modelFactory.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. '''
  2. Created on 2019年5月16日
  3. @author: User
  4. '''
  5. import os
  6. import sys
  7. sys.path.append(os.path.abspath("../.."))
  8. from keras import models
  9. from keras import layers
  10. # from keras_contrib.layers import CRF
  11. from keras.preprocessing.sequence import pad_sequences
  12. from keras import optimizers,losses,metrics
  13. from BiddingKG.dl.common.Utils import *
  14. import tensorflow as tf
  15. import json
  16. class Model_role_classify():
  17. def __init__(self,lazyLoad=getLazyLoad()):
  18. #self.model_role_file = os.path.abspath("../role/models/model_role.model.hdf5")
  19. self.model_role_file = os.path.dirname(__file__)+"/../role/log/new_biLSTM-ep012-loss0.028-val_loss0.040-f10.954.h5"
  20. self.model_role = None
  21. self.graph = tf.get_default_graph()
  22. if not lazyLoad:
  23. self.getModel()
  24. def getModel(self):
  25. if self.model_role is None:
  26. self.model_role = models.load_model(self.model_role_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  27. return self.model_role
  28. def encode(self,tokens,begin_index,end_index,**kwargs):
  29. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  30. def predict(self,x):
  31. x = np.transpose(np.array(x),(1,0,2,3))
  32. with self.graph.as_default():
  33. return self.getModel().predict([x[0],x[1]])
  34. class Model_role_classify_word():
  35. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  36. if USE_PAI_EAS:
  37. lazyLoad = True
  38. #self.model_role_file = os.path.abspath("../role/log/ep071-loss0.107-val_loss0.122-f10.956.h5")
  39. # self.model_role_file = os.path.dirname(__file__)+"/../role/models/ep038-loss0.140-val_loss0.149-f10.947.h5"
  40. #self.model_role_file = os.path.abspath("../role/log/textcnn_ep017-loss0.088-val_loss0.125-f10.955.h5")
  41. self.model_role = None
  42. self.sess_role = tf.Session(graph=tf.Graph(),config=config)
  43. if not lazyLoad:
  44. self.getModel()
  45. def getModel(self):
  46. if self.model_role is None:
  47. with self.sess_role.as_default() as sess:
  48. with self.sess_role.graph.as_default():
  49. meta_graph_def = tf.saved_model.loader.load(sess=self.sess_role, tags=["serve"], export_dir=os.path.dirname(__file__)+"/role_savedmodel")
  50. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  51. signature_def = meta_graph_def.signature_def
  52. input0 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  53. input1 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  54. # input2 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  55. output = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  56. self.model_role = [[input0,input1],output] #,input2
  57. return self.model_role
  58. '''
  59. def load_weights(self):
  60. model = self.getModel()
  61. model.load_weights(self.model_role_file)
  62. '''
  63. def encode(self,tokens,begin_index,end_index,entity_text,**kwargs):
  64. _span = spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20,center_include=False,word_flag=True,text=entity_text) #size=12 center_include=True
  65. # print(_span)
  66. _encode_span = encodeInput(_span, word_len=20, word_flag=True,userFool=False) # word_len=20
  67. # print(_encode_span)
  68. return _encode_span
  69. def fix_digit_eng(self, text):
  70. '''
  71. 处理数字及英文编号等
  72. :param text:
  73. :return:
  74. '''
  75. text = re.sub('第[一二三1-3]([条项章]|中学|医院|附属)|第三方(服务机构)?', 'xxx', text)
  76. text = re.sub('第01(中标|成交)?候选人', '第一中标候选人', text)
  77. text = re.sub('标段[一二三1-3]', '标段d', text)
  78. text = re.sub('第[一二三1-3](标段?|[分子标]?包)', 'd标段', text)
  79. text = re.sub('[a-zA-Z][a-zA-Z0-9=&_—-]{3,}', 'abc', text)
  80. text = re.sub('[【(\[][0-9]{2,}[\])】]|\d+([::.-]\d+)+', 'd', text)
  81. text = re.sub('[一二三四五六七八九十]{2,}|[四五六七八九十]+', 'd', text)
  82. text = re.sub('\d{2,}(\.\d+)?|\d\.\d+|[04-9]', 'd', text)
  83. text = re.sub('序号:\d+|第?[一二三四五六七八九十\d]+次|[一二三四五六七八九十\d]+、', '', text)
  84. text = re.sub('(中标|成交|中选|入围)(工程|项目)', '工程', text) # 修复易错分为中标人
  85. # text = re.sub('(采购|招标|发布)机构', '发布人', text)
  86. return text.replace('(', '(').replace(')', ')').replace('單', '单').replace('稱','承').replace('標', '标').replace('採購', '采购').replace('機構', '机构')
  87. def encode_word(self, sentence_text, begin_index, end_index, size=20, **kwargs):
  88. '''
  89. 上下文数字化,使用字偏移
  90. :param sentence_text: 句子文本
  91. :param begin_index: 实体字开始位置
  92. :param end_index: 实体字结束位置
  93. :param size: 字偏移量
  94. :param kwargs:
  95. :return:
  96. '''
  97. _span = get_context(sentence_text, begin_index, end_index,size=size, center_include=False) # size=12 center_include=True
  98. # print(_span)
  99. _span = [self.fix_digit_eng(text) for text in _span]
  100. _encode_span = encodeInput(_span, word_len=30, word_flag=True, userFool=False) # word_len=20
  101. # print(_encode_span)
  102. return _encode_span
  103. def predict(self,x):
  104. x = np.transpose(np.array(x),(1,0,2))
  105. model_role = self.getModel()
  106. assert len(x)==len(model_role[0])
  107. feed_dict = {}
  108. for _x,_t in zip(x,model_role[0]):
  109. feed_dict[_t] = _x
  110. list_result = limitRun(self.sess_role,[model_role[1]],feed_dict)[0]
  111. return list_result
  112. #return self.sess_role.run(model_role[1],feed_dict=feed_dict)
  113. class Model_money_classify():
  114. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  115. if USE_PAI_EAS:
  116. lazyLoad = True
  117. self.model_money_file = os.path.dirname(__file__)+"/../money/models/model_money_word.h5"
  118. self.model_money = None
  119. self.sess_money = tf.Session(graph=tf.Graph(),config=config)
  120. if not lazyLoad:
  121. self.getModel()
  122. def getModel(self):
  123. if self.model_money is None:
  124. with self.sess_money.as_default() as sess:
  125. with sess.graph.as_default():
  126. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel")
  127. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel_bilstmonly")
  128. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  129. signature_def = meta_graph_def.signature_def
  130. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  131. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  132. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  133. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  134. self.model_money = [[input0,input1,input2],output]
  135. return self.model_money
  136. '''
  137. if self.model_money is None:
  138. self.model_money = models.load_model(self.model_money_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  139. return self.model_money
  140. '''
  141. '''
  142. def load_weights(self):
  143. model = self.getModel()
  144. model.load_weights(self.model_money_file)
  145. '''
  146. def encode(self,tokens,begin_index,end_index,**kwargs):
  147. _span = spanWindow(tokens=tokens, begin_index=begin_index, end_index=end_index, size=10, center_include=True, word_flag=True)
  148. # print(_span)
  149. return encodeInput(_span, word_len=30, word_flag=True,userFool=False)
  150. return embedding_word(_span,shape=(3,100,60))
  151. def predict(self,x):
  152. # print("shape",np.shape(x))
  153. x = np.transpose(np.array(x),(1,0,2))
  154. model_money = self.getModel()
  155. assert len(x)==len(model_money[0])
  156. feed_dict = {}
  157. for _x,_t in zip(x,model_money[0]):
  158. feed_dict[_t] = _x
  159. list_result = limitRun(self.sess_money,[model_money[1]],feed_dict)[0]
  160. #return self.sess_money.run(model_money[1],feed_dict=feed_dict)
  161. return list_result
  162. '''
  163. with self.graph.as_default():
  164. return self.getModel().predict([x[0],x[1],x[2]])
  165. '''
  166. from itertools import groupby
  167. from BiddingKG.dl.relation_extraction.model import get_words_matrix
  168. class Model_relation_extraction():
  169. def __init__(self,lazyLoad=getLazyLoad()):
  170. if USE_PAI_EAS:
  171. lazyLoad = True
  172. self.subject_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/subject_model"
  173. self.object_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/object_model"
  174. self.model_subject = None
  175. self.model_object = None
  176. self.sess_subject = tf.Session(graph=tf.Graph())
  177. self.sess_object = tf.Session(graph=tf.Graph())
  178. if not lazyLoad:
  179. self.getModel1()
  180. self.getModel2()
  181. self.entity_type_dict = {
  182. 'org': '<company/org>',
  183. 'company': '<company/org>',
  184. 'location': '<location>',
  185. 'phone': '<phone>',
  186. 'person': '<contact_person>'
  187. }
  188. self.id2predicate = {
  189. 0: "rel_person", # 公司——联系人
  190. 1: "rel_phone", # 联系人——电话
  191. 2: "rel_address" # 公司——地址
  192. }
  193. self.words_size = 128
  194. # subject_model
  195. def getModel1(self):
  196. if self.model_subject is None:
  197. with self.sess_subject.as_default() as sess:
  198. with sess.graph.as_default():
  199. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.subject_model_file)
  200. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  201. signature_def = meta_graph_def.signature_def
  202. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  203. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  204. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  205. self.model_subject = [[input0,input1],output]
  206. return self.model_subject
  207. # object_model
  208. def getModel2(self):
  209. if self.model_object is None:
  210. with self.sess_object.as_default() as sess:
  211. with sess.graph.as_default():
  212. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.object_model_file)
  213. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  214. signature_def = meta_graph_def.signature_def
  215. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  216. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  217. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  218. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  219. self.model_object = [[input0,input1,input2],output]
  220. return self.model_object
  221. def encode(self,entity_list,list_sentence):
  222. list_sentence = sorted(list_sentence, key=lambda x: x.sentence_index)
  223. entity_list = sorted(entity_list, key=lambda x: (x.sentence_index, x.begin_index))
  224. pre_data = []
  225. text_data = []
  226. last_sentence_index = -1
  227. for key, group in groupby(entity_list, key=lambda x: x.sentence_index):
  228. if key - last_sentence_index > 1:
  229. for i in range(last_sentence_index + 1, key):
  230. pre_data.extend(list_sentence[i].tokens)
  231. text_data.extend([0] * len(list_sentence[i].tokens))
  232. group = list(group)
  233. for i in range(len(group)):
  234. ent = group[i]
  235. _tokens = list_sentence[key].tokens
  236. if i == len(group) - 1:
  237. if i == 0:
  238. pre_data.extend(_tokens[:ent.begin_index])
  239. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  240. pre_data.append(self.entity_type_dict[ent.entity_type])
  241. text_data.append(ent)
  242. pre_data.extend(_tokens[ent.end_index + 1:])
  243. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  244. break
  245. else:
  246. pre_data.append(self.entity_type_dict[ent.entity_type])
  247. text_data.append(ent)
  248. pre_data.extend(_tokens[ent.end_index + 1:])
  249. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  250. break
  251. if i == 0:
  252. pre_data.extend(_tokens[:ent.begin_index])
  253. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  254. pre_data.append(self.entity_type_dict[ent.entity_type])
  255. text_data.append(ent)
  256. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  257. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  258. else:
  259. pre_data.append(self.entity_type_dict[ent.entity_type])
  260. text_data.append(ent)
  261. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  262. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  263. last_sentence_index = key
  264. return text_data, pre_data
  265. def check_data(self, words):
  266. # 检查数据是否包含可预测的subject和object
  267. # 没有需要预测的链接属性,直接return
  268. company_relation = 0
  269. person_relation = 0
  270. if '<company/org>' in words:
  271. company_relation += 1
  272. if '<contact_person>' in words:
  273. person_relation += 1
  274. if company_relation:
  275. company_relation += 1
  276. # 暂时不考虑地址location实体
  277. # if '<location>' in words and company_relation:
  278. # company_relation += 1
  279. if '<phone>' in words and company_relation:
  280. person_relation += 1
  281. if company_relation < 2 and person_relation < 2:
  282. return False
  283. return True
  284. def predict_by_api(self,text_in,words,sentence_vetor):
  285. status_code = 0
  286. # save([words,sentence_vetor.tolist()],"C:/Users/Administrator/Desktop/test_data.pk")
  287. try:
  288. requests_result = requests.post(API_URL + "/predict_relation", json={"sentence_vetor": sentence_vetor.tolist(), "words": words},
  289. verify=True)
  290. status_code = requests_result.status_code
  291. triple_index_list = json.loads(requests_result.text)['triple_list']
  292. # print("triple_list:",json.loads(requests_result.text)['triple_list'])
  293. print("cost_time:",json.loads(requests_result.text)['cost_time'])
  294. triple_list = [(text_in[triple[0]], triple[1], text_in[triple[2]]) for triple in triple_index_list]
  295. return triple_list,status_code
  296. except Exception as e:
  297. print(e)
  298. return [],status_code
  299. def predict(self,text_in, words, rate=0.5):
  300. _t2 = np.zeros((len(words), self.words_size))
  301. for i in range(len(words)):
  302. _t2[i] = np.array(get_words_matrix(words[i]))
  303. # a = time.time()
  304. # triple_list, status_code = self.predict_by_api(text_in, words,_t2)
  305. # print('time',time.time()-a)
  306. # print("status_code",status_code)
  307. # if status_code==200:
  308. # return triple_list
  309. # else:
  310. # 使用模型预测
  311. triple_list = []
  312. # print("tokens:",words)
  313. # _t2 = [self.words2id.get(c, 1) for c in words]
  314. _t2 = np.array([_t2])
  315. _t3 = [1 for _ in words]
  316. _t3 = np.array([_t3])
  317. # _k1 = self.model_subject.predict([_t2, _t3])
  318. _k1 = limitRun(self.sess_subject,[self.model_subject[1]],feed_dict={self.model_subject[0][0]:_t2,
  319. self.model_subject[0][1]:_t3})[0]
  320. _k1 = _k1[0, :, 0]
  321. _k1 = np.where(_k1 > rate)[0]
  322. # print('k1',_k1)
  323. _subjects = []
  324. for i in _k1:
  325. _subject = text_in[i]
  326. _subjects.append((_subject, i, i))
  327. if _subjects:
  328. _t2 = np.repeat(_t2, len(_subjects), 0)
  329. _t3 = np.repeat(_t3, len(_subjects), 0)
  330. _k1, _ = np.array([_s[1:] for _s in _subjects]).T.reshape((2, -1, 1))
  331. # _o1 = self.model_object.predict([_t2, _t3, _k1])
  332. _o1 = limitRun(self.sess_object, [self.model_object[1]], feed_dict={self.model_object[0][0]: _t2,
  333. self.model_object[0][1]: _t3,
  334. self.model_object[0][2]: _k1})[0]
  335. for i, _subject in enumerate(_subjects):
  336. _oo1 = np.where(_o1[i] > 0.5)
  337. # print('_oo1', _oo1)
  338. for _ooo1, _c1 in zip(*_oo1):
  339. _object = text_in[_ooo1]
  340. _predicate = self.id2predicate[_c1]
  341. triple_list.append((_subject[0], _predicate, _object))
  342. # print([(t[0].entity_text,t[1],t[2].entity_text) for t in triple_list])
  343. return triple_list
  344. else:
  345. return []
  346. class Model_person_classify():
  347. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  348. if USE_PAI_EAS:
  349. lazyLoad = True
  350. self.model_person_file = os.path.dirname(__file__)+"/../person/models/model_person.model.hdf5"
  351. self.model_person = None
  352. self.sess_person = tf.Session(graph=tf.Graph(),config=config)
  353. if not lazyLoad:
  354. self.getModel()
  355. def getModel(self):
  356. if self.model_person is None:
  357. with self.sess_person.as_default() as sess:
  358. with sess.graph.as_default():
  359. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new")
  360. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new_znj")
  361. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  362. signature_def = meta_graph_def.signature_def
  363. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  364. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  365. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  366. self.model_person = [[input0,input1],output]
  367. return self.model_person
  368. '''
  369. if self.model_person is None:
  370. self.model_person = models.load_model(self.model_person_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  371. return self.model_person
  372. '''
  373. '''
  374. def load_weights(self):
  375. model = self.getModel()
  376. model.load_weights(self.model_person_file)
  377. '''
  378. def encode(self,tokens,begin_index,end_index,**kwargs):
  379. # return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  380. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20),shape=(2,20,128))
  381. def predict(self,x):
  382. x = np.transpose(np.array(x),(1,0,2,3))
  383. model_person = self.getModel()
  384. assert len(x)==len(model_person[0])
  385. feed_dict = {}
  386. for _x,_t in zip(x,model_person[0]):
  387. feed_dict[_t] = _x
  388. list_result = limitRun(self.sess_person,[model_person[1]],feed_dict)[0]
  389. return list_result
  390. #return self.sess_person.run(model_person[1],feed_dict=feed_dict)
  391. '''
  392. with self.graph.as_default():
  393. return self.getModel().predict([x[0],x[1]])
  394. '''
  395. class Model_form_line():
  396. def __init__(self,lazyLoad=getLazyLoad()):
  397. self.model_file = os.path.dirname(__file__)+"/../form/model/model_form.model - 副本.hdf5"
  398. self.model_form = None
  399. self.graph = tf.get_default_graph()
  400. if not lazyLoad:
  401. self.getModel()
  402. def getModel(self):
  403. if self.model_form is None:
  404. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  405. return self.model_form
  406. def encode(self,data,shape=(100,60),expand=False,**kwargs):
  407. embedding = np.zeros(shape)
  408. word_model = getModel_word()
  409. for i in range(len(data)):
  410. if i>=shape[0]:
  411. break
  412. if data[i] in word_model.vocab:
  413. embedding[i] = word_model[data[i]]
  414. if expand:
  415. embedding = np.expand_dims(embedding,0)
  416. return embedding
  417. def predict(self,x):
  418. with self.graph.as_default():
  419. return self.getModel().predict(x)
  420. class Model_form_item():
  421. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  422. self.model_file = os.path.dirname(__file__)+"/../form/log/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  423. self.model_form = None
  424. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  425. if not lazyLoad:
  426. self.getModel()
  427. def getModel(self):
  428. if self.model_form is None:
  429. with self.sess_form.as_default() as sess:
  430. with sess.graph.as_default():
  431. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_savedmodel"%(os.path.dirname(__file__)))
  432. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  433. signature_def = meta_graph_def.signature_def
  434. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  435. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  436. self.model_form = [[inputs],output]
  437. return self.model_form
  438. '''
  439. if self.model_form is None:
  440. with self.graph.as_defalt():
  441. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  442. return self.model_form
  443. '''
  444. def encode(self,data,**kwargs):
  445. return encodeInput([data], word_len=50, word_flag=True,userFool=False)[0]
  446. return encodeInput_form(data)
  447. def predict(self,x):
  448. if USE_API:
  449. requests_result = requests.post(API_URL+"/predict_form_item",json={"inputs":x.tolist()}, verify=True)
  450. list_result = json.loads(requests_result.text)['result']
  451. else:
  452. model_form = self.getModel()
  453. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  454. return list_result
  455. # return self.sess_form.run(model_form[1],feed_dict={model_form[0][0]:x})
  456. '''
  457. with self.graph.as_default():
  458. return self.getModel().predict(x)
  459. '''
  460. class Model_form_context():
  461. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  462. self.model_form = None
  463. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  464. if not lazyLoad:
  465. self.getModel()
  466. def getModel(self):
  467. if self.model_form is None:
  468. with self.sess_form.as_default() as sess:
  469. with sess.graph.as_default():
  470. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_context_savedmodel"%(os.path.dirname(__file__)))
  471. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  472. signature_def = meta_graph_def.signature_def
  473. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  474. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  475. self.model_form = [[inputs],output]
  476. return self.model_form
  477. '''
  478. if self.model_form is None:
  479. with self.graph.as_defalt():
  480. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  481. return self.model_form
  482. '''
  483. def encode_table(self,inner_table,size=30):
  484. def encode_item(_table,i,j):
  485. _x = [_table[j-1][i-1],_table[j-1][i],_table[j-1][i+1],
  486. _table[j][i-1],_table[j][i],_table[j][i+1],
  487. _table[j+1][i-1],_table[j+1][i],_table[j+1][i+1]]
  488. e_x = [encodeInput_form(_temp[0],MAX_LEN=30) for _temp in _x]
  489. _label = _table[j][i][1]
  490. # print(_x)
  491. # print(_x[4],_label)
  492. return e_x,_label,_x
  493. def copytable(inner_table):
  494. table = []
  495. for line in inner_table:
  496. list_line = []
  497. for item in line:
  498. list_line.append([item[0][:size],item[1]])
  499. table.append(list_line)
  500. return table
  501. table = copytable(inner_table)
  502. padding = ["#"*30,0]
  503. width = len(table[0])
  504. height = len(table)
  505. table.insert(0,[padding for i in range(width)])
  506. table.append([padding for i in range(width)])
  507. for item in table:
  508. item.insert(0,padding.copy())
  509. item.append(padding.copy())
  510. data_x = []
  511. data_y = []
  512. data_text = []
  513. data_position = []
  514. for _i in range(1,width+1):
  515. for _j in range(1,height+1):
  516. _x,_y,_text = encode_item(table,_i,_j)
  517. data_x.append(_x)
  518. _label = [0,0]
  519. _label[_y] = 1
  520. data_y.append(_label)
  521. data_text.append(_text)
  522. data_position.append([_i-1,_j-1])
  523. # input = table[_j][_i][0]
  524. # item_y = [0,0]
  525. # item_y[table[_j][_i][1]] = 1
  526. # data_x.append(encodeInput([input], word_len=50, word_flag=True,userFool=False)[0])
  527. # data_y.append(item_y)
  528. return data_x,data_y,data_text,data_position
  529. def encode(self,inner_table,**kwargs):
  530. data_x,_,_,data_position = self.encode_table(inner_table)
  531. return data_x,data_position
  532. def predict(self,x):
  533. model_form = self.getModel()
  534. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  535. return list_result
  536. # class Model_form_item():
  537. # def __init__(self,lazyLoad=False):
  538. # self.model_file = os.path.dirname(__file__)+"/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  539. # self.model_form = None
  540. #
  541. # if not lazyLoad:
  542. # self.getModel()
  543. # self.graph = tf.get_default_graph()
  544. #
  545. # def getModel(self):
  546. # if self.model_form is None:
  547. # self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  548. # return self.model_form
  549. #
  550. # def encode(self,data,**kwargs):
  551. #
  552. # return encodeInput_form(data)
  553. #
  554. # def predict(self,x):
  555. # with self.graph.as_default():
  556. # return self.getModel().predict(x)