punish_predictor.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. #!/usr/bin/python3
  2. # -*- coding: utf-8 -*-
  3. # @Author : bidikeji
  4. # @Time : 2021/1/25 0025 16:35
  5. #!/usr/bin/python3
  6. # -*- coding: utf-8 -*-
  7. # @Author : bidikeji
  8. # @Time : 2020/12/24 0024 15:23
  9. import re
  10. import os
  11. import time
  12. import tensorflow as tf
  13. # from BiddingKG.dl.common.Utils import *
  14. from tensorflow.contrib.crf import crf_log_likelihood
  15. from tensorflow.contrib.layers.python.layers import initializers
  16. # from keras.preprocessing.sequence import pad_sequences
  17. # import BiddingKG.dl.interface.Preprocessing as Preprocessing
  18. from BiddingKG.dl.interface.Preprocessing import *
  19. def decode(logits, trans, sequence_lengths, tag_num):
  20. viterbi_sequences = []
  21. for logit, length in zip(logits, sequence_lengths):
  22. score = logit[:length]
  23. viterbi_seq, viterbi_score = viterbi_decode(score, trans)
  24. viterbi_sequences.append(viterbi_seq)
  25. return viterbi_sequences
  26. class Punish_Extract():
  27. def __init__(self, model_file = os.path.dirname(__file__)+"/models/punish_code.pb"):
  28. print('model_file_path:',model_file)
  29. self.sess = tf.Session(graph=tf.Graph())
  30. self.code = ""
  31. self.punish_dicition = ""
  32. self.model_file = model_file #预测编号模型
  33. self.load_model()
  34. # 加载处罚编号预测模型
  35. def load_model(self):
  36. log("get model of time")
  37. with self.sess.as_default():
  38. with self.sess.graph.as_default():
  39. output_graph_def = tf.GraphDef()
  40. with open(self.model_file, 'rb') as f:
  41. output_graph_def.ParseFromString(f.read())
  42. tf.import_graph_def(output_graph_def, name="")
  43. self.sess.run(tf.global_variables_initializer())
  44. self.char_input = self.sess.graph.get_tensor_by_name("char_input:0")
  45. self.length = self.sess.graph.get_tensor_by_name("length:0")
  46. self.trans = self.sess.graph.get_tensor_by_name("crf_loss/transitons:0")
  47. self.logits = self.sess.graph.get_tensor_by_name("CRF/output/logits:0")
  48. # 处罚编号预测
  49. def predict_punishCode(self,list_sentences, MAX_AREA=5000):
  50. '''
  51. 每个句子预测处罚编号
  52. :param list_sentences: 多篇文章句子列表[[每篇文章句子列表]]
  53. :param MAX_AREA: 控制最大每个句子长度,超过截断
  54. :return: 处罚编号字符串,若有多个;号隔开
  55. '''
  56. re_ner = re.compile("12+?3")
  57. article_ner_list = []
  58. count = 0
  59. with self.sess.as_default():
  60. with self.sess.graph.as_default():
  61. for sentences in list_sentences:
  62. count += 1
  63. # print(count)
  64. sentences.sort(key=lambda x: len(x.sentence_text), reverse=True)
  65. _begin_index = 0
  66. while True:
  67. MAX_LEN = len(sentences[_begin_index].sentence_text)
  68. if MAX_LEN > MAX_AREA:
  69. MAX_LEN = MAX_AREA
  70. _LEN = MAX_AREA // MAX_LEN
  71. sentence_len = [len(sentence.sentence_text) for sentence in sentences[_begin_index:_begin_index+_LEN]]
  72. sentences_x = []
  73. for sentence in sentences[_begin_index:_begin_index+_LEN]:
  74. sentence = sentence.sentence_text
  75. sentence = list(sentence)
  76. sentence2id = [getIndexOfWord(word) for word in sentence]
  77. sentences_x.append(sentence2id)
  78. sentences_x = pad_sequences(sentences_x, maxlen=MAX_LEN, padding="post", truncating="post")
  79. sentences_x = [np.array(x) for x in sentences_x]
  80. _logits, _trans = self.sess.run([self.logits, self.trans],
  81. feed_dict={self.char_input: np.array(sentences_x), self.length: sentence_len})
  82. viterbi_sequence = decode(logits=_logits, trans=_trans, sequence_lengths=sentence_len, tag_num=4)
  83. ner_list = []
  84. for _seq, sentence in zip(viterbi_sequence, sentences[_begin_index:_begin_index+_LEN]):
  85. sentence = sentence.sentence_text
  86. seq_id = ''.join([str(s) for s in _seq])
  87. if re_ner.search(seq_id):
  88. # print("sentence: ",sentence)
  89. for _ner in re_ner.finditer(seq_id):
  90. start = _ner.start()
  91. end = _ner.end()
  92. n = sentence[start:end]
  93. # print(n,'<==>',start,end)
  94. # ner_list.append((n, start, end))
  95. ner_list.append(n) # 改为只返回实体字符
  96. # article_ner_list.append(ner_list)
  97. article_ner_list.append(';'.join(set(ner_list)))
  98. if _begin_index+_LEN >= len(sentences):
  99. break
  100. _begin_index += _LEN
  101. return article_ner_list[0]
  102. # 处罚类型
  103. def get_punishType(self, x1, x2):
  104. '''通过文章标题及内容判断文章类别
  105. x1: 标题
  106. x2: 内容
  107. return 类别'''
  108. # x1 = x1.replace('(','(').replace(')', ')').replace(' ','')
  109. # x2 = x2.replace('(', '(').replace(')', ')').replace(' ', '')
  110. '''标题正则'''
  111. # 未知公告
  112. unknow = re.compile('采购方式|采购公告|采购招标|磋商公告|谈判公告|交易公告$|征集|征求|招标公告|竞标公告|中标公告|'
  113. '成交公告|成交信息|流标公告|废标公告|城市管理考评|决算表|决算|预算|资格考试|招聘|选聘'
  114. '|聘请|拟录用|无违规违法|无此项信息|暂无工程投标违法|管理办法|指导意见|无投诉|投诉办法'
  115. '公共资源交易情况|绩效评价|考试成绩|付息公告|不动产|办证|印发|转发') #|结果公示 部分是
  116. # 投诉处理
  117. tscl = re.compile('投诉不予[处受]理|投诉不成立|终止投诉|投诉终止|不予受理|投诉事?项?的?处理')
  118. # 行政处罚
  119. xzcf = re.compile('行政处罚|行政处理|政处罚|行政裁决|防罚|公罚|医罚|环罚|政罚|文罚|局罚|旅罚|财罚|运罚')
  120. # 监督检查
  121. jdjc = re.compile('(监督检查的?问?题?(处理|整改|记分|结果|决定|处罚))|监督处罚|调查处理|监督处理')
  122. # 严重违法
  123. yzwf = re.compile('严重违法失信|黑名单|失信名单')
  124. # 不良行为
  125. blxw = re.compile('((不良|失信|不诚信|差错|不规范|违规|违约|处罚|违法)(行为|记录|信息))|((违约|违规|违法)(处理|操作|情况|问题))'
  126. '|通报批评|记分管理|迟到|早退|缺席|虚假材料|弄虚作假|履职不到位|诚信考核扣分|串通投标'
  127. '|审核不通过|码一致|地址一致|扣分处理|扣分通知|扣[0-9]+分|责令整改|信用信息认定书$'
  128. '|关于.{,30}的处罚|关于.{,10}的?考评通报|关于.{,30}扣分情况|不规范代理行为'
  129. '|(取消|暂停|限制).{,50}((专家|评标|评委|投标|竞价|被抽取|中标|供应商|候选人)资格)'
  130. '|(代理服?务?机构).{,10}(扣分)|(专家).{,30}(扣分|记分|处罚)|对.{,30}处理|冻结.{,30}账号')
  131. # 其他不良行为
  132. other = re.compile('质疑|代理机构进场交易情况|网上投诉办理|信用奖惩|信用奖罚|进场工作.{,5}考核'
  133. '|举报处理|结果无效|成交无效|行政复议')
  134. '''正文内容正则'''
  135. # 投诉处理
  136. tscl_c = re.compile('(投诉(人|单位)[1-9]?(名称)?[::])|(投诉事项[1-5一二三四五、]*部?分?(成立|予以受理))'
  137. '|((驳回|撤回|撤销|终止)[^,。]{,60}(投诉|质疑))')
  138. # 行政处罚
  139. xzcf_c = re.compile('((处理依据及结果|处理结果|处罚结果)).*行政处罚|如下行政处罚|行政处罚决定')
  140. # 诚信加分
  141. cxjf_c = re.compile('处罚结果.*诚信加分')
  142. # 严重违法失信
  143. yzwf_c = re.compile('工商部门严重违法失信起名单|严重违法失信的具体情形') #|严重违法失信的具体情形
  144. # 不良行为
  145. blxw_c = re.compile('(取消|暂停|限制).{,30}((专家|评标|评委|投标|采购|竞价|被抽取|中标|供应商)的?资格)'
  146. '|(处罚结果|处罚情况).*(扣[1-9]*分|记分|不良行为|不良记录|不良信用|不诚信|扣除信用'
  147. '|诚信档案|信用信息|取消.*资格|口头警告|处罚机关|责令改正|罚款|限制投标|暂扣|禁止'
  148. '|暂停|封禁|暂无|行政处罚)|处罚结果'
  149. '|处罚主题|禁止参与.{,10}政府采购活动|列入不良行为|处罚如下|如下处罚|违规处罚|处罚违规'
  150. '|责令改正|责令整改|处罚依据|进行以下处理|处理依据及结果|处理结果|处罚决定书|'
  151. '(不规范|不良|不诚信)行为记录')
  152. # 其他不良行为
  153. other_c = re.compile('质疑(人|单位)[1-9]?(名称)?:|公告期内受质疑')
  154. if re.search(unknow, x1):
  155. return re.search(unknow, x1).group(0), '未知类别'
  156. elif re.search(yzwf, x1):
  157. return re.search(yzwf, x1).group(0), '严重违法'
  158. elif re.search(yzwf_c, x2):
  159. return re.search(yzwf_c, x2).group(0), '严重违法'
  160. elif re.search(tscl, x1):
  161. return re.search(tscl, x1).group(0), '投诉处理'
  162. elif re.search(xzcf, x1):
  163. return re.search(xzcf, x1).group(0), '行政处罚'
  164. elif re.search(jdjc, x1):
  165. return re.search(jdjc, x1).group(0), '监督检查'
  166. elif re.search(blxw, x1):
  167. return re.search(blxw, x1).group(0), '不良行为'
  168. elif re.search(other, x1):
  169. return re.search(other, x1).group(0), '其他不良行为'
  170. elif re.search(tscl_c, x2):
  171. return re.search(tscl_c, x2).group(0), '投诉处理'
  172. elif re.search(xzcf_c, x2):
  173. return re.search(xzcf_c, x2).group(0), '行政处罚'
  174. elif re.search(cxjf_c, x2):
  175. return re.search(cxjf_c, x2).group(0), '诚信加分'
  176. elif re.search(blxw_c, x2):
  177. return re.search(blxw_c, x2).group(0), '不良行为'
  178. elif re.search(other_c, x2):
  179. return re.search(other_c, x2).group(0), '其他不良行为'
  180. return ' ', '未知类别'
  181. # 处罚决定
  182. def get_punishDecision(self, x, x2):
  183. '''通过正则匹配文章内容中的处理决定
  184. x:正文内容
  185. x2: 处罚类别
  186. return 处理决定字符串'''
  187. rule1 = re.compile(
  188. '(((如下|以下|处理|研究|本机关|我机关|本局|我局)决定)|((决定|处理|处理意见|行政处罚|处罚)(如下|如下))'
  189. '|((以下|如下)(决定|处理|处理意见|行政处罚|处罚))|处理依据及结果|处理结果|处罚结果|处罚情况|限制行为'
  190. '|整改意见)[::].{5,}')
  191. rule2 = re.compile(
  192. '(((如下|以下|处理|研究|本机关|我机关|本局|我局)决定)|((决定|处理|处罚|处理意见)(如下|如下))'
  193. '|((以下|如下)(决定|处理|处理意见|处罚))|处理依据及结果|处理结果|处罚结果|处罚情况|限制行为'
  194. '|处罚内容)[:,,].{10,}')
  195. rule3 = re.compile('考评结果:?.*')
  196. rule4 = re.compile('(依据|根据)《.*》.*')
  197. if x2 == '未知类别':
  198. return ' '
  199. elif re.search(rule1, x[-int(len(x)*0.4):]):
  200. return re.search(rule1, x[-int(len(x)*0.4):]).group(0)
  201. elif re.search(rule1, x[-int(len(x)*0.6):]):
  202. return re.search(rule1, x[-int(len(x)*0.6):]).group(0)
  203. elif re.search(rule2, x[-int(len(x)*0.7):]):
  204. return re.search(rule2, x[-int(len(x)*0.7):]).group(0)
  205. elif re.search(rule3, x[-int(len(x)*0.6):]):
  206. return re.search(rule3, x[-int(len(x)*0.6):]).group(0)
  207. elif re.search(rule4, x[-int(len(x)*0.4):]):
  208. return re.search(rule4, x[-int(len(x)*0.4):]).group(0)
  209. else:
  210. return ' '
  211. # 投诉是否成立
  212. def get_punishWhether(self, x1, x2, x3):
  213. '''通过正则匹配处理决定判断投诉是否成立
  214. x1: 处理决定字符串
  215. x2: 正文内容
  216. x3: 处罚类别
  217. return 投诉是否成立'''
  218. p1 = re.compile('(投诉|投拆|质疑|举报)(事项|内容|事实)?[^不,。]{,10}(成立|属实|予以受理|予以支持)|责令|废标|(中标|成交)[^,。]{,10}无效'
  219. '|取消[^,。]{,60}资格|罚款|重新(组织|开展)?(招标|采购)|投诉成立|被投诉人存在违法违规行为'
  220. '|采购活动违法|(中标|评标|成交)结果无效')
  221. p2 = re.compile('投诉不予[处受]理|((投诉|投拆|质疑|举报)(事项|内容|事实)?[^,。]{,10}(不成立|情?况?不属实|不予支持|缺乏事实依据))'
  222. '|((驳回|撤回|撤销|终止)[^,。]*(投诉|质疑|诉求))|终止[^,。]{,20}(行政裁决|投诉处理|采购活动)|投诉终止|投诉无效'
  223. '|予以驳回|不予受理|继续开展采购|被投诉人不存在违法违规行为|中标结果有效|投诉[^,。]{,10}不成立'
  224. '|维持被投诉人|不支持[^,。]{,20}投诉|无确凿证据')
  225. if x3 != '投诉处理':
  226. return ' '
  227. elif re.search(p1, x1):
  228. return '投诉成立'
  229. elif re.search(p2, x1):
  230. return '投诉无效'
  231. elif re.search(p1, x2):
  232. return '投诉成立'
  233. elif re.search(p2, x2):
  234. return '投诉无效'
  235. return ' '
  236. # 执法机构、处罚时间
  237. def get_institution(self, title, sentences_l, entity_l):
  238. '''
  239. 通过判断实体前信息判断改实体是否为执法机构
  240. :param title: 文章标题
  241. :param sentences_l: 单篇公告句子列表
  242. :param entity_l: 单篇公告实体列表
  243. :return: 执法机构及处罚时间字符串,多个的用;号隔开
  244. '''
  245. institutions = []
  246. punishTimes = []
  247. institution_1 = re.compile("(?:处罚执行部门|认定部门|执法机关名称|执法单位|通报部门|处罚机关|处罚部门)[::]")
  248. punishTimes_1 = re.compile("(?:处罚日期|限制行为开始时间|曝光开始日期|处罚决定日期|处罚期限|处罚时间|处理日期|公告开始时间)[::]")
  249. # 通过实体前面关键词判断是否为执法机构或处罚时间
  250. for ner in entity_l:
  251. if ner.entity_type == 'org':
  252. left = sentences_l[ner.sentence_index].sentence_text[
  253. max(0, ner.wordOffset_begin - 15):ner.wordOffset_begin]
  254. if institution_1.search(left):
  255. institutions.append(ner)
  256. elif institutions != [] and ner.sentence_index == institutions[-1].sentence_index and \
  257. ner.wordOffset_begin - institutions[-1].wordOffset_end < 2 and \
  258. sentences_l[ner.sentence_index].sentence_text[
  259. ner.wordOffset_begin:institutions[-1].wordOffset_end] \
  260. in ['', '、', '和', '及']:
  261. institutions.append(ner)
  262. elif ner.entity_type == 'time':
  263. left = sentences_l[ner.sentence_index].sentence_text[
  264. max(0, ner.wordOffset_begin - 15):ner.wordOffset_begin]
  265. if punishTimes_1.search(left):
  266. punishTimes.append(ner)
  267. institution_title = re.compile("财政局|财政厅|监督管理局|公管局|公共资源局|委员会")
  268. institution_time = re.compile(
  269. "(^,?[\d一二三四五六七八九十]{4},?[/年-][\d一二三四五六七八九十]{1,2},?[/月-][\d一二三四五六七八九十]{1,2},?[/日-]?)")
  270. ins = ""
  271. ptime = ""
  272. # 如果前面步骤找不到处罚机构则在标题找实体,并正则检查是否有关键词
  273. if institutions == [] and len(title)>10:
  274. title_ners = getNers([title], useselffool=True)
  275. if title_ners[0]:
  276. for title_ner in title_ners[0]:
  277. if title_ner[2] == 'org' and institution_title.search(title_ner[3]):
  278. ins = title_ner[3]
  279. break
  280. if punishTimes == [] or institutions == []:
  281. # 如果前面步骤还没找到要素,则通过公司实体后面是否有日期关键词,有则作为处罚机构和处罚时间
  282. for ner in [ner for ner in entity_l if ner.entity_type == 'org'][-5:][::-1]:
  283. right = sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_end:ner.wordOffset_end + 16]
  284. if institution_time.search(right):
  285. if ins == '':
  286. ins = ner.entity_text
  287. if ptime == '':
  288. ptime = institution_time.search(right).group(1)
  289. break
  290. # 前面步骤都没找到则判断最后一个时间实体是否在文章末尾,是则作为处罚时间
  291. if ptime == '':
  292. n_time = [ner for ner in entity_l if ner.entity_type == 'time']
  293. if len(n_time) != 0:
  294. ner = n_time[-1]
  295. if ner.sentence_index == len(sentences_l) - 1:
  296. textLong = len(sentences_l[ner.sentence_index].sentence_text)
  297. if ner.wordOffset_end > textLong - 3 and len(ner.entity_text) > 3:
  298. ptime = ner.entity_text
  299. institutions = [ner.entity_text for ner in institutions]
  300. punishTimes = [ner.entity_text for ner in punishTimes]
  301. if institutions == [] and ins != "":
  302. institutions.append(ins)
  303. if punishTimes == [] and ptime != "":
  304. punishTimes.append(ptime)
  305. return ";".join(institutions), ";".join(punishTimes)
  306. # 投诉人、被投诉人、被处罚人
  307. def get_complainant(self, punishType, sentences_l, entity_l):
  308. '''
  309. 通过对公告类别、句子列表、实体列表正则寻找投诉人、被投诉人、处罚人
  310. :param punishType: 公告处罚类别
  311. :param sentences_l: 单篇公告句子列表
  312. :param entity_l: 单篇公告实体列表
  313. :return: 投诉人、被投诉人
  314. '''
  315. complainants = [] # 投诉人
  316. punishPeople = [] # 被投诉人、被处罚人
  317. size = 16
  318. # 投诉人、质疑人
  319. complainants_rule1 = re.compile(
  320. "(?:[^被]|^)(?:投[诉拆][人方]|质疑[人方]|质疑供应商|质疑单位|疑问[人方]|检举[人方]|举报[人方])[\d一二三四五六七八九十]?(\(.+?\))?(:?,?名称[\d一二三四五六七八九十]?)?(?:[::,]+.{0,3}$|$)")
  321. # 被处罚人,被投诉人
  322. punishPeople_rule1 = re.compile(
  323. "(被投[诉拆][人方]|被检举[人方]|被举报[人方]|被处罚人|被处罚单位|行政相对人|单位名称|不良行为单位或个人|被查单位|处罚主题|企业|主体|违规对象|违规单位|当事人)[\d一二三四五六七八九十]?(\(.+?\))?(:?,?名称[\d一二三四五六七八九十]?)?(?:[::,]+.{0,3}$|$)")
  324. punishPeople_rule2_1 = re.compile(",$")
  325. punishPeople_rule2_2 = re.compile("^[::]")
  326. punishPeople_rule3_1 = re.compile("(?:关于|对)[^,。]*$")
  327. punishPeople_rule3_2 = re.compile("^[^,。]*(?:通报|处罚|披露|处理|信用奖惩|不良行为|不良记录)")
  328. punish_l = [] # 处罚实体列表
  329. tmp = []
  330. for ner in [ner for ner in entity_l if ner.entity_type in ['org', 'company', 'person']]:
  331. if tmp == []:
  332. tmp.append(ner)
  333. elif ner.entity_type == tmp[-1].entity_type and ner.sentence_index == tmp[-1].sentence_index and \
  334. ner.wordOffset_begin - tmp[-1].wordOffset_end < 2 \
  335. and sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_begin:tmp[-1].wordOffset_end] in [
  336. '',
  337. '、',
  338. '和',
  339. '及']:
  340. tmp.append(ner)
  341. elif ner.entity_type in ['org', 'company'] and tmp[-1].entity_type in ['org', 'company'] and \
  342. ner.sentence_index == tmp[-1].sentence_index and ner.wordOffset_begin - tmp[-1].wordOffset_end < 2 \
  343. and sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_begin:tmp[-1].wordOffset_end] in [
  344. '',
  345. '、',
  346. '和',
  347. '及']:
  348. tmp.append(ner)
  349. else:
  350. punish_l.append(tmp)
  351. tmp = [ner]
  352. for ner_l in punish_l:
  353. begin_index = ner_l[0].wordOffset_begin
  354. end_index = ner_l[-1].wordOffset_end
  355. left = sentences_l[ner_l[0].sentence_index].sentence_text[max(0, begin_index - size):begin_index]
  356. right = sentences_l[ner_l[0].sentence_index].sentence_text[end_index:end_index + size]
  357. if complainants_rule1.search(left):
  358. complainants.append(ner_l)
  359. elif punishPeople_rule1.search(left):
  360. punishPeople.append(ner_l)
  361. elif punishPeople_rule2_1.search(left) and punishPeople_rule2_2.search(right):
  362. if punishType == '投诉处理':
  363. complainants.append(ner_l)
  364. else:
  365. punishPeople.append(ner_l)
  366. elif punishPeople_rule3_1.search(left) and punishPeople_rule3_2.search(right):
  367. punishPeople.append(ner_l)
  368. complainants = set([it.entity_text for l in complainants for it in l])
  369. punishPeople = set([it.entity_text for l in punishPeople for it in l])
  370. return ';'.join(complainants), ';'.join(punishPeople)
  371. def get_punish_extracts(self,list_articles,list_sentences, list_entitys):
  372. list_result = []
  373. for article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  374. title = article.title
  375. text=article.content
  376. keyword, punishType = self.get_punishType(title, text)
  377. # print('处罚类型:',punishType)
  378. punish_code = self.predict_punishCode(list_sentences)
  379. # print('处罚编号: ',punish_code)
  380. institutions, punishTimes = self.get_institution(title, list_sentence, list_entity)
  381. # print('执法机构:',institutions, '\n 处罚时间:', punishTimes)
  382. punishDecision = self.get_punishDecision(text, punishType)
  383. # print('处罚决定:',punishDecision)
  384. punishWhether= self.get_punishWhether(punishDecision, text, punishType)
  385. # print('投诉是否成立:',punishWhether)
  386. complainants, punishPeople = self.get_complainant(punishType, list_sentence, list_entity)
  387. # print('投诉人:%s 被投诉人:%s'%(complainants, punishPeople))
  388. punish_dic = {'punish_code':punish_code,
  389. 'punishType':punishType,
  390. 'punishDecision':punishDecision,
  391. 'complainants':complainants,
  392. 'punishPeople':punishPeople,
  393. 'punishWhether':punishWhether,
  394. 'institutions':institutions,
  395. 'punishTimes':punishTimes}
  396. _count = 0
  397. for k,v in punish_dic.items():
  398. if v!="":
  399. _count += 1
  400. if _count>=2 and punish_dic["punishType"]!="未知类别":
  401. list_result.append({"punish":punish_dic})
  402. else:
  403. list_result.append({"punish":{}})
  404. return list_result
  405. if __name__ == "__main__":
  406. punish = Punish_Extract()
  407. import pandas as pd
  408. # with open('G:/失信数据/ALLDATA_re2-3.xlsx') as f:
  409. df = pd.read_excel('G:/失信数据/ALLDATA_re2-3.xlsx', index=0)[2:10]
  410. # i = 89
  411. # predict('2', df.loc[i, 'PAGE_TITLE'],df.loc[i, 'PAGE_CONTENT'])
  412. # i = 92
  413. # predict('2', df.loc[i, 'PAGE_TITLE'],df.loc[i, 'PAGE_CONTENT'])
  414. # t1 = time.time()
  415. # for i in df.index:
  416. # punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether, institutions, punishTimes = \
  417. # get_punish_extracts(i, df.loc[i, 'PAGE_TITLE'], df.loc[i, 'PAGE_CONTENT'])
  418. # df.loc[i, '投诉人'] = complainants
  419. # df.loc[i, '被投诉人'] = punishPeople
  420. # df.loc[i, '执法机构'] = institutions
  421. # df.loc[i, '处罚时间'] = punishTimes
  422. # df.loc[i, '处罚编号'] = punish_code
  423. # print('完成第%d篇'%i)
  424. # # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=[['PAGE_TITLE', 'PAGE_CONTENT',
  425. # # '关键词', '类别', '处理决定', '投诉是否成立',
  426. # # 'DETAILLINK', 'sentences', 'PAGE_TIME', 'complainant', 'punishPeople',
  427. # # 'institution', 'punishTime', 'ner_test']])
  428. # t2 = time.time()
  429. # # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=['PAGE_TITLE', 'PAGE_CONTENT',
  430. # # '关键词', '类别', '处理决定', '投诉是否成立',
  431. # # 'DETAILLINK', 'sentences', 'PAGE_TIME', 'complainant', '投诉人', 'punishPeople', '被投诉人',
  432. # # 'institution', '执法机构', 'punishTime', '处罚时间', 'ner_test', '处罚编号'])
  433. # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=['PAGE_TITLE', 'PAGE_CONTENT',
  434. # '关键词', '类别', '处理决定', '投诉是否成立', '投诉人', '被投诉人','执法机构', '处罚时间', '处罚编号',
  435. # 'DETAILLINK', 'sentences', 'PAGE_TIME'])
  436. # t3 = time.time()
  437. # print('处理耗时:%.4f, 保存耗时:%.4f'%(t2-t1, t3-t2))
  438. s = '编号:厦财企〔2020〕12号,各有关单位:341号。处罚编号:厦财企〔2020〕12号,文章编号:京财采投字(2018)第42号。公告编号:闽建筑招〔2018〕5号。处罚编号:松公管监[2020]2号,'
  439. # list_sentences = [s.split('。')]
  440. # punish_code= punish.predict_punishCode( list_sentences)
  441. # print(punish_code)
  442. # punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether, institutions, punishTimes = \
  443. # get_punish_extracts(text=s)
  444. # punish_dic = punish.get_punish_extracts(text=s)
  445. # print(punish_dic)