entityLink.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. #coding:UTF8
  2. '''
  3. Created on 2019年5月21日
  4. @author: User
  5. '''
  6. import re
  7. import os
  8. import time
  9. import pandas as pd
  10. _time = time.time()
  11. from BiddingKG.dl.common.Utils import *
  12. from BiddingKG.dl.interface.Entitys import *
  13. import json
  14. def edit_distance(source,target):
  15. dp = [["" for i in range(len(source)+1)] for j in range(len(target)+1)]
  16. for i in range(len(dp)):
  17. for j in range(len(dp[i])):
  18. if i==0:
  19. dp[i][j] = j
  20. elif j==0:
  21. dp[i][j] = i
  22. else:
  23. if source[j-1]==target[i-1]:
  24. cost = 0
  25. else:
  26. cost = 2
  27. dp[i][j] = min([dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+cost])
  28. return dp[-1][-1]
  29. def jaccard_score(source,target):
  30. source_set = set([s for s in source])
  31. target_set = set([s for s in target])
  32. if len(source_set)==0 or len(target_set)==0:
  33. return 0
  34. return max(len(source_set&target_set)/len(source_set),len(source_set&target_set)/len(target_set))
  35. def get_place_list():
  36. path = os.path.dirname(__file__) + '/../place_info.csv'
  37. place_df = pd.read_csv(path)
  38. place_list = []
  39. for index, row in place_df.iterrows():
  40. place_list.append(row[1])
  41. place_list.append('台湾')
  42. place_list.append('澳门')
  43. place_list.append('香港')
  44. # place_list.append('東莞')
  45. # place_list.append('廣州')
  46. # place_list.append('韩国')
  47. # place_list.append('德国')
  48. # place_list.append('英国')
  49. # place_list.append('日本')
  50. # place_list.append('意大利')
  51. # place_list.append('新加坡')
  52. # place_list.append('加拿大')
  53. # place_list.append('西班牙')
  54. # place_list.append('澳大利亚')
  55. # place_list.append('美国')
  56. place_list = list(set(place_list))
  57. return place_list
  58. place_list = get_place_list()
  59. place_pattern = "|".join(place_list)
  60. def link_entitys(list_entitys,on_value=0.81):
  61. for list_entity in list_entitys:
  62. range_entity = []
  63. for _entity in list_entity:
  64. if _entity.entity_type in ["org","company"]:
  65. range_entity.append(_entity)
  66. range_entity = range_entity[:1000]
  67. for first_i in range(len(range_entity)):
  68. _entity = range_entity[first_i]
  69. for second_i in range(first_i+1,len(range_entity)):
  70. _ent = range_entity[second_i]
  71. # 2021/5/21 update: 两个实体标签互斥(一个是招标人、一个是代理人)且entity_text不相等时,跳过
  72. if _entity.entity_text != _ent.entity_text and _entity.label != _ent.label and _entity.label in [0,1] and _ent.label in [0, 1]:
  73. continue
  74. _score = jaccard_score(re.sub("%s|%s"%("股份|责任|有限|公司",place_pattern),"",_entity.entity_text), re.sub("%s|%s"%("股份|责任|有限|公司",place_pattern),"",_ent.entity_text))
  75. if _entity.entity_text!=_ent.entity_text and _score>=on_value:
  76. _entity.linked_entitys.append(_ent)
  77. _ent.linked_entitys.append(_entity)
  78. #替换公司名称
  79. for _entity in range_entity:
  80. if re.search("公司",_entity.entity_text) is None:
  81. for _ent in _entity.linked_entitys:
  82. if re.search("公司$",_ent.entity_text) is not None:
  83. if len(_ent.entity_text)>len(_entity.entity_text):
  84. _entity.entity_text = _ent.entity_text
  85. # 2021/12/21 替换通过字典识别到的取长度最大的相似实体
  86. for _entity in range_entity:
  87. used_linked_entitys = []
  88. if not _entity.linked_entitys:
  89. continue
  90. _entity.linked_entitys.sort(key=lambda x: len(x.entity_text), reverse=True)
  91. for _ent in _entity.linked_entitys:
  92. if _ent in used_linked_entitys:
  93. break
  94. # print("_entity, _ent", _entity.entity_text, _ent.if_dict_match, _ent.entity_text)
  95. if _ent.if_dict_match == 1:
  96. if len(_ent.entity_text) > len(_entity.entity_text):
  97. # 判断两个公司地区相同
  98. match_list_1, match_list_2 = [], []
  99. for place in place_list:
  100. if place in _entity.entity_text:
  101. match_list_1.append(place)
  102. if place in _ent.entity_text:
  103. match_list_2.append(place)
  104. if str(match_list_1) == str(match_list_2):
  105. # print("字典替换", _entity.entity_text, "->", _ent.entity_text)
  106. _entity.origin_entity_text = _entity.entity_text
  107. _entity.entity_text = _ent.entity_text
  108. used_linked_entitys.append(_ent)
  109. # print(_entity.entity_text, _entity.if_dict_match, _ent.entity_text, _ent.if_dict_match)
  110. def getEnterprisePath():
  111. filename = "LEGAL_ENTERPRISE.txt"
  112. real_path = getFileFromSysPath(filename)
  113. if real_path is None:
  114. real_path = filename
  115. return real_path
  116. DICT_ENTERPRISE = {}
  117. DICT_ENTERPRISE_DONE = False
  118. def getDict_enterprise():
  119. global DICT_ENTERPRISE,DICT_ENTERPRISE_DONE
  120. real_path = getEnterprisePath()
  121. with open(real_path,"r",encoding="UTF8") as f:
  122. for _e in f:
  123. if not _e:
  124. continue
  125. _e = _e.strip()
  126. if len(_e)>=4:
  127. key_enter = _e[:4]
  128. if key_enter not in DICT_ENTERPRISE:
  129. DICT_ENTERPRISE[key_enter] = set()
  130. DICT_ENTERPRISE[key_enter].add(_e[4:])
  131. # for _e in ["河南省柘源","建筑工程有限公司"]:
  132. # if not _e:
  133. # continue
  134. # _e = _e.strip()
  135. # if len(_e)>=4:
  136. # key_enter = _e[:4]
  137. # if key_enter not in DICT_ENTERPRISE:
  138. # DICT_ENTERPRISE[key_enter] = set()
  139. # DICT_ENTERPRISE[key_enter].add(_e[4:])
  140. DICT_ENTERPRISE_DONE = True
  141. return DICT_ENTERPRISE
  142. import threading
  143. import time
  144. load_enterprise_thread = threading.Thread(target=getDict_enterprise)
  145. load_enterprise_thread.start()
  146. MAX_ENTERPRISE_LEN = 30
  147. def match_enterprise_max_first(sentence):
  148. while True:
  149. if not DICT_ENTERPRISE_DONE:
  150. time.sleep(1)
  151. else:
  152. break
  153. list_match = []
  154. begin_index = 0
  155. if len(sentence)>4:
  156. while True:
  157. if begin_index+4<len(sentence):
  158. key_enter = sentence[begin_index:begin_index+4]
  159. if key_enter in DICT_ENTERPRISE:
  160. for _i in range(MAX_ENTERPRISE_LEN-4+1):
  161. enter_name = sentence[begin_index+4:begin_index+MAX_ENTERPRISE_LEN-_i]
  162. if enter_name in DICT_ENTERPRISE[key_enter]:
  163. match_item = {"entity_text":"%s%s"%(key_enter,enter_name),"begin_index":begin_index,"end_index":begin_index+len(key_enter)+len(enter_name)}
  164. list_match.append(match_item)
  165. begin_index += (len(key_enter)+len(enter_name))-1
  166. break
  167. begin_index += 1
  168. else:
  169. break
  170. return list_match
  171. def calibrateEnterprise(list_articles,list_sentences,list_entitys):
  172. for _article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  173. list_calibrate = []
  174. match_add = False
  175. match_replace = False
  176. range_entity = []
  177. for p_entity in list_entity:
  178. if p_entity.entity_type in ("org","company","location"):
  179. range_entity.append(p_entity)
  180. if len(range_entity)>1000:
  181. break
  182. for p_sentence in list_sentence:
  183. sentence = p_sentence.sentence_text
  184. sentence_entitys = [(ent.entity_text,ent.wordOffset_begin,ent.wordOffset_end) for ent in list_entity if ent.sentence_index==p_sentence.sentence_index and ent.entity_type in ['org','company']]
  185. list_match = match_enterprise_max_first(sentence)
  186. # print("list_match", list_match)
  187. doc_id = p_sentence.doc_id
  188. sentence_index = p_sentence.sentence_index
  189. tokens = p_sentence.tokens
  190. list_match.sort(key=lambda x:x["begin_index"])
  191. for _match_index in range(len(list_match)):
  192. _match = list_match[_match_index]
  193. find_flag = False
  194. for p_entity in range_entity:
  195. if p_entity.sentence_index!=p_sentence.sentence_index:
  196. continue
  197. if p_entity.entity_type=="location" and p_entity.entity_text==_match["entity_text"]:
  198. find_flag = True
  199. p_entity.entity_type = "company"
  200. p_entity.if_dict_match = 1
  201. if p_entity.entity_type not in ["location","org","company"]:
  202. continue
  203. if _match["entity_text"] == p_entity.entity_text:
  204. p_entity.if_dict_match = 1
  205. #有重叠
  206. #match部分被包含则不处理
  207. if _match["begin_index"]>=p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  208. find_flag = True
  209. #判断是否是多个公司
  210. for _match_j in range(_match_index,len(list_match)):
  211. if not list_match[_match_j]["end_index"]<=p_entity.wordOffset_end:
  212. _match_j -= 1
  213. break
  214. if _match_j>_match_index:
  215. match_replace = True
  216. match_add = True
  217. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  218. end_index = changeIndexFromWordToWords(tokens,_match["end_index"]-1)
  219. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  220. p_entity.entity_text = _match["entity_text"]
  221. p_entity.wordOffset_begin = _match["begin_index"]
  222. p_entity.wordOffset_end = _match["end_index"]
  223. p_entity.begin_index = begin_index
  224. p_entity.end_index = end_index
  225. # 该公司实体是字典识别的
  226. p_entity.if_dict_match = 1
  227. for _match_h in range(_match_index+1,_match_j+1):
  228. entity_text = list_match[_match_h]["entity_text"]
  229. entity_type = "company"
  230. begin_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["begin_index"])
  231. end_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["end_index"]-1)
  232. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  233. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,list_match[_match_h]["begin_index"],list_match[_match_h]["end_index"],in_attachment=p_sentence.in_attachment)
  234. add_entity.if_dict_match = 1
  235. list_entity.append(add_entity)
  236. range_entity.append(add_entity)
  237. list_calibrate.append({"type":"add","from":"","to":entity_text})
  238. _match_index = _match_j
  239. break
  240. continue
  241. elif _match["begin_index"]<=p_entity.wordOffset_begin and _match["end_index"]>p_entity.wordOffset_begin:
  242. find_flag = True
  243. if _match["begin_index"]<p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  244. if p_entity.entity_type in ("org","company"):
  245. _diff_text = sentence[p_entity.wordOffset_end:_match["end_index"]]
  246. if re.search("分",_diff_text) is not None:
  247. pass
  248. else:
  249. match_replace = True
  250. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  251. end_index = changeIndexFromWordToWords(tokens,_match["end_index"]-1)
  252. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  253. p_entity.entity_text = _match["entity_text"]
  254. p_entity.wordOffset_begin = _match["begin_index"]
  255. p_entity.wordOffset_end = _match["end_index"]
  256. p_entity.begin_index = begin_index
  257. p_entity.end_index = end_index
  258. p_entity.if_dict_match = 1
  259. elif _match["end_index"]>=p_entity.wordOffset_end:
  260. # 原entity列表已有实体,则不重复添加
  261. if (_match["entity_text"],_match["begin_index"],_match["end_index"]) not in sentence_entitys:
  262. match_replace = True
  263. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  264. end_index = changeIndexFromWordToWords(tokens,_match["end_index"]-1)
  265. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  266. p_entity.entity_text = _match["entity_text"]
  267. p_entity.wordOffset_begin = _match["begin_index"]
  268. p_entity.wordOffset_end = _match["end_index"]
  269. p_entity.begin_index = begin_index
  270. p_entity.end_index = end_index
  271. p_entity.entity_type = "company"
  272. p_entity.if_dict_match = 1
  273. elif _match["begin_index"]<p_entity.wordOffset_end and _match["end_index"]>p_entity.wordOffset_end:
  274. find_flag = True
  275. if p_entity.entity_type in ("org","company"):
  276. match_replace = True
  277. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  278. end_index = changeIndexFromWordToWords(tokens,_match["end_index"]-1)
  279. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  280. p_entity.entity_text = _match["entity_text"]
  281. p_entity.wordOffset_begin = _match["begin_index"]
  282. p_entity.wordOffset_end = _match["end_index"]
  283. p_entity.begin_index = begin_index
  284. p_entity.end_index = end_index
  285. p_entity.if_dict_match = 1
  286. if not find_flag:
  287. match_add = True
  288. entity_text = _match["entity_text"]
  289. entity_type = "company"
  290. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  291. end_index = changeIndexFromWordToWords(tokens,_match["end_index"]-1)
  292. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  293. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,_match["begin_index"],_match["end_index"],in_attachment=p_sentence.in_attachment)
  294. list_entity.append(add_entity)
  295. range_entity.append(add_entity)
  296. list_calibrate.append({"type":"add","from":"","to":entity_text})
  297. #去重
  298. set_calibrate = set()
  299. list_match_enterprise = []
  300. for _calibrate in list_calibrate:
  301. _from = _calibrate.get("from","")
  302. _to = _calibrate.get("to","")
  303. _key = _from+_to
  304. if _key not in set_calibrate:
  305. list_match_enterprise.append(_calibrate)
  306. set_calibrate.add(_key)
  307. match_enterprise_type = 0
  308. if match_add:
  309. match_enterprise_type += 1
  310. if match_replace:
  311. match_enterprise_type += 2
  312. _article.match_enterprise = list_match_enterprise
  313. _article.match_enterprise_type = match_enterprise_type
  314. def isLegalEnterprise(name):
  315. is_legal = True
  316. if re.search("^[省市区县]",name) is not None or re.search("^.{,3}(分(公司|行|支)|街道|中心|办事处|经营部|委员会)$",name) or re.search("标段|标包|名称",name) is not None:
  317. is_legal = False
  318. return is_legal
  319. def fix_LEGAL_ENTERPRISE():
  320. unlegal_enterprise = []
  321. _path = getEnterprisePath()
  322. _sum = 0
  323. set_enter = set()
  324. paths = [_path]
  325. for _p in paths:
  326. with open(_p,"r",encoding="utf8") as f:
  327. while True:
  328. line = f.readline()
  329. if not line:
  330. break
  331. line = line.strip()
  332. if isLegalEnterprise(line):
  333. set_enter.add(line)
  334. if line=="有限责任公司" or line=='设计研究院' or line=='限责任公司' or (re.search("^.{,4}(分公司|支行|分行)$",line) is not None and re.search("电信|移动|联通|建行|工行|农行|中行|交行",line) is None):
  335. print(line)
  336. if line in set_enter:
  337. set_enter.remove(line)
  338. with open("enter.txt","w",encoding="utf8") as fwrite:
  339. for line in list(set_enter):
  340. fwrite.write(line.replace("(","(").replace(")",")"))
  341. fwrite.write("\n")
  342. # if re.search("标段|地址|标包|名称",line) is not None:#\(|\)||
  343. # _count += 1
  344. # print("=",line)
  345. # print("%d/%d"%(_count,_sum))
  346. # a_list = []
  347. # with open("电信分公司.txt","r",encoding="utf8") as f:
  348. # while True:
  349. # _line = f.readline()
  350. # if not _line:
  351. # break
  352. # if _line.strip()!="":
  353. # a_list.append(_line.strip())
  354. # with open("enter.txt","a",encoding="utf8") as f:
  355. # for _line in a_list:
  356. # f.write(_line)
  357. # f.write("\n")
  358. if __name__=="__main__":
  359. # edit_distance("GUMBO","GAMBOL")
  360. # print(jaccard_score("周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目竞争性谈判公告","周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目-成交公告"))
  361. #
  362. # sentences = "广州比地数据科技有限公司比地数据科技有限公司1111111123沈阳南光工贸有限公司"
  363. # print(match_enterprise_max_first(sentences))
  364. #
  365. # print("takes %d s"%(time.time()-_time))
  366. fix_LEGAL_ENTERPRISE()
  367. # print(jaccard_score("中国南方航空股份有限公司上海分公司","南方航空上海分公司"))
  368. # print(match_enterprise_max_first("中国南方航空股份有限公司黑龙江分公司"))