Preprocessing.py 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import *
  13. from BiddingKG.dl.foolnltk import selffool
  14. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  15. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  16. from BiddingKG.dl.bidway.re_bidway import extract_bidway
  17. #
  18. def tableToText(soup):
  19. '''
  20. @param:
  21. soup:网页html的soup
  22. @return:处理完表格信息的网页text
  23. '''
  24. def getTrs(tbody):
  25. #获取所有的tr
  26. trs = []
  27. objs = tbody.find_all(recursive=False)
  28. for obj in objs:
  29. if obj.name=="tr":
  30. trs.append(obj)
  31. if obj.name=="tbody":
  32. for tr in obj.find_all("tr",recursive=False):
  33. trs.append(tr)
  34. return trs
  35. def fixSpan(tbody):
  36. # 处理colspan, rowspan信息补全问题
  37. #trs = tbody.findChildren('tr', recursive=False)
  38. trs = getTrs(tbody)
  39. ths_len = 0
  40. ths = list()
  41. trs_set = set()
  42. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  43. # 遍历每一个tr
  44. for indtr, tr in enumerate(trs):
  45. ths_tmp = tr.findChildren('th', recursive=False)
  46. #不补全含有表格的tr
  47. if len(tr.findChildren('table'))>0:
  48. continue
  49. if len(ths_tmp) > 0:
  50. ths_len = ths_len + len(ths_tmp)
  51. for th in ths_tmp:
  52. ths.append(th)
  53. trs_set.add(tr)
  54. # 遍历每行中的element
  55. tds = tr.findChildren(recursive=False)
  56. for indtd, td in enumerate(tds):
  57. # 若有colspan 则补全同一行下一个位置
  58. if 'colspan' in td.attrs:
  59. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  60. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  61. if col<100 and len(td.get_text())<1000:
  62. td['colspan'] = 1
  63. for i in range(1, col, 1):
  64. td.insert_after(copy.copy(td))
  65. for indtr, tr in enumerate(trs):
  66. ths_tmp = tr.findChildren('th', recursive=False)
  67. #不补全含有表格的tr
  68. if len(tr.findChildren('table'))>0:
  69. continue
  70. if len(ths_tmp) > 0:
  71. ths_len = ths_len + len(ths_tmp)
  72. for th in ths_tmp:
  73. ths.append(th)
  74. trs_set.add(tr)
  75. # 遍历每行中的element
  76. tds = tr.findChildren(recursive=False)
  77. for indtd, td in enumerate(tds):
  78. # 若有rowspan 则补全下一行同样位置
  79. if 'rowspan' in td.attrs:
  80. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  81. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  82. td['rowspan'] = 1
  83. for i in range(1, row, 1):
  84. # 获取下一行的所有td, 在对应的位置插入
  85. if indtr+i<len(trs):
  86. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  87. if len(tds1) >= (indtd) and len(tds1)>0:
  88. if indtd > 0:
  89. tds1[indtd - 1].insert_after(copy.copy(td))
  90. else:
  91. tds1[0].insert_before(copy.copy(td))
  92. def getTable(tbody):
  93. #trs = tbody.findChildren('tr', recursive=False)
  94. trs = getTrs(tbody)
  95. inner_table = []
  96. for tr in trs:
  97. tr_line = []
  98. tds = tr.findChildren(['td','th'], recursive=False)
  99. for td in tds:
  100. tr_line.append([re.sub('\xa0','',segment(td)),0])
  101. #tr_line.append([td.get_text(),0])
  102. inner_table.append(tr_line)
  103. return inner_table
  104. #处理表格不对齐的问题
  105. def fixTable(inner_table,fix_value="~~"):
  106. maxWidth = 0
  107. for item in inner_table:
  108. if len(item)>maxWidth:
  109. maxWidth = len(item)
  110. for i in range(len(inner_table)):
  111. if len(inner_table[i])<maxWidth:
  112. for j in range(maxWidth-len(inner_table[i])):
  113. inner_table[i].append([fix_value,0])
  114. return inner_table
  115. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  116. height = len(inner_table)
  117. width = len(inner_table[0])
  118. for i in range(height):
  119. point = ""
  120. for j in range(width):
  121. if inner_table[i][j][0]==point and point!="":
  122. inner_table[i][j][0] = pad_row
  123. else:
  124. if inner_table[i][j][0] not in [pad_row,pad_col]:
  125. point = inner_table[i][j][0]
  126. for j in range(width):
  127. point = ""
  128. for i in range(height):
  129. if inner_table[i][j][0]==point and point!="":
  130. inner_table[i][j][0] = pad_col
  131. else:
  132. if inner_table[i][j][0] not in [pad_row,pad_col]:
  133. point = inner_table[i][j][0]
  134. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  135. height = len(inner_table)
  136. width = len(inner_table[0])
  137. for i in range(height):
  138. for j in range(width):
  139. if inner_table[i][j][0]==pad_row:
  140. inner_table[i][j][0] = inner_table[i][j-1][0]
  141. inner_table[i][j][1] = inner_table[i][j-1][1]
  142. if inner_table[i][j][0]==pad_col:
  143. inner_table[i][j][0] = inner_table[i-1][j][0]
  144. inner_table[i][j][1] = inner_table[i-1][j][1]
  145. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  146. '''
  147. @summary: 修复表头识别,将明显错误的进行修正
  148. '''
  149. def repairNeeded(line):
  150. first_1 = -1
  151. last_1 = -1
  152. first_0 = -1
  153. last_0 = -1
  154. count_1 = 0
  155. count_0 = 0
  156. for i in range(len(line)):
  157. if line[i][0]==fix_value:
  158. continue
  159. if line[i][1]==1:
  160. if first_1==-1:
  161. first_1 = i
  162. last_1 = i
  163. count_1 += 1
  164. if line[i][1]==0:
  165. if first_0 == -1:
  166. first_0 = i
  167. last_0 = i
  168. count_0 += 1
  169. if first_1 ==-1 or last_0 == -1:
  170. return False
  171. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  172. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  173. return True
  174. return False
  175. def getsimilarity(line,line1):
  176. same_count = 0
  177. for item,item1 in zip(line,line1):
  178. if item[1]==item1[1]:
  179. same_count += 1
  180. return same_count/len(line)
  181. def selfrepair(inner_table,index,dye_set,key_set):
  182. '''
  183. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  184. '''
  185. #print("B",inner_table[index])
  186. min_presure = 3
  187. list_dye = []
  188. first = None
  189. count = 0
  190. temp_set = set()
  191. _index = 0
  192. for item in inner_table[index]:
  193. if first is None:
  194. first = item[1]
  195. if item[0] not in temp_set:
  196. count += 1
  197. temp_set.add(item[0])
  198. else:
  199. if first == item[1]:
  200. if item[0] not in temp_set:
  201. temp_set.add(item[0])
  202. count += 1
  203. else:
  204. list_dye.append([first,count,_index])
  205. first = item[1]
  206. temp_set.add(item[0])
  207. count = 1
  208. _index += 1
  209. list_dye.append([first,count,_index])
  210. if len(list_dye)>1:
  211. begin = 0
  212. end = 0
  213. for i in range(len(list_dye)):
  214. end = list_dye[i][2]
  215. dye_flag = False
  216. #首尾要求压力减一
  217. if i==0:
  218. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  219. dye_flag = True
  220. dye_type = list_dye[i+1][0]
  221. elif i==len(list_dye)-1:
  222. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  223. dye_flag = True
  224. dye_type = list_dye[i-1][0]
  225. else:
  226. if list_dye[i][1]>1:
  227. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  228. dye_flag = True
  229. dye_type = list_dye[i+1][0]
  230. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  231. dye_flag = True
  232. dye_type = list_dye[i-1][0]
  233. else:
  234. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  235. dye_flag = True
  236. dye_type = list_dye[i+1][0]
  237. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  238. dye_flag = True
  239. dye_type = list_dye[i-1][0]
  240. if dye_flag:
  241. for h in range(begin,end):
  242. inner_table[index][h][1] = dye_type
  243. dye_set.add((inner_table[index][h][0],dye_type))
  244. key_set.add(inner_table[index][h][0])
  245. begin = end
  246. #print("E",inner_table[index])
  247. def otherrepair(inner_table,index,dye_set,key_set):
  248. list_provide_repair = []
  249. if index==0 and len(inner_table)>1:
  250. list_provide_repair.append(index+1)
  251. elif index==len(inner_table)-1:
  252. list_provide_repair.append(index-1)
  253. else:
  254. list_provide_repair.append(index+1)
  255. list_provide_repair.append(index-1)
  256. for provide_index in list_provide_repair:
  257. if not repairNeeded(inner_table[provide_index]):
  258. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  259. if same_prob>=0.8:
  260. for i in range(len(inner_table[provide_index])):
  261. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  262. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  263. key_set.add(inner_table[index][i][0])
  264. inner_table[index][i][1] = inner_table[provide_index][i][1]
  265. elif same_prob<=0.2:
  266. for i in range(len(inner_table[provide_index])):
  267. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  268. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  269. key_set.add(inner_table[index][i][0])
  270. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  271. len_dye_set = len(dye_set)
  272. height = len(inner_table)
  273. for i in range(height):
  274. if repairNeeded(inner_table[i]):
  275. selfrepair(inner_table,i,dye_set,key_set)
  276. #otherrepair(inner_table,i,dye_set,key_set)
  277. for h in range(len(inner_table)):
  278. for w in range(len(inner_table[0])):
  279. if inner_table[h][w][0] in key_set:
  280. for item in dye_set:
  281. if inner_table[h][w][0]==item[0]:
  282. inner_table[h][w][1] = item[1]
  283. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  284. if len(dye_set)!=len(key_set):
  285. for i in range(height):
  286. if repairNeeded(inner_table[i]):
  287. selfrepair(inner_table,i,dye_set,key_set)
  288. #otherrepair(inner_table,i,dye_set,key_set)
  289. return
  290. if len(dye_set)==len_dye_set:
  291. '''
  292. for i in range(height):
  293. if repairNeeded(inner_table[i]):
  294. otherrepair(inner_table,i,dye_set,key_set)
  295. '''
  296. return
  297. repairTable(inner_table, dye_set, key_set)
  298. def sliceTable(inner_table,fix_value="~~"):
  299. #进行分块
  300. height = len(inner_table)
  301. width = len(inner_table[0])
  302. head_list = []
  303. head_list.append(0)
  304. last_head = None
  305. last_is_same_value = False;
  306. for h in range(height):
  307. is_all_key = True#是否是全表头行
  308. is_all_value = True#是否是全属性值
  309. is_same_with_lastHead = True#和上一行的结构是否相同
  310. is_same_value=True#一行的item都一样
  311. #is_same_first_item = True#与上一行的第一项是否相同
  312. same_value = inner_table[h][0][0]
  313. for w in range(width):
  314. if last_head is not None:
  315. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  316. is_all_key = False
  317. if inner_table[h][w][0]==1:
  318. is_all_value = False
  319. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  320. is_same_with_lastHead = False
  321. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  322. is_same_value = False
  323. else:
  324. if re.search("\d+",same_value) is not None:
  325. is_same_value = False
  326. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  327. is_same_first_item = False
  328. last_head = h
  329. if last_is_same_value:
  330. last_is_same_value = is_same_value
  331. continue
  332. if is_same_value:
  333. head_list.append(h)
  334. last_is_same_value = is_same_value
  335. continue
  336. if not is_all_key:
  337. if not is_same_with_lastHead:
  338. head_list.append(h)
  339. head_list.append(height)
  340. return head_list
  341. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  342. set_item = set()
  343. height = len(inner_table)
  344. width = len(inner_table[0])
  345. for i in range(height):
  346. for j in range(width):
  347. item = inner_table[i][j][0]
  348. set_item.add(item)
  349. list_item = list(set_item)
  350. x = []
  351. for item in list_item:
  352. x.append(getPredictor("form").encode(item))
  353. predict_y = getPredictor("form").predict(np.array(x),type="item")
  354. _dict = dict()
  355. for item,values in zip(list_item,list(predict_y)):
  356. _dict[item] = values[1]
  357. # print("##",item,values)
  358. #print(_dict)
  359. for i in range(height):
  360. for j in range(width):
  361. item = inner_table[i][j][0]
  362. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  363. # print("=====")
  364. # for item in inner_table:
  365. # print(item)
  366. # print("======")
  367. repairTable(inner_table)
  368. head_list = sliceTable(inner_table)
  369. return inner_table,head_list
  370. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  371. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  372. predict_y = getPredictor("form").getModel("context").predict(data_x)
  373. for _position,_y in zip(data_position,predict_y):
  374. _w = _position[0]
  375. _h = _position[1]
  376. if _y[1]>prob_min:
  377. inner_table[_h][_w][1] = 1
  378. else:
  379. inner_table[_h][_w][1] = 0
  380. print("=====")
  381. for item in inner_table:
  382. print(item)
  383. print("======")
  384. repairTable(inner_table)
  385. head_list = sliceTable(inner_table)
  386. return inner_table,head_list
  387. #设置表头
  388. def setHead_inline(inner_table,prob_min=0.64):
  389. pad_row = "@@"
  390. pad_col = "##"
  391. removePadding(inner_table, pad_row, pad_col)
  392. pad_pattern = re.compile(pad_row+"|"+pad_col)
  393. height = len(inner_table)
  394. width = len(inner_table[0])
  395. head_list = []
  396. head_list.append(0)
  397. #行表头
  398. is_head_last = False
  399. for i in range(height):
  400. is_head = False
  401. is_long_value = False
  402. #判断是否是全padding值
  403. is_same_value = True
  404. same_value = inner_table[i][0][0]
  405. for j in range(width):
  406. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  407. is_same_value = False
  408. break
  409. #predict is head or not with model
  410. temp_item = ""
  411. for j in range(width):
  412. temp_item += inner_table[i][j][0]+"|"
  413. temp_item = re.sub(pad_pattern,"",temp_item)
  414. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  415. if form_prob is not None:
  416. if form_prob[0][1]>prob_min:
  417. is_head = True
  418. else:
  419. is_head = False
  420. #print(temp_item,form_prob)
  421. if len(inner_table[i][0][0])>40:
  422. is_long_value = True
  423. if is_head or is_long_value or is_same_value:
  424. #不把连续表头分开
  425. if not is_head_last:
  426. head_list.append(i)
  427. if is_long_value or is_same_value:
  428. head_list.append(i+1)
  429. if is_head:
  430. for j in range(width):
  431. inner_table[i][j][1] = 1
  432. is_head_last = is_head
  433. head_list.append(height)
  434. #列表头
  435. for i in range(len(head_list)-1):
  436. head_begin = head_list[i]
  437. head_end = head_list[i+1]
  438. #最后一列不设置为列表头
  439. for i in range(width-1):
  440. is_head = False
  441. #predict is head or not with model
  442. temp_item = ""
  443. for j in range(head_begin,head_end):
  444. temp_item += inner_table[j][i][0]+"|"
  445. temp_item = re.sub(pad_pattern,"",temp_item)
  446. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  447. if form_prob is not None:
  448. if form_prob[0][1]>prob_min:
  449. is_head = True
  450. else:
  451. is_head = False
  452. if is_head:
  453. for j in range(head_begin,head_end):
  454. inner_table[j][i][1] = 2
  455. addPadding(inner_table, pad_row, pad_col)
  456. return inner_table,head_list
  457. #设置表头
  458. def setHead_withRule(inner_table,pattern,pat_value,count):
  459. height = len(inner_table)
  460. width = len(inner_table[0])
  461. head_list = []
  462. head_list.append(0)
  463. #行表头
  464. is_head_last = False
  465. for i in range(height):
  466. set_match = set()
  467. is_head = False
  468. is_long_value = False
  469. is_same_value = True
  470. same_value = inner_table[i][0][0]
  471. for j in range(width):
  472. if inner_table[i][j][0]!=same_value:
  473. is_same_value = False
  474. break
  475. for j in range(width):
  476. if re.search(pat_value,inner_table[i][j][0]) is not None:
  477. is_head = False
  478. break
  479. str_find = re.findall(pattern,inner_table[i][j][0])
  480. if len(str_find)>0:
  481. set_match.add(inner_table[i][j][0])
  482. if len(set_match)>=count:
  483. is_head = True
  484. if len(inner_table[i][0][0])>40:
  485. is_long_value = True
  486. if is_head or is_long_value or is_same_value:
  487. if not is_head_last:
  488. head_list.append(i)
  489. if is_head:
  490. for j in range(width):
  491. inner_table[i][j][1] = 1
  492. is_head_last = is_head
  493. head_list.append(height)
  494. #列表头
  495. for i in range(len(head_list)-1):
  496. head_begin = head_list[i]
  497. head_end = head_list[i+1]
  498. #最后一列不设置为列表头
  499. for i in range(width-1):
  500. set_match = set()
  501. is_head = False
  502. for j in range(head_begin,head_end):
  503. if re.search(pat_value,inner_table[j][i][0]) is not None:
  504. is_head = False
  505. break
  506. str_find = re.findall(pattern,inner_table[j][i][0])
  507. if len(str_find)>0:
  508. set_match.add(inner_table[j][i][0])
  509. if len(set_match)>=count:
  510. is_head = True
  511. if is_head:
  512. for j in range(head_begin,head_end):
  513. inner_table[j][i][1] = 2
  514. return inner_table,head_list
  515. #取得表格的处理方向
  516. def getDirect(inner_table,begin,end):
  517. '''
  518. column_head = set()
  519. row_head = set()
  520. widths = len(inner_table[0])
  521. for height in range(begin,end):
  522. for width in range(widths):
  523. if inner_table[height][width][1] ==1:
  524. row_head.add(height)
  525. if inner_table[height][width][1] ==2:
  526. column_head.add(width)
  527. company_pattern = re.compile("公司")
  528. if 0 in column_head and begin not in row_head:
  529. return "column"
  530. if 0 in column_head and begin in row_head:
  531. for height in range(begin,end):
  532. count = 0
  533. count_flag = True
  534. for width_index in range(width):
  535. if inner_table[height][width_index][1]==0:
  536. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  537. count += 1
  538. else:
  539. count_flag = False
  540. if count_flag and count>=2:
  541. return "column"
  542. return "row"
  543. '''
  544. count_row_keys = 0
  545. count_column_keys = 0
  546. width = len(inner_table[0])
  547. if begin<end:
  548. for w in range(len(inner_table[begin])):
  549. if inner_table[begin][w][1]!=0:
  550. count_row_keys += 1
  551. for h in range(begin,end):
  552. if inner_table[h][0][1]!=0:
  553. count_column_keys += 1
  554. company_pattern = re.compile("有限(责任)?公司")
  555. for height in range(begin,end):
  556. count_set = set()
  557. count_flag = True
  558. for width_index in range(width):
  559. if inner_table[height][width_index][1]==0:
  560. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  561. count_set.add(inner_table[height][width_index][0])
  562. else:
  563. count_flag = False
  564. if count_flag and len(count_set)>=2:
  565. return "column"
  566. if count_column_keys>count_row_keys:
  567. return "column"
  568. return "row"
  569. #根据表格处理方向生成句子,
  570. def getTableText(inner_table,head_list,key_direct=False):
  571. # packPattern = "(标包|[标包][号段名])"
  572. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  573. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标)" # 2020/11/23 大网站规则,添加序号为排序
  574. entityPattern = "(候选|([中投]标|报价)(人|单位|候选)|单位名称|供应商)"
  575. height = len(inner_table)
  576. width = len(inner_table[0])
  577. text = ""
  578. for head_i in range(len(head_list)-1):
  579. head_begin = head_list[head_i]
  580. head_end = head_list[head_i+1]
  581. direct = getDirect(inner_table, head_begin, head_end)
  582. print("----")
  583. print(inner_table[head_begin:head_end])
  584. print("head_end-head_begin",head_end-head_begin)
  585. print(direct)
  586. #若只有一行,则直接按行读取
  587. if head_end-head_begin==1:
  588. text_line = ""
  589. for i in range(head_begin,head_end):
  590. for w in range(len(inner_table[i])):
  591. if inner_table[i][w][1]==1:
  592. _punctuation = ":"
  593. else:
  594. _punctuation = ","
  595. if w>0:
  596. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  597. text_line += inner_table[i][w][0]+_punctuation
  598. else:
  599. text_line += inner_table[i][w][0]+_punctuation
  600. text_line = text_line+"。" if text_line!="" else text_line
  601. text += text_line
  602. else:
  603. #构建一个共现矩阵
  604. table_occurence = []
  605. for i in range(head_begin,head_end):
  606. line_oc = []
  607. for j in range(width):
  608. cell = inner_table[i][j]
  609. line_oc.append({"text":cell[0],"type":cell[1]})
  610. table_occurence.append(line_oc)
  611. if direct=="row":
  612. for i in range(head_begin,head_end):
  613. pack_text = ""
  614. rank_text = ""
  615. entity_text = ""
  616. text_line = ""
  617. #在同一句话中重复的可以去掉
  618. text_set = set()
  619. for j in range(width):
  620. cell = inner_table[i][j]
  621. #是属性值
  622. if cell[1]==0 and cell[0]!="":
  623. head = ""
  624. find_flag = False
  625. temp_head = ""
  626. for loop_i in range(0,i+1-head_begin):
  627. if not key_direct:
  628. key_values = [1,2]
  629. else:
  630. key_values = [1]
  631. if inner_table[i-loop_i][j][1] in key_values:
  632. if find_flag:
  633. if inner_table[i-loop_i][j][0]!=temp_head:
  634. head = inner_table[i-loop_i][j][0]+":"+head
  635. else:
  636. head = inner_table[i-loop_i][j][0]+":"+head
  637. find_flag = True
  638. temp_head = inner_table[i-loop_i][j][0]
  639. else:
  640. #找到表头后遇到属性值就返回
  641. if find_flag:
  642. break
  643. find_flag = False
  644. temp_head = ""
  645. for loop_j in range(1,j+1):
  646. if not key_direct:
  647. key_values = [1,2]
  648. else:
  649. key_values = [2]
  650. if inner_table[i][j-loop_j][1] in key_values:
  651. if find_flag:
  652. if inner_table[i][j-loop_j][0]!=temp_head:
  653. head = inner_table[i][j-loop_j][0]+":"+head
  654. else:
  655. head = inner_table[i][j-loop_j][0]+":"+head
  656. find_flag = True
  657. temp_head = inner_table[i][j-loop_j][0]
  658. else:
  659. if find_flag:
  660. break
  661. if str(head+inner_table[i][j][0]) in text_set:
  662. continue
  663. if re.search(packPattern,head) is not None:
  664. pack_text += head+inner_table[i][j][0]+","
  665. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  666. #排名替换为同一种表达
  667. rank_text += head+inner_table[i][j][0]+","
  668. #print(rank_text)
  669. elif re.search(entityPattern,head) is not None:
  670. entity_text += head+inner_table[i][j][0]+","
  671. #print(entity_text)
  672. else:
  673. text_line += head+inner_table[i][j][0]+","
  674. text_set.add(str(head+inner_table[i][j][0]))
  675. text += pack_text+rank_text+entity_text+text_line
  676. text = text[:-1]+"。" if len(text)>0 else text
  677. else:
  678. for j in range(width):
  679. rank_text = ""
  680. entity_text = ""
  681. text_line = ""
  682. text_set = set()
  683. for i in range(head_begin,head_end):
  684. cell = inner_table[i][j]
  685. #是属性值
  686. if cell[1]==0 and cell[0]!="":
  687. find_flag = False
  688. head = ""
  689. temp_head = ""
  690. for loop_j in range(1,j+1):
  691. if not key_direct:
  692. key_values = [1,2]
  693. else:
  694. key_values = [2]
  695. if inner_table[i][j-loop_j][1] in key_values:
  696. if find_flag:
  697. if inner_table[i][j-loop_j][0]!=temp_head:
  698. head = inner_table[i][j-loop_j][0]+":"+head
  699. else:
  700. head = inner_table[i][j-loop_j][0]+":"+head
  701. find_flag = True
  702. temp_head = inner_table[i][j-loop_j][0]
  703. else:
  704. if find_flag:
  705. break
  706. find_flag = False
  707. temp_head = ""
  708. for loop_i in range(0,i+1-head_begin):
  709. if not key_direct:
  710. key_values = [1,2]
  711. else:
  712. key_values = [1]
  713. if inner_table[i-loop_i][j][1] in key_values:
  714. if find_flag:
  715. if inner_table[i-loop_i][j][0]!=temp_head:
  716. head = inner_table[i-loop_i][j][0]+":"+head
  717. else:
  718. head = inner_table[i-loop_i][j][0]+":"+head
  719. find_flag = True
  720. temp_head = inner_table[i-loop_i][j][0]
  721. else:
  722. if find_flag:
  723. break
  724. if str(head+inner_table[i][j][0]) in text_set:
  725. continue
  726. if re.search(rankPattern,head) is not None:
  727. rank_text += head+inner_table[i][j][0]+","
  728. #print(rank_text)
  729. elif re.search(entityPattern,head) is not None:
  730. entity_text += head+inner_table[i][j][0]+","
  731. #print(entity_text)
  732. else:
  733. text_line += head+inner_table[i][j][0]+","
  734. text_set.add(str(head+inner_table[i][j][0]))
  735. text += rank_text+entity_text+text_line
  736. text = text[:-1]+"。" if len(text)>0 else text
  737. return text
  738. def removeFix(inner_table,fix_value="~~"):
  739. height = len(inner_table)
  740. width = len(inner_table[0])
  741. for h in range(height):
  742. for w in range(width):
  743. if inner_table[h][w][0]==fix_value:
  744. inner_table[h][w][0] = ""
  745. def trunTable(tbody):
  746. fixSpan(tbody)
  747. inner_table = getTable(tbody)
  748. inner_table = fixTable(inner_table)
  749. if len(inner_table)>0 and len(inner_table[0])>0:
  750. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  751. #inner_table,head_list = setHead_inline(inner_table)
  752. # inner_table,head_list = setHead_initem(inner_table,pat_head)
  753. inner_table,head_list = setHead_incontext(inner_table,pat_head)
  754. # print(inner_table)
  755. # for begin in range(len(head_list[:-1])):
  756. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  757. # print(item)
  758. # print("====")
  759. removeFix(inner_table)
  760. # print("----")
  761. # print(head_list)
  762. # for item in inner_table:
  763. # print(item)
  764. tbody.string = getTableText(inner_table,head_list)
  765. #print(tbody.string)
  766. tbody.name = "turntable"
  767. return inner_table
  768. return None
  769. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  770. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  771. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  772. list_innerTable = []
  773. tbodies = soup.find_all('table')
  774. # 遍历表格中的每个tbody
  775. #逆序处理嵌套表格
  776. for tbody_index in range(1,len(tbodies)+1):
  777. tbody = tbodies[len(tbodies)-tbody_index]
  778. inner_table = trunTable(tbody)
  779. list_innerTable.append(inner_table)
  780. tbodies = soup.find_all('tbody')
  781. # 遍历表格中的每个tbody
  782. #逆序处理嵌套表格
  783. for tbody_index in range(1,len(tbodies)+1):
  784. tbody = tbodies[len(tbodies)-tbody_index]
  785. inner_table = trunTable(tbody)
  786. list_innerTable.append(inner_table)
  787. return soup
  788. # return list_innerTable
  789. #数据清洗
  790. def segment(soup):
  791. # print("==")
  792. # print(soup)
  793. # print("====")
  794. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  795. if soup.name=="td":
  796. #判断有值叶子节点数
  797. _count = 0
  798. for child in soup.find_all(recursive=True):
  799. if child.get_text().strip()!="" and len(child.find_all())==0:
  800. _count += 1
  801. if _count<=1:
  802. text = soup.get_text()
  803. # 2020/11/24 大网站规则添加
  804. if 'title' in soup.attrs:
  805. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  806. text = soup.attrs['title']
  807. _list = []
  808. for x in re.split("\s+",text):
  809. if x.strip()!="":
  810. _list.append(len(x))
  811. if len(_list)>0:
  812. _minLength = min(_list)
  813. if _minLength>2:
  814. _substr = ","
  815. else:
  816. _substr = ""
  817. else:
  818. _substr = ""
  819. text = _substr.join(re.split("(\s+)",text))
  820. text = text.replace("\r\n",",").replace("\n",",")
  821. text = re.sub("^[,\s]*|[,\s]*$","",text)
  822. return text
  823. segList = ["title"]
  824. commaList = ["div","br","td","p"]
  825. #commaList = []
  826. spaceList = ["span"]
  827. subspaceList = ["td",'a',"span","p"]
  828. tbodies = soup.find_all('tbody')
  829. if len(tbodies) == 0:
  830. tbodies = soup.find_all('table')
  831. # 递归遍历所有节点,插入符号
  832. for child in soup.find_all(recursive=True):
  833. if child.name in segList:
  834. child.insert_after("。")
  835. if child.name in commaList:
  836. child.insert_after(",")
  837. # if child.name in subspaceList:
  838. # child.insert_before("#subs"+str(child.name)+"#")
  839. # child.insert_after("#sube"+str(child.name)+"#")
  840. if child.name in spaceList:
  841. child.insert_after(" ")
  842. text = str(soup.get_text())
  843. #替换英文冒号为中文冒号
  844. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  845. #替换为中文逗号
  846. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  847. #替换为中文分号
  848. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  849. #删除标签中的所有空格
  850. for subs in subspaceList:
  851. patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  852. while(True):
  853. oneMatch = re.search(re.compile(patten),text)
  854. if oneMatch is not None:
  855. _match = oneMatch.group(1)
  856. _minLength = min([len(x) for x in re.split("(\s*)",_match)])
  857. if _minLength>2:
  858. _substr = ","
  859. else:
  860. _substr = ""
  861. text = text.replace("#subs"+str(subs)+"#"+oneMatch.group(1)+"#sube"+str(subs)+"#",re.sub("\s",_substr,oneMatch.group(1)))
  862. else:
  863. break
  864. #替换"""为"“",否则导入deepdive出错
  865. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  866. text = re.sub("\s{4,}",",",text)
  867. #替换标点
  868. while(True):
  869. #替换连续的标点
  870. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  871. if punc is not None:
  872. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  873. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  874. if punc is not None:
  875. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  876. else:
  877. #替换标点之后的空格
  878. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  879. if punc is not None:
  880. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  881. else:
  882. break
  883. #将连续的中文句号替换为一个
  884. text_split = text.split("。")
  885. text_split = [x for x in text_split if len(x)>0]
  886. list_text = []
  887. # for _t in text_split:
  888. # list_text.append(re.sub(")",")",re.sub("(","(",re.sub("\s*","",_t))))
  889. text = "。".join(text_split)
  890. # text = text.replace(')',")").replace("(","(").replace("\s","")
  891. #删除所有空格
  892. # text过大报错
  893. LOOP_LEN = 10000
  894. LOOP_BEGIN = 0
  895. _text = ""
  896. if len(text)<10000000:
  897. while(LOOP_BEGIN<len(text)):
  898. _text += re.sub(")",")",re.sub("(","(",re.sub("\s*","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  899. LOOP_BEGIN += LOOP_LEN
  900. else:
  901. return text
  902. # text = re.sub("\s*","",text)
  903. # #替换中文括号为英文括号
  904. # text = re.sub("(","(",text)
  905. # text = re.sub(")",")",text)
  906. return _text
  907. '''
  908. #数据清洗
  909. def segment(soup):
  910. segList = ["title"]
  911. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  912. spaceList = ["span"]
  913. tbodies = soup.find_all('tbody')
  914. if len(tbodies) == 0:
  915. tbodies = soup.find_all('table')
  916. # 递归遍历所有节点,插入符号
  917. for child in soup.find_all(recursive=True):
  918. if child.name == 'br':
  919. child.insert_before(',')
  920. child_text = re.sub('\s', '', child.get_text())
  921. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  922. continue
  923. if child.name in segList:
  924. child.insert_after("。")
  925. if child.name in commaList:
  926. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  927. child.insert_after(",")
  928. elif len(child_text) >=50:
  929. child.insert_after("。")
  930. #if child.name in spaceList:
  931. #child.insert_after(" ")
  932. text = str(soup.get_text())
  933. text = re.sub("\s{5,}",",",text)
  934. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  935. #替换"""为"“",否则导入deepdive出错
  936. text = text.replace('"',"“")
  937. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  938. #删除所有空格
  939. text = re.sub("\s+","#nbsp#",text)
  940. text_list = text.split('#nbsp#')
  941. new_text = ''
  942. for i in range(len(text_list)-1):
  943. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  944. new_text += text_list[i]
  945. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  946. new_text += text_list[i] + '。'
  947. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  948. new_text += text_list[i] + ';'
  949. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  950. new_text += text_list[i] + ' '
  951. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  952. new_text += text_list[i]
  953. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  954. new_text += text_list[i] + ','
  955. else:
  956. new_text += text_list[i]
  957. new_text += text_list[-1]
  958. text = new_text
  959. #替换英文冒号为中文冒号
  960. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  961. #替换为中文逗号
  962. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  963. #替换为中文分号
  964. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  965. #替换标点
  966. while(True):
  967. #替换连续的标点
  968. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  969. if punc is not None:
  970. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  971. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  972. if punc is not None:
  973. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  974. else:
  975. #替换标点之后的空格
  976. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  977. if punc is not None:
  978. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  979. else:
  980. break
  981. #将连续的中文句号替换为一个
  982. text_split = text.split("。")
  983. text_split = [x for x in text_split if len(x)>0]
  984. text = "。".join(text_split)
  985. #替换中文括号为英文括号
  986. text = re.sub("(","(",text)
  987. text = re.sub(")",")",text)
  988. return text
  989. '''
  990. #连续实体合并(弃用)
  991. def union_ner(list_ner):
  992. result_list = []
  993. union_index = []
  994. union_index_set = set()
  995. for i in range(len(list_ner)-1):
  996. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  997. if list_ner[i][1]-list_ner[i+1][0]==1:
  998. union_index_set.add(i)
  999. union_index_set.add(i+1)
  1000. union_index.append((i,i+1))
  1001. for i in range(len(list_ner)):
  1002. if i not in union_index_set:
  1003. result_list.append(list_ner[i])
  1004. for item in union_index:
  1005. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1006. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1007. return result_list
  1008. def getTokensAndNers(sentences,MAXAREA = 10000,useselffool=False):
  1009. '''
  1010. @param: sentences:句子数
  1011. @return 限流执行后的分词和实体识别list
  1012. '''
  1013. def getData(tokens,ners,process_data):
  1014. process_sentences = [item[1] for item in process_data]
  1015. token_ = selffool.cut(process_sentences)
  1016. if useselffool:
  1017. ner_ = selffool.self_ner(process_sentences)
  1018. else:
  1019. ner_ = selffool.ner(process_sentences)
  1020. for i in range(len(token_)):
  1021. the_index = process_data[i][0]
  1022. tokens[the_index] = token_[i]
  1023. ners[the_index] = ner_[i]
  1024. sents = []
  1025. for i in range(len(sentences)):
  1026. sents.append([i,sentences[i]])
  1027. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1028. index_ = 0
  1029. tokens = [[]for i in range(len(sentences))]
  1030. ners = [[]for i in range(len(sentences))]
  1031. while(True):
  1032. width = len(sents[index_][1])
  1033. height = MAXAREA//width+1
  1034. if height>len(sents)-index_:
  1035. height = len(sents)-index_
  1036. process_data = sents[index_:index_+height]
  1037. getData(tokens, ners, process_data)
  1038. index_ += height
  1039. if index_>=len(sents):
  1040. break
  1041. return tokens,ners
  1042. def getTokens(sentences,MAXAREA = 10000,useselffool=True):
  1043. '''
  1044. @param: sentences:句子数
  1045. @return 限流执行后的分词list
  1046. '''
  1047. def getData(tokens,process_data):
  1048. process_sentences = [item[1] for item in process_data]
  1049. token_ = selffool.cut(process_sentences)
  1050. for i in range(len(token_)):
  1051. the_index = process_data[i][0]
  1052. tokens[the_index] = token_[i]
  1053. sents = []
  1054. for i in range(len(sentences)):
  1055. sents.append([i,sentences[i]])
  1056. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1057. index_ = 0
  1058. tokens = [[]for i in range(len(sentences))]
  1059. while(True):
  1060. width = len(sents[index_][1])
  1061. height = MAXAREA//width+1
  1062. if height>len(sents)-index_:
  1063. height = len(sents)-index_
  1064. process_data = sents[index_:index_+height]
  1065. getData(tokens, process_data)
  1066. index_ += height
  1067. if index_>=len(sents):
  1068. break
  1069. return tokens
  1070. def getNers(sentences,MAXAREA = 10000,useselffool=False):
  1071. '''
  1072. @param: sentences:句子数
  1073. @return 限流执行后的实体识别list
  1074. '''
  1075. def getData(ners,process_data):
  1076. process_sentences = [item[1] for item in process_data]
  1077. if useselffool:
  1078. ner_ = selffool.self_ner(process_sentences)
  1079. else:
  1080. ner_ = selffool.ner(process_sentences)
  1081. for i in range(len(ner_)):
  1082. the_index = process_data[i][0]
  1083. ners[the_index] = ner_[i]
  1084. sents = []
  1085. for i in range(len(sentences)):
  1086. sents.append([i,sentences[i]])
  1087. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1088. index_ = 0
  1089. ners = [[]for i in range(len(sentences))]
  1090. while(True):
  1091. width = len(sents[index_][1])
  1092. height = MAXAREA//width+1
  1093. if height>len(sents)-index_:
  1094. height = len(sents)-index_
  1095. process_data = sents[index_:index_+height]
  1096. getData( ners, process_data)
  1097. index_ += height
  1098. if index_>=len(sents):
  1099. break
  1100. return ners
  1101. # def get_preprocessed(articles,useselffool=False):
  1102. # '''
  1103. # @summary:预处理步骤,NLP处理、实体识别
  1104. # @param:
  1105. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1106. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1107. # '''
  1108. # list_articles = []
  1109. # list_sentences = []
  1110. # list_entitys = []
  1111. # cost_time = dict()
  1112. # for article in articles:
  1113. # list_sentences_temp = []
  1114. # list_entitys_temp = []
  1115. # doc_id = article[0]
  1116. # sourceContent = article[1]
  1117. # _send_doc_id = article[3]
  1118. # _title = article[4]
  1119. # #表格处理
  1120. # key_preprocess = "tableToText"
  1121. # start_time = time.time()
  1122. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1123. #
  1124. # # log(article_processed)
  1125. #
  1126. # if key_preprocess not in cost_time:
  1127. # cost_time[key_preprocess] = 0
  1128. # cost_time[key_preprocess] += time.time()-start_time
  1129. #
  1130. # #article_processed = article[1]
  1131. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1132. # #nlp处理
  1133. # if article_processed is not None and len(article_processed)!=0:
  1134. # split_patten = "。"
  1135. # sentences = []
  1136. # _begin = 0
  1137. # for _iter in re.finditer(split_patten,article_processed):
  1138. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1139. # _begin = _iter.span()[1]
  1140. # sentences.append(article_processed[_begin:])
  1141. #
  1142. # lemmas = []
  1143. # doc_offsets = []
  1144. # dep_types = []
  1145. # dep_tokens = []
  1146. #
  1147. # time1 = time.time()
  1148. #
  1149. # '''
  1150. # tokens_all = fool.cut(sentences)
  1151. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1152. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1153. # ner_entitys_all = fool.ner(sentences)
  1154. # '''
  1155. # #限流执行
  1156. # key_nerToken = "nerToken"
  1157. # start_time = time.time()
  1158. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1159. # if key_nerToken not in cost_time:
  1160. # cost_time[key_nerToken] = 0
  1161. # cost_time[key_nerToken] += time.time()-start_time
  1162. #
  1163. #
  1164. # for sentence_index in range(len(sentences)):
  1165. #
  1166. #
  1167. #
  1168. # list_sentence_entitys = []
  1169. # sentence_text = sentences[sentence_index]
  1170. # tokens = tokens_all[sentence_index]
  1171. #
  1172. # list_tokenbegin = []
  1173. # begin = 0
  1174. # for i in range(0,len(tokens)):
  1175. # list_tokenbegin.append(begin)
  1176. # begin += len(str(tokens[i]))
  1177. # list_tokenbegin.append(begin+1)
  1178. # #pos_tag = pos_all[sentence_index]
  1179. # pos_tag = ""
  1180. #
  1181. # ner_entitys = ner_entitys_all[sentence_index]
  1182. #
  1183. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1184. #
  1185. # #识别package
  1186. #
  1187. #
  1188. # #识别实体
  1189. # for ner_entity in ner_entitys:
  1190. # begin_index_temp = ner_entity[0]
  1191. # end_index_temp = ner_entity[1]
  1192. # entity_type = ner_entity[2]
  1193. # entity_text = ner_entity[3]
  1194. #
  1195. # for j in range(len(list_tokenbegin)):
  1196. # if list_tokenbegin[j]==begin_index_temp:
  1197. # begin_index = j
  1198. # break
  1199. # elif list_tokenbegin[j]>begin_index_temp:
  1200. # begin_index = j-1
  1201. # break
  1202. # begin_index_temp += len(str(entity_text))
  1203. # for j in range(begin_index,len(list_tokenbegin)):
  1204. # if list_tokenbegin[j]>=begin_index_temp:
  1205. # end_index = j-1
  1206. # break
  1207. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1208. #
  1209. # #去掉标点符号
  1210. # entity_text = re.sub("[,,。:]","",entity_text)
  1211. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1212. #
  1213. #
  1214. # #使用正则识别金额
  1215. # entity_type = "money"
  1216. #
  1217. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1218. #
  1219. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1220. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1221. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1222. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1223. #
  1224. # set_begin = set()
  1225. # for pattern_key in list_money_pattern.keys():
  1226. # pattern = re.compile(list_money_pattern[pattern_key])
  1227. # all_match = re.findall(pattern, sentence_text)
  1228. # index = 0
  1229. # for i in range(len(all_match)):
  1230. # if len(all_match[i][0])>0:
  1231. # # print("===",all_match[i])
  1232. # #print(all_match[i][0])
  1233. # unit = ""
  1234. # entity_text = all_match[i][3]
  1235. # if pattern_key in ["key_word","front_m"]:
  1236. # unit = all_match[i][1]
  1237. # else:
  1238. # unit = all_match[i][4]
  1239. # if entity_text.find("元")>=0:
  1240. # unit = ""
  1241. #
  1242. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1243. #
  1244. # begin_index_temp = index
  1245. # for j in range(len(list_tokenbegin)):
  1246. # if list_tokenbegin[j]==index:
  1247. # begin_index = j
  1248. # break
  1249. # elif list_tokenbegin[j]>index:
  1250. # begin_index = j-1
  1251. # break
  1252. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1253. # end_index_temp = index
  1254. # #index += len(str(all_match[i][0]))
  1255. # for j in range(begin_index,len(list_tokenbegin)):
  1256. # if list_tokenbegin[j]>=index:
  1257. # end_index = j-1
  1258. # break
  1259. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1260. #
  1261. #
  1262. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1263. # if len(unit)>0:
  1264. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1265. # else:
  1266. # entity_text = str(getUnifyMoney(entity_text))
  1267. #
  1268. # _exists = False
  1269. # for item in list_sentence_entitys:
  1270. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1271. # _exists = True
  1272. # if not _exists:
  1273. # if float(entity_text)>10:
  1274. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1275. #
  1276. # else:
  1277. # index += 1
  1278. #
  1279. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1280. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1281. # list_sentences.append(list_sentences_temp)
  1282. # list_entitys.append(list_entitys_temp)
  1283. # return list_articles,list_sentences,list_entitys,cost_time
  1284. def get_preprocessed(articles,useselffool=False):
  1285. '''
  1286. @summary:预处理步骤,NLP处理、实体识别
  1287. @param:
  1288. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1289. @return:list of articles,list of each article of sentences,list of each article of entitys
  1290. '''
  1291. cost_time = dict()
  1292. list_articles = get_preprocessed_article(articles,cost_time)
  1293. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1294. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1295. return list_articles,list_sentences,list_entitys,cost_time
  1296. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1297. '''
  1298. :param articles: 待处理的article source html
  1299. :param useselffool: 是否使用selffool
  1300. :return: list_articles
  1301. '''
  1302. list_articles = []
  1303. for article in articles:
  1304. doc_id = article[0]
  1305. sourceContent = article[1]
  1306. _send_doc_id = article[3]
  1307. _title = article[4]
  1308. #表格处理
  1309. key_preprocess = "tableToText"
  1310. start_time = time.time()
  1311. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1312. # log(article_processed)
  1313. if key_preprocess not in cost_time:
  1314. cost_time[key_preprocess] = 0
  1315. cost_time[key_preprocess] += time.time()-start_time
  1316. #article_processed = article[1]
  1317. list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1318. return list_articles
  1319. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1320. '''
  1321. :param list_articles: 经过预处理的article text
  1322. :return: list_sentences
  1323. '''
  1324. list_sentences = []
  1325. for article in list_articles:
  1326. list_sentences_temp = []
  1327. list_entitys_temp = []
  1328. doc_id = article.id
  1329. _send_doc_id = article.doc_id
  1330. _title = article.title
  1331. #表格处理
  1332. key_preprocess = "tableToText"
  1333. start_time = time.time()
  1334. article_processed = article.content
  1335. if key_preprocess not in cost_time:
  1336. cost_time[key_preprocess] = 0
  1337. cost_time[key_preprocess] += time.time()-start_time
  1338. #nlp处理
  1339. if article_processed is not None and len(article_processed)!=0:
  1340. split_patten = "。"
  1341. sentences = []
  1342. _begin = 0
  1343. sentences_set = set()
  1344. for _iter in re.finditer(split_patten,article_processed):
  1345. _sen = article_processed[_begin:_iter.span()[1]]
  1346. if len(_sen)>0 and _sen not in sentences_set:
  1347. sentences.append(_sen)
  1348. sentences_set.add(_sen)
  1349. _begin = _iter.span()[1]
  1350. _sen = article_processed[_begin:]
  1351. if len(_sen)>0 and _sen not in sentences_set:
  1352. sentences.append(_sen)
  1353. sentences_set.add(_sen)
  1354. article.content = "".join(sentences)
  1355. # sentences.append(article_processed[_begin:])
  1356. lemmas = []
  1357. doc_offsets = []
  1358. dep_types = []
  1359. dep_tokens = []
  1360. time1 = time.time()
  1361. '''
  1362. tokens_all = fool.cut(sentences)
  1363. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1364. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1365. ner_entitys_all = fool.ner(sentences)
  1366. '''
  1367. #限流执行
  1368. key_nerToken = "nerToken"
  1369. start_time = time.time()
  1370. tokens_all = getTokens(sentences,useselffool=useselffool)
  1371. if key_nerToken not in cost_time:
  1372. cost_time[key_nerToken] = 0
  1373. cost_time[key_nerToken] += time.time()-start_time
  1374. for sentence_index in range(len(sentences)):
  1375. sentence_text = sentences[sentence_index]
  1376. tokens = tokens_all[sentence_index]
  1377. #pos_tag = pos_all[sentence_index]
  1378. pos_tag = ""
  1379. ner_entitys = ""
  1380. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1381. if len(list_sentences_temp)==0:
  1382. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1383. list_sentences.append(list_sentences_temp)
  1384. return list_sentences
  1385. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1386. '''
  1387. :param list_sentences:分局情况
  1388. :param cost_time:
  1389. :return: list_entitys
  1390. '''
  1391. list_entitys = []
  1392. for list_sentence in list_sentences:
  1393. sentences = []
  1394. list_entitys_temp = []
  1395. for _sentence in list_sentence:
  1396. sentences.append(_sentence.sentence_text)
  1397. lemmas = []
  1398. doc_offsets = []
  1399. dep_types = []
  1400. dep_tokens = []
  1401. time1 = time.time()
  1402. '''
  1403. tokens_all = fool.cut(sentences)
  1404. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1405. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1406. ner_entitys_all = fool.ner(sentences)
  1407. '''
  1408. #限流执行
  1409. key_nerToken = "nerToken"
  1410. start_time = time.time()
  1411. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1412. if key_nerToken not in cost_time:
  1413. cost_time[key_nerToken] = 0
  1414. cost_time[key_nerToken] += time.time()-start_time
  1415. for sentence_index in range(len(list_sentence)):
  1416. list_sentence_entitys = []
  1417. sentence_text = list_sentence[sentence_index].sentence_text
  1418. tokens = list_sentence[sentence_index].tokens
  1419. doc_id = list_sentence[sentence_index].doc_id
  1420. list_tokenbegin = []
  1421. begin = 0
  1422. for i in range(0,len(tokens)):
  1423. list_tokenbegin.append(begin)
  1424. begin += len(str(tokens[i]))
  1425. list_tokenbegin.append(begin+1)
  1426. #pos_tag = pos_all[sentence_index]
  1427. pos_tag = ""
  1428. ner_entitys = ner_entitys_all[sentence_index]
  1429. #识别package
  1430. #识别实体
  1431. for ner_entity in ner_entitys:
  1432. begin_index_temp = ner_entity[0]
  1433. end_index_temp = ner_entity[1]
  1434. entity_type = ner_entity[2]
  1435. entity_text = ner_entity[3]
  1436. for j in range(len(list_tokenbegin)):
  1437. if list_tokenbegin[j]==begin_index_temp:
  1438. begin_index = j
  1439. break
  1440. elif list_tokenbegin[j]>begin_index_temp:
  1441. begin_index = j-1
  1442. break
  1443. begin_index_temp += len(str(entity_text))
  1444. for j in range(begin_index,len(list_tokenbegin)):
  1445. if list_tokenbegin[j]>=begin_index_temp:
  1446. end_index = j-1
  1447. break
  1448. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1449. #去掉标点符号
  1450. entity_text = re.sub("[,,。:]","",entity_text)
  1451. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1452. #使用正则识别金额
  1453. entity_type = "money"
  1454. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1455. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1456. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1457. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1458. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1459. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1460. set_begin = set()
  1461. # for pattern_key in list_money_pattern.keys():
  1462. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1463. # # pattern = re.compile(list_money_pattern[pattern_key])
  1464. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1465. # all_match = re.findall(pattern, sentence_text)
  1466. # index = 0
  1467. # for i in range(len(all_match)):
  1468. # if len(all_match[i][0])>0:
  1469. # print("===",all_match[i])
  1470. # #print(all_match[i][0])
  1471. # unit = ""
  1472. # entity_text = all_match[i][3]
  1473. # if pattern_key in ["key_word","front_m"]:
  1474. # unit = all_match[i][1]
  1475. # if pattern_key=="key_word":
  1476. # if all_match[i][1]=="" and all_match[i][4]!="":
  1477. # unit = all_match[i][4]
  1478. # else:
  1479. # unit = all_match[i][4]
  1480. # if entity_text.find("元")>=0:
  1481. # unit = ""
  1482. #
  1483. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1484. # begin_index_temp = index
  1485. # for j in range(len(list_tokenbegin)):
  1486. # if list_tokenbegin[j]==index:
  1487. # begin_index = j
  1488. # break
  1489. # elif list_tokenbegin[j]>index:
  1490. # begin_index = j-1
  1491. # break
  1492. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1493. # end_index_temp = index
  1494. # #index += len(str(all_match[i][0]))
  1495. # for j in range(begin_index,len(list_tokenbegin)):
  1496. # if list_tokenbegin[j]>=index:
  1497. # end_index = j-1
  1498. # break
  1499. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1500. #
  1501. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1502. # if len(unit)>0:
  1503. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1504. # else:
  1505. # entity_text = str(getUnifyMoney(entity_text))
  1506. #
  1507. # _exists = False
  1508. # for item in list_sentence_entitys:
  1509. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1510. # _exists = True
  1511. # if not _exists:
  1512. # if float(entity_text)>1:
  1513. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1514. #
  1515. # else:
  1516. # index += 1
  1517. all_match = re.finditer(pattern_money, sentence_text)
  1518. index = 0
  1519. for _match in all_match:
  1520. if len(_match.group())>0:
  1521. # print("===",_match.group())
  1522. # print(_match.groupdict())
  1523. unit = ""
  1524. entity_text = ""
  1525. text_beforeMoney = ""
  1526. filter = ""
  1527. filter_unit = False
  1528. for k,v in _match.groupdict().items():
  1529. if v!="" and v is not None:
  1530. if k.split("_")[0]=="money":
  1531. entity_text = v
  1532. if k.split("_")[0]=="unit":
  1533. unit = v
  1534. if k.split("_")[0]=="text":
  1535. text_beforeMoney = v
  1536. if k.split("_")[0]=="filter":
  1537. filter = v
  1538. if re.search("filter_unit",k) is not None:
  1539. filter_unit = True
  1540. if entity_text.find("元")>=0:
  1541. unit = ""
  1542. else:
  1543. if filter_unit:
  1544. continue
  1545. if filter!="":
  1546. continue
  1547. index = _match.span()[0]+len(text_beforeMoney)
  1548. begin_index_temp = index
  1549. for j in range(len(list_tokenbegin)):
  1550. if list_tokenbegin[j]==index:
  1551. begin_index = j
  1552. break
  1553. elif list_tokenbegin[j]>index:
  1554. begin_index = j-1
  1555. break
  1556. index = _match.span()[1]
  1557. end_index_temp = index
  1558. #index += len(str(all_match[i][0]))
  1559. for j in range(begin_index,len(list_tokenbegin)):
  1560. if list_tokenbegin[j]>=index:
  1561. end_index = j-1
  1562. break
  1563. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1564. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1565. if len(unit)>0:
  1566. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1567. else:
  1568. entity_text = str(getUnifyMoney(entity_text))
  1569. if float(entity_text)<100 or float(entity_text)>100000000000:
  1570. continue
  1571. _exists = False
  1572. for item in list_sentence_entitys:
  1573. if item.entity_id==entity_id and item.entity_type==entity_type:
  1574. _exists = True
  1575. if not _exists:
  1576. if float(entity_text)>1:
  1577. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1578. else:
  1579. index += 1
  1580. # 资金来源提取 2020/12/30 新增
  1581. list_moneySource = extract_moneySource(sentence_text)
  1582. entity_type = "moneysource"
  1583. for moneySource in list_moneySource:
  1584. begin_index_temp = moneySource['begin_index']
  1585. for j in range(len(list_tokenbegin)):
  1586. if list_tokenbegin[j] == begin_index_temp:
  1587. begin_index = j
  1588. break
  1589. elif list_tokenbegin[j] > begin_index_temp:
  1590. begin_index = j - 1
  1591. break
  1592. index = moneySource['end_index']
  1593. end_index_temp = index
  1594. for j in range(begin_index, len(list_tokenbegin)):
  1595. if list_tokenbegin[j] >= index:
  1596. end_index = j - 1
  1597. break
  1598. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1599. entity_text = moneySource['body']
  1600. list_sentence_entitys.append(
  1601. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1602. begin_index_temp, end_index_temp))
  1603. # 服务期限提取 2020/12/30 新增
  1604. list_servicetime = extract_servicetime(sentence_text)
  1605. entity_type = "serviceTime"
  1606. for servicetime in list_servicetime:
  1607. begin_index_temp = servicetime['begin_index']
  1608. for j in range(len(list_tokenbegin)):
  1609. if list_tokenbegin[j] == begin_index_temp:
  1610. begin_index = j
  1611. break
  1612. elif list_tokenbegin[j] > begin_index_temp:
  1613. begin_index = j - 1
  1614. break
  1615. index = servicetime['end_index']
  1616. end_index_temp = index
  1617. for j in range(begin_index, len(list_tokenbegin)):
  1618. if list_tokenbegin[j] >= index:
  1619. end_index = j - 1
  1620. break
  1621. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1622. entity_text = servicetime['body']
  1623. list_sentence_entitys.append(
  1624. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1625. begin_index_temp, end_index_temp))
  1626. # 招标方式提取 2020/12/30 新增
  1627. list_bidway = extract_bidway(sentence_text)
  1628. entity_type = "bidway"
  1629. for bidway in list_bidway:
  1630. begin_index_temp = bidway['begin_index']
  1631. end_index_temp = bidway['end_index']
  1632. begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  1633. end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  1634. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1635. entity_text = bidway['body']
  1636. list_sentence_entitys.append(
  1637. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1638. begin_index_temp, end_index_temp))
  1639. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1640. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1641. list_entitys.append(list_entitys_temp)
  1642. return list_entitys
  1643. def union_result(codeName,prem):
  1644. '''
  1645. @summary:模型的结果拼成字典
  1646. @param:
  1647. codeName:编号名称模型的结果字典
  1648. prem:拿到属性的角色的字典
  1649. @return:拼接起来的字典
  1650. '''
  1651. result = []
  1652. assert len(codeName)==len(prem)
  1653. for item_code,item_prem in zip(codeName,prem):
  1654. result.append(dict(item_code,**item_prem))
  1655. return result
  1656. def persistenceData(data):
  1657. '''
  1658. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1659. '''
  1660. import psycopg2
  1661. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1662. cursor = conn.cursor()
  1663. for item_index in range(len(data)):
  1664. item = data[item_index]
  1665. doc_id = item[0]
  1666. dic = item[1]
  1667. code = dic['code']
  1668. name = dic['name']
  1669. prem = dic['prem']
  1670. if len(code)==0:
  1671. code_insert = ""
  1672. else:
  1673. code_insert = ";".join(code)
  1674. prem_insert = ""
  1675. for item in prem:
  1676. for x in item:
  1677. if isinstance(x, list):
  1678. if len(x)>0:
  1679. for x1 in x:
  1680. prem_insert+="/".join(x1)+","
  1681. prem_insert+="$"
  1682. else:
  1683. prem_insert+=str(x)+"$"
  1684. prem_insert+=";"
  1685. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1686. cursor.execute(sql)
  1687. conn.commit()
  1688. conn.close()
  1689. def persistenceData1(list_entitys,list_sentences):
  1690. '''
  1691. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1692. '''
  1693. import psycopg2
  1694. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1695. cursor = conn.cursor()
  1696. for list_entity in list_entitys:
  1697. for entity in list_entity:
  1698. if entity.values is not None:
  1699. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1700. else:
  1701. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1702. cursor.execute(sql)
  1703. for list_sentence in list_sentences:
  1704. for sentence in list_sentence:
  1705. str_tokens = "["
  1706. for item in sentence.tokens:
  1707. str_tokens += "'"
  1708. if item=="'":
  1709. str_tokens += "''"
  1710. else:
  1711. str_tokens += item
  1712. str_tokens += "',"
  1713. str_tokens = str_tokens[:-1]+"]"
  1714. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1715. cursor.execute(sql)
  1716. conn.commit()
  1717. conn.close()
  1718. def _handle(item,result_queue):
  1719. dochtml = item["dochtml"]
  1720. docid = item["docid"]
  1721. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1722. flag = False
  1723. if list_innerTable:
  1724. flag = True
  1725. for table in list_innerTable:
  1726. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1727. def getPredictTable():
  1728. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1729. import pandas as pd
  1730. import json
  1731. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1732. df = pd.read_csv(filename)
  1733. df_data = {"json_table":[],"docid":[]}
  1734. _count = 0
  1735. _sum = len(df["docid"])
  1736. task_queue = Queue()
  1737. result_queue = Queue()
  1738. _index = 0
  1739. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1740. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1741. _index += 1
  1742. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1743. mh.run()
  1744. while True:
  1745. try:
  1746. item = result_queue.get(block=True,timeout=1)
  1747. df_data["docid"].append(item["docid"])
  1748. df_data["json_table"].append(item["json_table"])
  1749. except Exception as e:
  1750. print(e)
  1751. break
  1752. df_1 = pd.DataFrame(df_data)
  1753. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1754. if __name__=="__main__":
  1755. '''
  1756. import glob
  1757. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1758. file_txt = str(file).replace("html","txt")
  1759. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1760. f.write("\n================\n")
  1761. content = codecs.open(file,"r",encoding="utf8").read()
  1762. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1763. '''
  1764. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1765. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1766. getPredictTable()