models.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. '''
  2. Created on 2019年4月11日
  3. @author: User
  4. '''
  5. from keras import layers,models,losses,optimizers
  6. from BiddingKG.dl.common.Utils import *
  7. def getTextCNNModel(shape=(100,60),out_len=6):
  8. input_left = layers.Input(shape=shape)
  9. input_center = layers.Input(shape=shape)
  10. input_right = layers.Input(shape=shape)
  11. list_kernel = [5,10,15]
  12. out_left = []
  13. out_center = []
  14. out_right = []
  15. for kernel in list_kernel:
  16. out_left.append(layers.Conv1D(10, kernel, activation="relu",padding='same')(input_left))
  17. concat_left = layers.merge(out_left,mode="concat")
  18. for kernel in list_kernel:
  19. out_center.append(layers.Conv1D(4,kernel,activation="relu",padding="same")(input_center))
  20. concat_center = layers.merge(out_center,mode="concat")
  21. for kernel in list_kernel:
  22. out_right.append(layers.Conv1D(10,kernel,activation="relu",padding="same")(input_right))
  23. concat_right = layers.merge(out_right,mode="concat")
  24. matrix_left = layers.Dense(12,activation="relu")(concat_left)
  25. matrix_center = layers.Dense(12,activation="relu")(concat_center)
  26. matrix_right = layers.Dense(12,activation="relu")(concat_right)
  27. concat_matrix = layers.merge([matrix_left,matrix_center,matrix_right],mode="ave")
  28. flattern = layers.Flatten()(concat_matrix)
  29. out = layers.Dense(out_len,activation="softmax")(flattern)
  30. model = models.Model([input_left,input_center,input_right],out)
  31. model.compile(optimizer=optimizers.Adadelta(), loss=losses.categorical_crossentropy, metrics=[precision,recall,f1_score])
  32. model.summary()
  33. return model
  34. if __name__=="__main__":
  35. getTextCNNModel()