index.rst 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. .. IEPY documentation master file, created by
  2. sphinx-quickstart on Wed Apr 23 20:02:15 2014.
  3. You can adapt this file completely to your liking, but it should at least
  4. contain the root `toctree` directive.
  5. Welcome to IEPY's documentation!
  6. ================================
  7. IEPY is an open source tool for
  8. `Information Extraction <http://en.wikipedia.org/wiki/Information_extraction>`_
  9. focused on Relation Extraction.
  10. To give an example of Relation Extraction, if we are trying to find a
  11. birth date in:
  12. `"John von Neumann (December 28, 1903 – February 8, 1957) was a Hungarian and
  13. American pure and applied mathematician, physicist, inventor and polymath."`
  14. then IEPY's task is to identify "``John von Neumann``" and
  15. "``December 28, 1903``" as the subject and object entities of the "``was born in``"
  16. relation.
  17. It's aimed at:
  18. - :doc:`users <active_learning_tutorial>`
  19. needing to perform Information Extraction on a large dataset.
  20. - :doc:`scientists <how_to_hack>`
  21. wanting to experiment with new IE algorithms.
  22. You can follow the development of this project and report issues at http://github.com/machinalis/iepy
  23. or join the mailing list `here <https://groups.google.com/forum/?hl=es-419#%21forum/iepy>`__
  24. Features
  25. --------
  26. - :doc:`A corpus annotation tool <corpus_labeling>`
  27. with a `web-based UI <corpus_labeling.html#document-based-labeling>`_
  28. - :doc:`An active learning relation extraction tool <active_learning_tutorial>`
  29. pre-configured with convenient defaults.
  30. - :doc:`A rule based relation extraction tool <rules_tutorial>`
  31. for cases where the documents are semi-structured or high precision is required.
  32. - A web-based user interface that:
  33. - Allows layman users to control some aspects of IEPY.
  34. - Allows decentralization of human input.
  35. - A shallow entity ontology with coreference resolution via `Stanford CoreNLP <http://nlp.stanford.edu/software/corenlp.shtml>`_
  36. - :doc:`An easily hack-able active learning core <how_to_hack>`,
  37. ideal for scientist wanting to experiment with new algorithms.
  38. Contents:
  39. ---------
  40. .. toctree::
  41. :maxdepth: 2
  42. installation
  43. tutorial
  44. instantiation
  45. active_learning_tutorial
  46. rules_tutorial
  47. preprocess
  48. gazettes
  49. corpus_labeling
  50. how_to_hack
  51. troubleshooting
  52. language
  53. Authors
  54. -------
  55. IEPY is © 2014 `Machinalis <http://www.machinalis.com/>`_ in collaboration
  56. with the `NLP Group at UNC-FaMAF <http://pln.famaf.unc.edu.ar/>`_. Its primary
  57. authors are:
  58. * Rafael Carrascosa <rcarrascosa@machinalis.com> (rafacarrascosa at github)
  59. * Javier Mansilla <jmansilla@machinalis.com> (jmansilla at github)
  60. * Gonzalo García Berrotarán <ggarcia@machinalis.com> (j0hn at github)
  61. * Franco M. Luque <francolq@famaf.unc.edu.ar> (francolq at github)
  62. * Daniel Moisset <dmoisset@machinalis.com> (dmoisset at github)
  63. Changelog
  64. ---------
  65. .. include:: Changelog