_data = [[] for _ in range(144)]
- for d in data:
- for match in d:
- # if match.order.arrive_time >= match.order.order_time or match.order.order_time >= 142:
- new_data[match.order.order_time-1].append(match)
- del data
- for t in range(len(new_data)):
- if 69<=t<=78 or 105<=t<=114:
- for n in range(random.randint(16000,20000)):
- d_x = random.randint(25, 35)
- d_y = random.randint(25, 35)
- driver = Driver(id, d_x, d_y)
- to_x = random.randint(0, 49)
- to_y = random.randint(0, 49)
- juli = 1000
- while juli > 6:
- o_x = random.randint(d_x-6,d_x+6)
- o_y = random.randint(d_y-6,d_y+6)
- juli = abs(o_x - d_x) + abs(o_y - d_y)
- order = Order(0, o_x, o_y, to_x, to_y, t)
- match = Match(order, driver)
- new_data[t].append(match)
- print('\r' + str(t) + ' ' + str(n), end='')
- count = 0
- for i in new_data:
- count += 1
- print(str(count)+":",len(i))
- save(new_data,"train_data03.pkl")
- if __name__ == '__main__':
- get_data()
|