Utils.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891
  1. '''
  2. Created on 2018年12月20日
  3. @author: User
  4. '''
  5. import numpy as np
  6. import re
  7. import gensim
  8. from keras import backend as K
  9. import os,sys
  10. import time
  11. import traceback
  12. from threading import RLock
  13. # from pai_tf_predict_proto import tf_predict_pb2
  14. import requests
  15. model_w2v = None
  16. lock_model_w2v = RLock()
  17. USE_PAI_EAS = False
  18. Lazy_load = False
  19. # API_URL = "http://192.168.2.103:8802"
  20. API_URL = "http://127.0.0.1:888"
  21. # USE_API = True
  22. USE_API = False
  23. def getCurrent_date(format="%Y-%m-%d %H:%M:%S"):
  24. _time = time.strftime(format,time.localtime())
  25. return _time
  26. def getw2vfilepath():
  27. filename = "wiki_128_word_embedding_new.vector"
  28. w2vfile = getFileFromSysPath(filename)
  29. if w2vfile is not None:
  30. return w2vfile
  31. return filename
  32. def getLazyLoad():
  33. global Lazy_load
  34. return Lazy_load
  35. def getFileFromSysPath(filename):
  36. for _path in sys.path:
  37. if os.path.isdir(_path):
  38. for _file in os.listdir(_path):
  39. _abspath = os.path.join(_path,_file)
  40. if os.path.isfile(_abspath):
  41. if _file==filename:
  42. return _abspath
  43. return None
  44. model_word_file = os.path.dirname(__file__)+"/../singlew2v_model.vector"
  45. model_word = None
  46. lock_model_word = RLock()
  47. from decimal import Decimal
  48. import logging
  49. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  50. logger = logging.getLogger(__name__)
  51. import pickle
  52. import os
  53. import json
  54. #自定义jsonEncoder
  55. class MyEncoder(json.JSONEncoder):
  56. def __init__(self):
  57. import numpy as np
  58. global np
  59. def default(self, obj):
  60. if isinstance(obj, np.ndarray):
  61. return obj.tolist()
  62. elif isinstance(obj, bytes):
  63. return str(obj, encoding='utf-8')
  64. elif isinstance(obj, (np.float_, np.float16, np.float32,
  65. np.float64)):
  66. return float(obj)
  67. elif isinstance(obj,(np.int64,np.int32)):
  68. return int(obj)
  69. return json.JSONEncoder.default(self, obj)
  70. vocab_word = None
  71. vocab_words = None
  72. file_vocab_word = "vocab_word.pk"
  73. file_vocab_words = "vocab_words.pk"
  74. selffool_authorization = "NjlhMWFjMjVmNWYyNzI0MjY1OGQ1M2Y0ZmY4ZGY0Mzg3Yjc2MTVjYg=="
  75. selffool_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/selffool_gpu"
  76. selffool_seg_authorization = "OWUwM2Q0ZmE3YjYxNzU4YzFiMjliNGVkMTA3MzJkNjQ2MzJiYzBhZg=="
  77. selffool_seg_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/selffool_seg_gpu"
  78. codename_authorization = "Y2M5MDUxMzU1MTU4OGM3ZDk2ZmEzYjkxYmYyYzJiZmUyYTgwYTg5NA=="
  79. codename_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/codename_gpu"
  80. form_item_authorization = "ODdkZWY1YWY0NmNhNjU2OTI2NWY4YmUyM2ZlMDg1NTZjOWRkYTVjMw=="
  81. form_item_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/form"
  82. person_authorization = "N2I2MDU2N2Q2MGQ0ZWZlZGM3NDkyNTA1Nzc4YmM5OTlhY2MxZGU1Mw=="
  83. person_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/person"
  84. role_authorization = "OWM1ZDg5ZDEwYTEwYWI4OGNjYmRlMmQ1NzYwNWNlZGZkZmRmMjE4OQ=="
  85. role_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/role"
  86. money_authorization = "MDQyNjc2ZDczYjBhYmM4Yzc4ZGI4YjRmMjc3NGI5NTdlNzJiY2IwZA=="
  87. money_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/money"
  88. codeclasses_authorization = "MmUyNWIxZjQ2NjAzMWJlMGIzYzkxMjMzNWY5OWI3NzJlMWQ1ZjY4Yw=="
  89. codeclasses_url = "http://pai-eas-vpc.cn-beijing.aliyuncs.com/api/predict/codeclasses"
  90. def viterbi_decode(score, transition_params):
  91. """Decode the highest scoring sequence of tags outside of TensorFlow.
  92. This should only be used at test time.
  93. Args:
  94. score: A [seq_len, num_tags] matrix of unary potentials.
  95. transition_params: A [num_tags, num_tags] matrix of binary potentials.
  96. Returns:
  97. viterbi: A [seq_len] list of integers containing the highest scoring tag
  98. indices.
  99. viterbi_score: A float containing the score for the Viterbi sequence.
  100. """
  101. trellis = np.zeros_like(score)
  102. backpointers = np.zeros_like(score, dtype=np.int32)
  103. trellis[0] = score[0]
  104. for t in range(1, score.shape[0]):
  105. v = np.expand_dims(trellis[t - 1], 1) + transition_params
  106. trellis[t] = score[t] + np.max(v, 0)
  107. backpointers[t] = np.argmax(v, 0)
  108. viterbi = [np.argmax(trellis[-1])]
  109. for bp in reversed(backpointers[1:]):
  110. viterbi.append(bp[viterbi[-1]])
  111. viterbi.reverse()
  112. viterbi_score = np.max(trellis[-1])
  113. return viterbi, viterbi_score
  114. def limitRun(sess,list_output,feed_dict,MAX_BATCH=1024):
  115. len_sample = 0
  116. if len(feed_dict.keys())>0:
  117. len_sample = len(feed_dict[list(feed_dict.keys())[0]])
  118. if len_sample>MAX_BATCH:
  119. list_result = [[] for _ in range(len(list_output))]
  120. _begin = 0
  121. while(_begin<len_sample):
  122. new_dict = dict()
  123. for _key in feed_dict.keys():
  124. if isinstance(feed_dict[_key],(float,int,np.int32,np.float_,np.float16,np.float32,np.float64)):
  125. new_dict[_key] = feed_dict[_key]
  126. else:
  127. new_dict[_key] = feed_dict[_key][_begin:_begin+MAX_BATCH]
  128. _output = sess.run(list_output,feed_dict=new_dict)
  129. for _index in range(len(list_output)):
  130. list_result[_index].extend(_output[_index])
  131. _begin += MAX_BATCH
  132. else:
  133. list_result = sess.run(list_output,feed_dict=feed_dict)
  134. return list_result
  135. def get_values(response,output_name):
  136. """
  137. Get the value of a specified output tensor
  138. :param output_name: name of the output tensor
  139. :return: the content of the output tensor
  140. """
  141. output = response.outputs[output_name]
  142. if output.dtype == tf_predict_pb2.DT_FLOAT:
  143. _value = output.float_val
  144. elif output.dtype == tf_predict_pb2.DT_INT8 or output.dtype == tf_predict_pb2.DT_INT16 or \
  145. output.dtype == tf_predict_pb2.DT_INT32:
  146. _value = output.int_val
  147. elif output.dtype == tf_predict_pb2.DT_INT64:
  148. _value = output.int64_val
  149. elif output.dtype == tf_predict_pb2.DT_DOUBLE:
  150. _value = output.double_val
  151. elif output.dtype == tf_predict_pb2.DT_STRING:
  152. _value = output.string_val
  153. elif output.dtype == tf_predict_pb2.DT_BOOL:
  154. _value = output.bool_val
  155. return np.array(_value).reshape(response.outputs[output_name].array_shape.dim)
  156. def vpc_requests(url,authorization,request_data,list_outputs):
  157. headers = {"Authorization": authorization}
  158. dict_outputs = dict()
  159. response = tf_predict_pb2.PredictResponse()
  160. resp = requests.post(url, data=request_data, headers=headers)
  161. if resp.status_code != 200:
  162. print(resp.status_code,resp.content)
  163. log("调用pai-eas接口出错,authorization:"+str(authorization))
  164. return None
  165. else:
  166. response = tf_predict_pb2.PredictResponse()
  167. response.ParseFromString(resp.content)
  168. for _output in list_outputs:
  169. dict_outputs[_output] = get_values(response, _output)
  170. return dict_outputs
  171. def encodeInput(data,word_len,word_flag=True,userFool=False):
  172. result = []
  173. out_index = 0
  174. for item in data:
  175. if out_index in [0]:
  176. list_word = item[-word_len:]
  177. else:
  178. list_word = item[:word_len]
  179. temp = []
  180. if word_flag:
  181. for word in list_word:
  182. if userFool:
  183. temp.append(getIndexOfWord_fool(word))
  184. else:
  185. temp.append(getIndexOfWord(word))
  186. list_append = []
  187. temp_len = len(temp)
  188. while(temp_len<word_len):
  189. if userFool:
  190. list_append.append(0)
  191. else:
  192. list_append.append(getIndexOfWord("<pad>"))
  193. temp_len += 1
  194. if out_index in [0]:
  195. temp = list_append+temp
  196. else:
  197. temp = temp+list_append
  198. else:
  199. for words in list_word:
  200. temp.append(getIndexOfWords(words))
  201. list_append = []
  202. temp_len = len(temp)
  203. while(temp_len<word_len):
  204. list_append.append(getIndexOfWords("<pad>"))
  205. temp_len += 1
  206. if out_index in [0,1]:
  207. temp = list_append+temp
  208. else:
  209. temp = temp+list_append
  210. result.append(temp)
  211. out_index += 1
  212. return result
  213. def encodeInput_form(input,MAX_LEN=30):
  214. x = np.zeros([MAX_LEN])
  215. for i in range(len(input)):
  216. if i>=MAX_LEN:
  217. break
  218. x[i] = getIndexOfWord(input[i])
  219. return x
  220. def getVocabAndMatrix(model,Embedding_size = 60):
  221. '''
  222. @summary:获取子向量的词典和子向量矩阵
  223. '''
  224. vocab = ["<pad>"]+model.index2word
  225. embedding_matrix = np.zeros((len(vocab),Embedding_size))
  226. for i in range(1,len(vocab)):
  227. embedding_matrix[i] = model[vocab[i]]
  228. return vocab,embedding_matrix
  229. def getIndexOfWord(word):
  230. global vocab_word,file_vocab_word
  231. if vocab_word is None:
  232. if os.path.exists(file_vocab_word):
  233. vocab = load(file_vocab_word)
  234. vocab_word = dict((w, i) for i, w in enumerate(np.array(vocab)))
  235. else:
  236. model = getModel_word()
  237. vocab,_ = getVocabAndMatrix(model, Embedding_size=60)
  238. vocab_word = dict((w, i) for i, w in enumerate(np.array(vocab)))
  239. save(vocab,file_vocab_word)
  240. if word in vocab_word.keys():
  241. return vocab_word[word]
  242. else:
  243. return vocab_word['<pad>']
  244. def changeIndexFromWordToWords(tokens,word_index):
  245. '''
  246. @summary:转换某个字的字偏移为词偏移
  247. '''
  248. before_index = 0
  249. after_index = 0
  250. for i in range(len(tokens)):
  251. after_index = after_index+len(tokens[i])
  252. if before_index<=word_index and after_index>word_index:
  253. return i
  254. before_index = after_index
  255. def getIndexOfWords(words):
  256. global vocab_words,file_vocab_words
  257. if vocab_words is None:
  258. if os.path.exists(file_vocab_words):
  259. vocab = load(file_vocab_words)
  260. vocab_words = dict((w, i) for i, w in enumerate(np.array(vocab)))
  261. else:
  262. model = getModel_w2v()
  263. vocab,_ = getVocabAndMatrix(model, Embedding_size=128)
  264. vocab_words = dict((w, i) for i, w in enumerate(np.array(vocab)))
  265. save(vocab,file_vocab_words)
  266. if words in vocab_words.keys():
  267. return vocab_words[words]
  268. else:
  269. return vocab_words["<pad>"]
  270. def log(msg):
  271. '''
  272. @summary:打印信息
  273. '''
  274. logger.info(msg)
  275. def debug(msg):
  276. '''
  277. @summary:打印信息
  278. '''
  279. logger.debug(msg)
  280. def save(object_to_save, path):
  281. '''
  282. 保存对象
  283. @Arugs:
  284. object_to_save: 需要保存的对象
  285. @Return:
  286. 保存的路径
  287. '''
  288. with open(path, 'wb') as f:
  289. pickle.dump(object_to_save, f)
  290. def load(path):
  291. '''
  292. 读取对象
  293. @Arugs:
  294. path: 读取的路径
  295. @Return:
  296. 读取的对象
  297. '''
  298. with open(path, 'rb') as f:
  299. object1 = pickle.load(f)
  300. return object1
  301. fool_char_to_id = load(os.path.dirname(__file__)+"/fool_char_to_id.pk")
  302. def getIndexOfWord_fool(word):
  303. if word in fool_char_to_id.keys():
  304. return fool_char_to_id[word]
  305. else:
  306. return fool_char_to_id["[UNK]"]
  307. def find_index(list_tofind,text):
  308. '''
  309. @summary: 查找所有词汇在字符串中第一次出现的位置
  310. @param:
  311. list_tofind:待查找词汇
  312. text:字符串
  313. @return: list,每个词汇第一次出现的位置
  314. '''
  315. result = []
  316. for item in list_tofind:
  317. index = text.find(item)
  318. if index>=0:
  319. result.append(index)
  320. else:
  321. result.append(-1)
  322. return result
  323. def combine(list1,list2):
  324. '''
  325. @summary:将两个list中的字符串两两拼接
  326. @param:
  327. list1:字符串list
  328. list2:字符串list
  329. @return:拼接结果list
  330. '''
  331. result = []
  332. for item1 in list1:
  333. for item2 in list2:
  334. result.append(str(item1)+str(item2))
  335. return result
  336. def getDigitsDic(unit):
  337. '''
  338. @summary:拿到中文对应的数字
  339. '''
  340. DigitsDic = {"零":0, "壹":1, "贰":2, "叁":3, "肆":4, "伍":5, "陆":6, "柒":7, "捌":8, "玖":9,
  341. "〇":0, "一":1, "二":2, "三":3, "四":4, "五":5, "六":6, "七":7, "八":8, "九":9}
  342. return DigitsDic.get(unit)
  343. def getMultipleFactor(unit):
  344. '''
  345. @summary:拿到单位对应的值
  346. '''
  347. MultipleFactor = {"兆":Decimal(1000000000000),"亿":Decimal(100000000),"万":Decimal(10000),"仟":Decimal(1000),"千":Decimal(1000),"佰":Decimal(100),"百":Decimal(100),"拾":Decimal(10),"十":Decimal(10),"元":Decimal(1),"圆":Decimal(1),"角":round(Decimal(0.1),1),"分":round(Decimal(0.01),2)}
  348. return MultipleFactor.get(unit)
  349. def getUnifyMoney(money):
  350. '''
  351. @summary:将中文金额字符串转换为数字金额
  352. @param:
  353. money:中文金额字符串
  354. @return: decimal,数据金额
  355. '''
  356. MAX_MONEY = 1000000000000
  357. MAX_NUM = 12
  358. #去掉逗号
  359. money = re.sub("[,,]","",money)
  360. money = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",money)
  361. result = Decimal(0)
  362. chnDigits = ["零", "壹", "贰", "叁", "肆", "伍", "陆", "柒", "捌", "玖"]
  363. # chnFactorUnits = ["兆", "亿", "万", "仟", "佰", "拾","圆","元","角","分"]
  364. chnFactorUnits = ["圆", "元","兆", "亿", "万", "仟", "佰", "拾", "角", "分", '十', '百', '千']
  365. LowMoneypattern = re.compile("^[\d,]+(\.\d+)?$")
  366. BigMoneypattern = re.compile("^零?(?P<BigMoney>[%s])$"%("".join(chnDigits)))
  367. print("1",money)
  368. try:
  369. if re.search(LowMoneypattern,money) is not None:
  370. return Decimal(money)
  371. elif re.search(BigMoneypattern,money) is not None:
  372. return getDigitsDic(re.search(BigMoneypattern,money).group("BigMoney"))
  373. for factorUnit in chnFactorUnits:
  374. if re.search(re.compile(".*%s.*"%(factorUnit)),money) is not None:
  375. subMoneys = re.split(re.compile("%s(?!.*%s.*)"%(factorUnit,factorUnit)),money)
  376. if re.search(re.compile("^(\d+)(\.\d+)?$"),subMoneys[0]) is not None:
  377. if MAX_MONEY/getMultipleFactor(factorUnit)<Decimal(subMoneys[0]):
  378. return Decimal(0)
  379. result += Decimal(subMoneys[0])*(getMultipleFactor(factorUnit))
  380. elif len(subMoneys[0])==1:
  381. if re.search(re.compile("^[%s]$"%("".join(chnDigits))),subMoneys[0]) is not None:
  382. result += Decimal(getDigitsDic(subMoneys[0]))*(getMultipleFactor(factorUnit))
  383. # subMoneys[0]中无金额单位,不可再拆分
  384. elif subMoneys[0]=="":
  385. result += 0
  386. elif re.search(re.compile("[%s]"%("".join(chnFactorUnits))),subMoneys[0]) is None:
  387. print(subMoneys)
  388. # subMoneys[0] = subMoneys[0][0]
  389. result += Decimal(getUnifyMoney(subMoneys[0])) * (getMultipleFactor(factorUnit))
  390. else:
  391. result += Decimal(getUnifyMoney(subMoneys[0]))*(getMultipleFactor(factorUnit))
  392. if len(subMoneys)>1:
  393. if re.search(re.compile("^(\d+(,)?)+(\.\d+)?[百千万亿]?\s?(元)?$"),subMoneys[1]) is not None:
  394. result += Decimal(subMoneys[1])
  395. elif len(subMoneys[1])==1:
  396. if re.search(re.compile("^[%s]$"%("".join(chnDigits))),subMoneys[1]) is not None:
  397. result += Decimal(getDigitsDic(subMoneys[1]))
  398. else:
  399. result += Decimal(getUnifyMoney(subMoneys[1]))
  400. break
  401. except Exception as e:
  402. traceback.print_exc()
  403. return Decimal(0)
  404. return result
  405. def getModel_w2v():
  406. '''
  407. @summary:加载词向量
  408. '''
  409. global model_w2v,lock_model_w2v
  410. with lock_model_w2v:
  411. if model_w2v is None:
  412. model_w2v = gensim.models.KeyedVectors.load_word2vec_format(getw2vfilepath(),binary=True)
  413. return model_w2v
  414. def getModel_word():
  415. '''
  416. @summary:加载字向量
  417. '''
  418. global model_word,lock_model_w2v
  419. with lock_model_word:
  420. if model_word is None:
  421. model_word = gensim.models.KeyedVectors.load_word2vec_format(model_word_file,binary=True)
  422. return model_word
  423. # getModel_w2v()
  424. # getModel_word()
  425. def findAllIndex(substr,wholestr):
  426. '''
  427. @summary: 找到字符串的子串的所有begin_index
  428. @param:
  429. substr:子字符串
  430. wholestr:子串所在完整字符串
  431. @return: list,字符串的子串的所有begin_index
  432. '''
  433. copystr = wholestr
  434. result = []
  435. indexappend = 0
  436. while(True):
  437. index = copystr.find(substr)
  438. if index<0:
  439. break
  440. else:
  441. result.append(indexappend+index)
  442. indexappend += index+len(substr)
  443. copystr = copystr[index+len(substr):]
  444. return result
  445. def spanWindow(tokens,begin_index,end_index,size,center_include=False,word_flag = False,use_text = False,text = None):
  446. '''
  447. @summary:取得某个实体的上下文词汇
  448. @param:
  449. tokens:句子分词list
  450. begin_index:实体的开始index
  451. end_index:实体的结束index
  452. size:左右两边各取多少个词
  453. center_include:是否包含实体
  454. word_flag:词/字,默认是词
  455. @return: list,实体的上下文词汇
  456. '''
  457. if use_text:
  458. assert text is not None
  459. length_tokens = len(tokens)
  460. if begin_index>size:
  461. begin = begin_index-size
  462. else:
  463. begin = 0
  464. if end_index+size<length_tokens:
  465. end = end_index+size+1
  466. else:
  467. end = length_tokens
  468. result = []
  469. if not word_flag:
  470. result.append(tokens[begin:begin_index])
  471. if center_include:
  472. if use_text:
  473. result.append(text)
  474. else:
  475. result.append(tokens[begin_index:end_index+1])
  476. result.append(tokens[end_index+1:end])
  477. else:
  478. result.append("".join(tokens[begin:begin_index]))
  479. if center_include:
  480. if use_text:
  481. result.append(text)
  482. else:
  483. result.append("".join(tokens[begin_index:end_index+1]))
  484. result.append("".join(tokens[end_index+1:end]))
  485. #print(result)
  486. return result
  487. #根据规则补全编号或名称两边的符号
  488. def fitDataByRule(data):
  489. symbol_dict = {"(":")",
  490. "(":")",
  491. "[":"]",
  492. "【":"】",
  493. ")":"(",
  494. ")":"(",
  495. "]":"[",
  496. "】":"【"}
  497. leftSymbol_pattern = re.compile("[\((\[【]")
  498. rightSymbol_pattern = re.compile("[\))\]】]")
  499. leftfinds = re.findall(leftSymbol_pattern,data)
  500. rightfinds = re.findall(rightSymbol_pattern,data)
  501. result = data
  502. if len(leftfinds)+len(rightfinds)==0:
  503. return data
  504. elif len(leftfinds)==len(rightfinds):
  505. return data
  506. elif abs(len(leftfinds)-len(rightfinds))==1:
  507. if len(leftfinds)>len(rightfinds):
  508. if symbol_dict.get(data[0]) is not None:
  509. result = data[1:]
  510. else:
  511. #print(symbol_dict.get(leftfinds[0]))
  512. result = data+symbol_dict.get(leftfinds[0])
  513. else:
  514. if symbol_dict.get(data[-1]) is not None:
  515. result = data[:-1]
  516. else:
  517. result = symbol_dict.get(rightfinds[0])+data
  518. result = re.sub("[。]","",result)
  519. return result
  520. time_format_pattern = re.compile("((?P<year>\d{4}|\d{2})\s*[-\/年\.]\s*(?P<month>\d{1,2})\s*[-\/月\.]\s*(?P<day>\d{1,2}))")
  521. def timeFormat(_time):
  522. current_year = time.strftime("%Y",time.localtime())
  523. all_match = re.finditer(time_format_pattern,_time)
  524. for _match in all_match:
  525. if len(_match.group())>0:
  526. legal = True
  527. year = ""
  528. month = ""
  529. day = ""
  530. for k,v in _match.groupdict().items():
  531. if k=="year":
  532. year = v
  533. if k=="month":
  534. month = v
  535. if k=="day":
  536. day = v
  537. if year!="":
  538. if len(year)==2:
  539. year = "20"+year
  540. if int(year)>int(current_year):
  541. legal = False
  542. else:
  543. legal = False
  544. if month!="":
  545. if int(month)>12:
  546. legal = False
  547. else:
  548. legal = False
  549. if day!="":
  550. if int(day)>31:
  551. legal = False
  552. else:
  553. legal = False
  554. if legal:
  555. return "%s-%s-%s"%(year,month.rjust(2,"0"),day.rjust(2,"0"))
  556. return ""
  557. def embedding(datas,shape):
  558. '''
  559. @summary:查找词汇对应的词向量
  560. @param:
  561. datas:词汇的list
  562. shape:结果的shape
  563. @return: array,返回对应shape的词嵌入
  564. '''
  565. model_w2v = getModel_w2v()
  566. embed = np.zeros(shape)
  567. length = shape[1]
  568. out_index = 0
  569. #print(datas)
  570. for data in datas:
  571. index = 0
  572. for item in data:
  573. item_not_space = re.sub("\s*","",item)
  574. if index>=length:
  575. break
  576. if item_not_space in model_w2v.vocab:
  577. embed[out_index][index] = model_w2v[item_not_space]
  578. index += 1
  579. else:
  580. #embed[out_index][index] = model_w2v['unk']
  581. index += 1
  582. out_index += 1
  583. return embed
  584. def embedding_word(datas,shape):
  585. '''
  586. @summary:查找词汇对应的词向量
  587. @param:
  588. datas:词汇的list
  589. shape:结果的shape
  590. @return: array,返回对应shape的词嵌入
  591. '''
  592. model_w2v = getModel_word()
  593. embed = np.zeros(shape)
  594. length = shape[1]
  595. out_index = 0
  596. #print(datas)
  597. for data in datas:
  598. index = 0
  599. for item in str(data)[-shape[1]:]:
  600. if index>=length:
  601. break
  602. if item in model_w2v.vocab:
  603. embed[out_index][index] = model_w2v[item]
  604. index += 1
  605. else:
  606. # embed[out_index][index] = model_w2v['unk']
  607. index += 1
  608. out_index += 1
  609. return embed
  610. def embedding_word_forward(datas,shape):
  611. '''
  612. @summary:查找词汇对应的词向量
  613. @param:
  614. datas:词汇的list
  615. shape:结果的shape
  616. @return: array,返回对应shape的词嵌入
  617. '''
  618. model_w2v = getModel_word()
  619. embed = np.zeros(shape)
  620. length = shape[1]
  621. out_index = 0
  622. #print(datas)
  623. for data in datas:
  624. index = 0
  625. for item in str(data)[:shape[1]]:
  626. if index>=length:
  627. break
  628. if item in model_w2v.vocab:
  629. embed[out_index][index] = model_w2v[item]
  630. index += 1
  631. else:
  632. # embed[out_index][index] = model_w2v['unk']
  633. index += 1
  634. out_index += 1
  635. return embed
  636. def formEncoding(text,shape=(100,60),expand=False):
  637. embedding = np.zeros(shape)
  638. word_model = getModel_word()
  639. for i in range(len(text)):
  640. if i>=shape[0]:
  641. break
  642. if text[i] in word_model.vocab:
  643. embedding[i] = word_model[text[i]]
  644. if expand:
  645. embedding = np.expand_dims(embedding,0)
  646. return embedding
  647. def partMoney(entity_text,input2_shape = [7]):
  648. '''
  649. @summary:对金额分段
  650. @param:
  651. entity_text:数值金额
  652. input2_shape:分类数
  653. @return: array,分段之后的独热编码
  654. '''
  655. money = float(entity_text)
  656. parts = np.zeros(input2_shape)
  657. if money<100:
  658. parts[0] = 1
  659. elif money<1000:
  660. parts[1] = 1
  661. elif money<10000:
  662. parts[2] = 1
  663. elif money<100000:
  664. parts[3] = 1
  665. elif money<1000000:
  666. parts[4] = 1
  667. elif money<10000000:
  668. parts[5] = 1
  669. else:
  670. parts[6] = 1
  671. return parts
  672. def recall(y_true, y_pred):
  673. '''
  674. 计算召回率
  675. @Argus:
  676. y_true: 正确的标签
  677. y_pred: 模型预测的标签
  678. @Return
  679. 召回率
  680. '''
  681. c1 = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
  682. c3 = K.sum(K.round(K.clip(y_true, 0, 1)))
  683. if c3 == 0:
  684. return 0
  685. recall = c1 / c3
  686. return recall
  687. def f1_score(y_true, y_pred):
  688. '''
  689. 计算F1
  690. @Argus:
  691. y_true: 正确的标签
  692. y_pred: 模型预测的标签
  693. @Return
  694. F1值
  695. '''
  696. c1 = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
  697. c2 = K.sum(K.round(K.clip(y_pred, 0, 1)))
  698. c3 = K.sum(K.round(K.clip(y_true, 0, 1)))
  699. precision = c1 / c2
  700. if c3 == 0:
  701. recall = 0
  702. else:
  703. recall = c1 / c3
  704. f1_score = 2 * (precision * recall) / (precision + recall)
  705. return f1_score
  706. def precision(y_true, y_pred):
  707. '''
  708. 计算精确率
  709. @Argus:
  710. y_true: 正确的标签
  711. y_pred: 模型预测的标签
  712. @Return
  713. 精确率
  714. '''
  715. c1 = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
  716. c2 = K.sum(K.round(K.clip(y_pred, 0, 1)))
  717. precision = c1 / c2
  718. return precision
  719. # def print_metrics(history):
  720. # '''
  721. # 制作每次迭代的各metrics变化图片
  722. #
  723. # @Arugs:
  724. # history: 模型训练迭代的历史记录
  725. # '''
  726. # import matplotlib.pyplot as plt
  727. #
  728. # # loss图
  729. # loss = history.history['loss']
  730. # val_loss = history.history['val_loss']
  731. # epochs = range(1, len(loss) + 1)
  732. # plt.subplot(2, 2, 1)
  733. # plt.plot(epochs, loss, 'bo', label='Training loss')
  734. # plt.plot(epochs, val_loss, 'b', label='Validation loss')
  735. # plt.title('Training and validation loss')
  736. # plt.xlabel('Epochs')
  737. # plt.ylabel('Loss')
  738. # plt.legend()
  739. #
  740. # # f1图
  741. # f1 = history.history['f1_score']
  742. # val_f1 = history.history['val_f1_score']
  743. # plt.subplot(2, 2, 2)
  744. # plt.plot(epochs, f1, 'bo', label='Training f1')
  745. # plt.plot(epochs, val_f1, 'b', label='Validation f1')
  746. # plt.title('Training and validation f1')
  747. # plt.xlabel('Epochs')
  748. # plt.ylabel('F1')
  749. # plt.legend()
  750. #
  751. # # precision图
  752. # prec = history.history['precision']
  753. # val_prec = history.history['val_precision']
  754. # plt.subplot(2, 2, 3)
  755. # plt.plot(epochs, prec, 'bo', label='Training precision')
  756. # plt.plot(epochs, val_prec, 'b', label='Validation pecision')
  757. # plt.title('Training and validation precision')
  758. # plt.xlabel('Epochs')
  759. # plt.ylabel('Precision')
  760. # plt.legend()
  761. #
  762. # # recall图
  763. # recall = history.history['recall']
  764. # val_recall = history.history['val_recall']
  765. # plt.subplot(2, 2, 4)
  766. # plt.plot(epochs, recall, 'bo', label='Training recall')
  767. # plt.plot(epochs, val_recall, 'b', label='Validation recall')
  768. # plt.title('Training and validation recall')
  769. # plt.xlabel('Epochs')
  770. # plt.ylabel('Recall')
  771. # plt.legend()
  772. #
  773. # plt.show()
  774. if __name__=="__main__":
  775. # print(fool_char_to_id[">"])
  776. print(getUnifyMoney('伍仟贰佰零壹拾伍万零捌佰壹拾元陆角伍分'))
  777. # model = getModel_w2v()
  778. # vocab,matrix = getVocabAndMatrix(model, Embedding_size=128)
  779. # save([vocab,matrix],"vocabMatrix_words.pk")