Preprocessing.py 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import getPredictor
  13. from BiddingKG.dl.common.nerUtils import *
  14. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  15. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  16. from BiddingKG.dl.bidway.re_bidway import extract_bidway
  17. from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint
  18. from BiddingKG.dl.entityLink.entityLink import *
  19. #
  20. def tableToText(soup):
  21. '''
  22. @param:
  23. soup:网页html的soup
  24. @return:处理完表格信息的网页text
  25. '''
  26. def getTrs(tbody):
  27. #获取所有的tr
  28. trs = []
  29. objs = tbody.find_all(recursive=False)
  30. for obj in objs:
  31. if obj.name=="tr":
  32. trs.append(obj)
  33. if obj.name=="tbody":
  34. for tr in obj.find_all("tr",recursive=False):
  35. trs.append(tr)
  36. return trs
  37. def fixSpan(tbody):
  38. # 处理colspan, rowspan信息补全问题
  39. #trs = tbody.findChildren('tr', recursive=False)
  40. trs = getTrs(tbody)
  41. ths_len = 0
  42. ths = list()
  43. trs_set = set()
  44. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  45. # 遍历每一个tr
  46. for indtr, tr in enumerate(trs):
  47. ths_tmp = tr.findChildren('th', recursive=False)
  48. #不补全含有表格的tr
  49. if len(tr.findChildren('table'))>0:
  50. continue
  51. if len(ths_tmp) > 0:
  52. ths_len = ths_len + len(ths_tmp)
  53. for th in ths_tmp:
  54. ths.append(th)
  55. trs_set.add(tr)
  56. # 遍历每行中的element
  57. tds = tr.findChildren(recursive=False)
  58. for indtd, td in enumerate(tds):
  59. # 若有colspan 则补全同一行下一个位置
  60. if 'colspan' in td.attrs:
  61. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  62. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  63. if col<100 and len(td.get_text())<1000:
  64. td['colspan'] = 1
  65. for i in range(1, col, 1):
  66. td.insert_after(copy.copy(td))
  67. for indtr, tr in enumerate(trs):
  68. ths_tmp = tr.findChildren('th', recursive=False)
  69. #不补全含有表格的tr
  70. if len(tr.findChildren('table'))>0:
  71. continue
  72. if len(ths_tmp) > 0:
  73. ths_len = ths_len + len(ths_tmp)
  74. for th in ths_tmp:
  75. ths.append(th)
  76. trs_set.add(tr)
  77. # 遍历每行中的element
  78. tds = tr.findChildren(recursive=False)
  79. for indtd, td in enumerate(tds):
  80. # 若有rowspan 则补全下一行同样位置
  81. if 'rowspan' in td.attrs:
  82. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  83. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  84. td['rowspan'] = 1
  85. for i in range(1, row, 1):
  86. # 获取下一行的所有td, 在对应的位置插入
  87. if indtr+i<len(trs):
  88. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  89. if len(tds1) >= (indtd) and len(tds1)>0:
  90. if indtd > 0:
  91. tds1[indtd - 1].insert_after(copy.copy(td))
  92. else:
  93. tds1[0].insert_before(copy.copy(td))
  94. def getTable(tbody):
  95. #trs = tbody.findChildren('tr', recursive=False)
  96. trs = getTrs(tbody)
  97. inner_table = []
  98. for tr in trs:
  99. tr_line = []
  100. tds = tr.findChildren(['td','th'], recursive=False)
  101. for td in tds:
  102. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  103. #tr_line.append([td.get_text(),0])
  104. inner_table.append(tr_line)
  105. return inner_table
  106. #处理表格不对齐的问题
  107. def fixTable(inner_table,fix_value="~~"):
  108. maxWidth = 0
  109. for item in inner_table:
  110. if len(item)>maxWidth:
  111. maxWidth = len(item)
  112. for i in range(len(inner_table)):
  113. if len(inner_table[i])<maxWidth:
  114. for j in range(maxWidth-len(inner_table[i])):
  115. inner_table[i].append([fix_value,0])
  116. return inner_table
  117. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  118. height = len(inner_table)
  119. width = len(inner_table[0])
  120. for i in range(height):
  121. point = ""
  122. for j in range(width):
  123. if inner_table[i][j][0]==point and point!="":
  124. inner_table[i][j][0] = pad_row
  125. else:
  126. if inner_table[i][j][0] not in [pad_row,pad_col]:
  127. point = inner_table[i][j][0]
  128. for j in range(width):
  129. point = ""
  130. for i in range(height):
  131. if inner_table[i][j][0]==point and point!="":
  132. inner_table[i][j][0] = pad_col
  133. else:
  134. if inner_table[i][j][0] not in [pad_row,pad_col]:
  135. point = inner_table[i][j][0]
  136. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  137. height = len(inner_table)
  138. width = len(inner_table[0])
  139. for i in range(height):
  140. for j in range(width):
  141. if inner_table[i][j][0]==pad_row:
  142. inner_table[i][j][0] = inner_table[i][j-1][0]
  143. inner_table[i][j][1] = inner_table[i][j-1][1]
  144. if inner_table[i][j][0]==pad_col:
  145. inner_table[i][j][0] = inner_table[i-1][j][0]
  146. inner_table[i][j][1] = inner_table[i-1][j][1]
  147. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  148. '''
  149. @summary: 修复表头识别,将明显错误的进行修正
  150. '''
  151. def repairNeeded(line):
  152. first_1 = -1
  153. last_1 = -1
  154. first_0 = -1
  155. last_0 = -1
  156. count_1 = 0
  157. count_0 = 0
  158. for i in range(len(line)):
  159. if line[i][0]==fix_value:
  160. continue
  161. if line[i][1]==1:
  162. if first_1==-1:
  163. first_1 = i
  164. last_1 = i
  165. count_1 += 1
  166. if line[i][1]==0:
  167. if first_0 == -1:
  168. first_0 = i
  169. last_0 = i
  170. count_0 += 1
  171. if first_1 ==-1 or last_0 == -1:
  172. return False
  173. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  174. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  175. return True
  176. return False
  177. def getsimilarity(line,line1):
  178. same_count = 0
  179. for item,item1 in zip(line,line1):
  180. if item[1]==item1[1]:
  181. same_count += 1
  182. return same_count/len(line)
  183. def selfrepair(inner_table,index,dye_set,key_set):
  184. '''
  185. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  186. '''
  187. #print("B",inner_table[index])
  188. min_presure = 3
  189. list_dye = []
  190. first = None
  191. count = 0
  192. temp_set = set()
  193. _index = 0
  194. for item in inner_table[index]:
  195. if first is None:
  196. first = item[1]
  197. if item[0] not in temp_set:
  198. count += 1
  199. temp_set.add(item[0])
  200. else:
  201. if first == item[1]:
  202. if item[0] not in temp_set:
  203. temp_set.add(item[0])
  204. count += 1
  205. else:
  206. list_dye.append([first,count,_index])
  207. first = item[1]
  208. temp_set.add(item[0])
  209. count = 1
  210. _index += 1
  211. list_dye.append([first,count,_index])
  212. if len(list_dye)>1:
  213. begin = 0
  214. end = 0
  215. for i in range(len(list_dye)):
  216. end = list_dye[i][2]
  217. dye_flag = False
  218. #首尾要求压力减一
  219. if i==0:
  220. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  221. dye_flag = True
  222. dye_type = list_dye[i+1][0]
  223. elif i==len(list_dye)-1:
  224. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  225. dye_flag = True
  226. dye_type = list_dye[i-1][0]
  227. else:
  228. if list_dye[i][1]>1:
  229. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  230. dye_flag = True
  231. dye_type = list_dye[i+1][0]
  232. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  233. dye_flag = True
  234. dye_type = list_dye[i-1][0]
  235. else:
  236. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  237. dye_flag = True
  238. dye_type = list_dye[i+1][0]
  239. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  240. dye_flag = True
  241. dye_type = list_dye[i-1][0]
  242. if dye_flag:
  243. for h in range(begin,end):
  244. inner_table[index][h][1] = dye_type
  245. dye_set.add((inner_table[index][h][0],dye_type))
  246. key_set.add(inner_table[index][h][0])
  247. begin = end
  248. #print("E",inner_table[index])
  249. def otherrepair(inner_table,index,dye_set,key_set):
  250. list_provide_repair = []
  251. if index==0 and len(inner_table)>1:
  252. list_provide_repair.append(index+1)
  253. elif index==len(inner_table)-1:
  254. list_provide_repair.append(index-1)
  255. else:
  256. list_provide_repair.append(index+1)
  257. list_provide_repair.append(index-1)
  258. for provide_index in list_provide_repair:
  259. if not repairNeeded(inner_table[provide_index]):
  260. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  261. if same_prob>=0.8:
  262. for i in range(len(inner_table[provide_index])):
  263. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  264. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  265. key_set.add(inner_table[index][i][0])
  266. inner_table[index][i][1] = inner_table[provide_index][i][1]
  267. elif same_prob<=0.2:
  268. for i in range(len(inner_table[provide_index])):
  269. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  270. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  271. key_set.add(inner_table[index][i][0])
  272. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  273. len_dye_set = len(dye_set)
  274. height = len(inner_table)
  275. for i in range(height):
  276. if repairNeeded(inner_table[i]):
  277. selfrepair(inner_table,i,dye_set,key_set)
  278. #otherrepair(inner_table,i,dye_set,key_set)
  279. for h in range(len(inner_table)):
  280. for w in range(len(inner_table[0])):
  281. if inner_table[h][w][0] in key_set:
  282. for item in dye_set:
  283. if inner_table[h][w][0]==item[0]:
  284. inner_table[h][w][1] = item[1]
  285. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  286. if len(dye_set)!=len(key_set):
  287. for i in range(height):
  288. if repairNeeded(inner_table[i]):
  289. selfrepair(inner_table,i,dye_set,key_set)
  290. #otherrepair(inner_table,i,dye_set,key_set)
  291. return
  292. if len(dye_set)==len_dye_set:
  293. '''
  294. for i in range(height):
  295. if repairNeeded(inner_table[i]):
  296. otherrepair(inner_table,i,dye_set,key_set)
  297. '''
  298. return
  299. repairTable(inner_table, dye_set, key_set)
  300. def sliceTable(inner_table,fix_value="~~"):
  301. #进行分块
  302. height = len(inner_table)
  303. width = len(inner_table[0])
  304. head_list = []
  305. head_list.append(0)
  306. last_head = None
  307. last_is_same_value = False
  308. for h in range(height):
  309. is_all_key = True#是否是全表头行
  310. is_all_value = True#是否是全属性值
  311. is_same_with_lastHead = True#和上一行的结构是否相同
  312. is_same_value=True#一行的item都一样
  313. #is_same_first_item = True#与上一行的第一项是否相同
  314. same_value = inner_table[h][0][0]
  315. for w in range(width):
  316. if last_head is not None:
  317. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  318. is_all_key = False
  319. if inner_table[h][w][0]==1:
  320. is_all_value = False
  321. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  322. is_same_with_lastHead = False
  323. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  324. is_same_value = False
  325. else:
  326. if re.search("\d+",same_value) is not None:
  327. is_same_value = False
  328. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  329. is_same_first_item = False
  330. last_head = h
  331. if last_is_same_value:
  332. last_is_same_value = is_same_value
  333. continue
  334. if is_same_value:
  335. head_list.append(h)
  336. last_is_same_value = is_same_value
  337. continue
  338. if not is_all_key:
  339. if not is_same_with_lastHead:
  340. head_list.append(h)
  341. head_list.append(height)
  342. return head_list
  343. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  344. set_item = set()
  345. height = len(inner_table)
  346. width = len(inner_table[0])
  347. for i in range(height):
  348. for j in range(width):
  349. item = inner_table[i][j][0]
  350. set_item.add(item)
  351. list_item = list(set_item)
  352. x = []
  353. for item in list_item:
  354. x.append(getPredictor("form").encode(item))
  355. predict_y = getPredictor("form").predict(np.array(x),type="item")
  356. _dict = dict()
  357. for item,values in zip(list_item,list(predict_y)):
  358. _dict[item] = values[1]
  359. # print("##",item,values)
  360. #print(_dict)
  361. for i in range(height):
  362. for j in range(width):
  363. item = inner_table[i][j][0]
  364. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  365. # print("=====")
  366. # for item in inner_table:
  367. # print(item)
  368. # print("======")
  369. repairTable(inner_table)
  370. head_list = sliceTable(inner_table)
  371. return inner_table,head_list
  372. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  373. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  374. predict_y = getPredictor("form").getModel("context").predict(data_x)
  375. for _position,_y in zip(data_position,predict_y):
  376. _w = _position[0]
  377. _h = _position[1]
  378. if _y[1]>prob_min:
  379. inner_table[_h][_w][1] = 1
  380. else:
  381. inner_table[_h][_w][1] = 0
  382. _item = inner_table[_h][_w][0]
  383. if re.search(pat_head,_item) is not None and len(item)<8:
  384. inner_table[_h][_w][1] = 1
  385. # print("=====")
  386. # for item in inner_table:
  387. # print(item)
  388. # print("======")
  389. height = len(inner_table)
  390. width = len(inner_table[0])
  391. for i in range(height):
  392. for j in range(width):
  393. if re.search("[::]$", inner_table[i][j][0]):
  394. inner_table[i][j][1] = 1
  395. repairTable(inner_table)
  396. head_list = sliceTable(inner_table)
  397. return inner_table,head_list
  398. #设置表头
  399. def setHead_inline(inner_table,prob_min=0.64):
  400. pad_row = "@@"
  401. pad_col = "##"
  402. removePadding(inner_table, pad_row, pad_col)
  403. pad_pattern = re.compile(pad_row+"|"+pad_col)
  404. height = len(inner_table)
  405. width = len(inner_table[0])
  406. head_list = []
  407. head_list.append(0)
  408. #行表头
  409. is_head_last = False
  410. for i in range(height):
  411. is_head = False
  412. is_long_value = False
  413. #判断是否是全padding值
  414. is_same_value = True
  415. same_value = inner_table[i][0][0]
  416. for j in range(width):
  417. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  418. is_same_value = False
  419. break
  420. #predict is head or not with model
  421. temp_item = ""
  422. for j in range(width):
  423. temp_item += inner_table[i][j][0]+"|"
  424. temp_item = re.sub(pad_pattern,"",temp_item)
  425. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  426. if form_prob is not None:
  427. if form_prob[0][1]>prob_min:
  428. is_head = True
  429. else:
  430. is_head = False
  431. #print(temp_item,form_prob)
  432. if len(inner_table[i][0][0])>40:
  433. is_long_value = True
  434. if is_head or is_long_value or is_same_value:
  435. #不把连续表头分开
  436. if not is_head_last:
  437. head_list.append(i)
  438. if is_long_value or is_same_value:
  439. head_list.append(i+1)
  440. if is_head:
  441. for j in range(width):
  442. inner_table[i][j][1] = 1
  443. is_head_last = is_head
  444. head_list.append(height)
  445. #列表头
  446. for i in range(len(head_list)-1):
  447. head_begin = head_list[i]
  448. head_end = head_list[i+1]
  449. #最后一列不设置为列表头
  450. for i in range(width-1):
  451. is_head = False
  452. #predict is head or not with model
  453. temp_item = ""
  454. for j in range(head_begin,head_end):
  455. temp_item += inner_table[j][i][0]+"|"
  456. temp_item = re.sub(pad_pattern,"",temp_item)
  457. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  458. if form_prob is not None:
  459. if form_prob[0][1]>prob_min:
  460. is_head = True
  461. else:
  462. is_head = False
  463. if is_head:
  464. for j in range(head_begin,head_end):
  465. inner_table[j][i][1] = 2
  466. addPadding(inner_table, pad_row, pad_col)
  467. return inner_table,head_list
  468. #设置表头
  469. def setHead_withRule(inner_table,pattern,pat_value,count):
  470. height = len(inner_table)
  471. width = len(inner_table[0])
  472. head_list = []
  473. head_list.append(0)
  474. #行表头
  475. is_head_last = False
  476. for i in range(height):
  477. set_match = set()
  478. is_head = False
  479. is_long_value = False
  480. is_same_value = True
  481. same_value = inner_table[i][0][0]
  482. for j in range(width):
  483. if inner_table[i][j][0]!=same_value:
  484. is_same_value = False
  485. break
  486. for j in range(width):
  487. if re.search(pat_value,inner_table[i][j][0]) is not None:
  488. is_head = False
  489. break
  490. str_find = re.findall(pattern,inner_table[i][j][0])
  491. if len(str_find)>0:
  492. set_match.add(inner_table[i][j][0])
  493. if len(set_match)>=count:
  494. is_head = True
  495. if len(inner_table[i][0][0])>40:
  496. is_long_value = True
  497. if is_head or is_long_value or is_same_value:
  498. if not is_head_last:
  499. head_list.append(i)
  500. if is_head:
  501. for j in range(width):
  502. inner_table[i][j][1] = 1
  503. is_head_last = is_head
  504. head_list.append(height)
  505. #列表头
  506. for i in range(len(head_list)-1):
  507. head_begin = head_list[i]
  508. head_end = head_list[i+1]
  509. #最后一列不设置为列表头
  510. for i in range(width-1):
  511. set_match = set()
  512. is_head = False
  513. for j in range(head_begin,head_end):
  514. if re.search(pat_value,inner_table[j][i][0]) is not None:
  515. is_head = False
  516. break
  517. str_find = re.findall(pattern,inner_table[j][i][0])
  518. if len(str_find)>0:
  519. set_match.add(inner_table[j][i][0])
  520. if len(set_match)>=count:
  521. is_head = True
  522. if is_head:
  523. for j in range(head_begin,head_end):
  524. inner_table[j][i][1] = 2
  525. return inner_table,head_list
  526. #取得表格的处理方向
  527. def getDirect(inner_table,begin,end):
  528. '''
  529. column_head = set()
  530. row_head = set()
  531. widths = len(inner_table[0])
  532. for height in range(begin,end):
  533. for width in range(widths):
  534. if inner_table[height][width][1] ==1:
  535. row_head.add(height)
  536. if inner_table[height][width][1] ==2:
  537. column_head.add(width)
  538. company_pattern = re.compile("公司")
  539. if 0 in column_head and begin not in row_head:
  540. return "column"
  541. if 0 in column_head and begin in row_head:
  542. for height in range(begin,end):
  543. count = 0
  544. count_flag = True
  545. for width_index in range(width):
  546. if inner_table[height][width_index][1]==0:
  547. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  548. count += 1
  549. else:
  550. count_flag = False
  551. if count_flag and count>=2:
  552. return "column"
  553. return "row"
  554. '''
  555. count_row_keys = 0
  556. count_column_keys = 0
  557. width = len(inner_table[0])
  558. if begin<end:
  559. for w in range(len(inner_table[begin])):
  560. if inner_table[begin][w][1]!=0:
  561. count_row_keys += 1
  562. for h in range(begin,end):
  563. if inner_table[h][0][1]!=0:
  564. count_column_keys += 1
  565. company_pattern = re.compile("有限(责任)?公司")
  566. for height in range(begin,end):
  567. count_set = set()
  568. count_flag = True
  569. for width_index in range(width):
  570. if inner_table[height][width_index][1]==0:
  571. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  572. count_set.add(inner_table[height][width_index][0])
  573. else:
  574. count_flag = False
  575. if count_flag and len(count_set)>=2:
  576. return "column"
  577. if count_column_keys>count_row_keys:
  578. return "column"
  579. return "row"
  580. #根据表格处理方向生成句子,
  581. def getTableText(inner_table,head_list,key_direct=False):
  582. # packPattern = "(标包|[标包][号段名])"
  583. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  584. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标|推荐意见)" # 2020/11/23 大网站规则,添加序号为排序
  585. entityPattern = "((候选|([中投]标|报价))(单位|公司|人|供应商))"
  586. moneyPattern = "([中投]标|报价)(金额|价)"
  587. height = len(inner_table)
  588. width = len(inner_table[0])
  589. text = ""
  590. for head_i in range(len(head_list)-1):
  591. head_begin = head_list[head_i]
  592. head_end = head_list[head_i+1]
  593. direct = getDirect(inner_table, head_begin, head_end)
  594. #若只有一行,则直接按行读取
  595. if head_end-head_begin==1:
  596. text_line = ""
  597. for i in range(head_begin,head_end):
  598. for w in range(len(inner_table[i])):
  599. if inner_table[i][w][1]==1:
  600. _punctuation = ":"
  601. else:
  602. _punctuation = ","
  603. if w>0:
  604. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  605. text_line += inner_table[i][w][0]+_punctuation
  606. else:
  607. text_line += inner_table[i][w][0]+_punctuation
  608. text_line = text_line+"。" if text_line!="" else text_line
  609. text += text_line
  610. else:
  611. #构建一个共现矩阵
  612. table_occurence = []
  613. for i in range(head_begin,head_end):
  614. line_oc = []
  615. for j in range(width):
  616. cell = inner_table[i][j]
  617. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0})
  618. table_occurence.append(line_oc)
  619. occu_height = len(table_occurence)
  620. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  621. #为每个属性值寻找表头
  622. for i in range(occu_height):
  623. for j in range(occu_width):
  624. cell = table_occurence[i][j]
  625. #是属性值
  626. if cell["type"]==0 and cell["text"]!="":
  627. left_head = ""
  628. top_head = ""
  629. find_flag = False
  630. temp_head = ""
  631. for loop_i in range(1,i+1):
  632. if not key_direct:
  633. key_values = [1,2]
  634. else:
  635. key_values = [1]
  636. if table_occurence[i-loop_i][j]["type"] in key_values:
  637. if find_flag:
  638. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  639. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  640. else:
  641. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  642. find_flag = True
  643. temp_head = table_occurence[i-loop_i][j]["text"]
  644. table_occurence[i-loop_i][j]["occu_count"] += 1
  645. else:
  646. #找到表头后遇到属性值就返回
  647. if find_flag:
  648. break
  649. cell["top_head"] += top_head
  650. find_flag = False
  651. temp_head = ""
  652. for loop_j in range(1,j+1):
  653. if not key_direct:
  654. key_values = [1,2]
  655. else:
  656. key_values = [2]
  657. if table_occurence[i][j-loop_j]["type"] in key_values:
  658. if find_flag:
  659. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  660. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  661. else:
  662. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  663. find_flag = True
  664. temp_head = table_occurence[i][j-loop_j]["text"]
  665. table_occurence[i][j-loop_j]["occu_count"] += 1
  666. else:
  667. if find_flag:
  668. break
  669. cell["left_head"] += left_head
  670. if direct=="row":
  671. for i in range(occu_height):
  672. pack_text = ""
  673. rank_text = ""
  674. entity_text = ""
  675. text_line = ""
  676. money_text = ""
  677. #在同一句话中重复的可以去掉
  678. text_set = set()
  679. for j in range(width):
  680. cell = table_occurence[i][j]
  681. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  682. cell = table_occurence[i][j]
  683. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  684. head += cell["left_head"]
  685. if str(head+cell["text"]) in text_set:
  686. continue
  687. if re.search(packPattern,head) is not None:
  688. pack_text += head+cell["text"]+","
  689. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  690. #排名替换为同一种表达
  691. rank_text += head+cell["text"]+","
  692. #print(rank_text)
  693. elif re.search(entityPattern,head) is not None:
  694. entity_text += head+cell["text"]+","
  695. #print(entity_text)
  696. else:
  697. if re.search(moneyPattern,head) is not None and entity_text!="":
  698. money_text += head+cell["text"]+","
  699. else:
  700. text_line += head+cell["text"]+","
  701. text_set.add(str(head+cell["text"]))
  702. text += pack_text+rank_text+entity_text+money_text+text_line
  703. text = text[:-1]+"。" if len(text)>0 else text
  704. else:
  705. for j in range(occu_width):
  706. pack_text = ""
  707. rank_text = ""
  708. entity_text = ""
  709. text_line = ""
  710. text_set = set()
  711. for i in range(occu_height):
  712. cell = table_occurence[i][j]
  713. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  714. cell = table_occurence[i][j]
  715. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  716. head += cell["top_head"]
  717. if str(head+cell["text"]) in text_set:
  718. continue
  719. if re.search(packPattern,head) is not None:
  720. pack_text += head+cell["text"]+","
  721. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  722. #排名替换为同一种表达
  723. rank_text += head+cell["text"]+","
  724. #print(rank_text)
  725. elif re.search(entityPattern,head) is not None:
  726. entity_text += head+cell["text"]+","
  727. #print(entity_text)
  728. else:
  729. text_line += head+cell["text"]+","
  730. text_set.add(str(head+cell["text"]))
  731. text += pack_text+rank_text+entity_text+text_line
  732. text = text[:-1]+"。" if len(text)>0 else text
  733. # if direct=="row":
  734. # for i in range(head_begin,head_end):
  735. # pack_text = ""
  736. # rank_text = ""
  737. # entity_text = ""
  738. # text_line = ""
  739. # #在同一句话中重复的可以去掉
  740. # text_set = set()
  741. # for j in range(width):
  742. # cell = inner_table[i][j]
  743. # #是属性值
  744. # if cell[1]==0 and cell[0]!="":
  745. # head = ""
  746. #
  747. # find_flag = False
  748. # temp_head = ""
  749. # for loop_i in range(0,i+1-head_begin):
  750. # if not key_direct:
  751. # key_values = [1,2]
  752. # else:
  753. # key_values = [1]
  754. # if inner_table[i-loop_i][j][1] in key_values:
  755. # if find_flag:
  756. # if inner_table[i-loop_i][j][0]!=temp_head:
  757. # head = inner_table[i-loop_i][j][0]+":"+head
  758. # else:
  759. # head = inner_table[i-loop_i][j][0]+":"+head
  760. # find_flag = True
  761. # temp_head = inner_table[i-loop_i][j][0]
  762. # else:
  763. # #找到表头后遇到属性值就返回
  764. # if find_flag:
  765. # break
  766. #
  767. # find_flag = False
  768. # temp_head = ""
  769. #
  770. #
  771. #
  772. # for loop_j in range(1,j+1):
  773. # if not key_direct:
  774. # key_values = [1,2]
  775. # else:
  776. # key_values = [2]
  777. # if inner_table[i][j-loop_j][1] in key_values:
  778. # if find_flag:
  779. # if inner_table[i][j-loop_j][0]!=temp_head:
  780. # head = inner_table[i][j-loop_j][0]+":"+head
  781. # else:
  782. # head = inner_table[i][j-loop_j][0]+":"+head
  783. # find_flag = True
  784. # temp_head = inner_table[i][j-loop_j][0]
  785. # else:
  786. # if find_flag:
  787. # break
  788. #
  789. # if str(head+inner_table[i][j][0]) in text_set:
  790. # continue
  791. # if re.search(packPattern,head) is not None:
  792. # pack_text += head+inner_table[i][j][0]+","
  793. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  794. # #排名替换为同一种表达
  795. # rank_text += head+inner_table[i][j][0]+","
  796. # #print(rank_text)
  797. # elif re.search(entityPattern,head) is not None:
  798. # entity_text += head+inner_table[i][j][0]+","
  799. # #print(entity_text)
  800. # else:
  801. # text_line += head+inner_table[i][j][0]+","
  802. # text_set.add(str(head+inner_table[i][j][0]))
  803. # text += pack_text+rank_text+entity_text+text_line
  804. # text = text[:-1]+"。" if len(text)>0 else text
  805. # else:
  806. # for j in range(width):
  807. #
  808. # rank_text = ""
  809. # entity_text = ""
  810. # text_line = ""
  811. # text_set = set()
  812. # for i in range(head_begin,head_end):
  813. # cell = inner_table[i][j]
  814. # #是属性值
  815. # if cell[1]==0 and cell[0]!="":
  816. # find_flag = False
  817. # head = ""
  818. # temp_head = ""
  819. #
  820. # for loop_j in range(1,j+1):
  821. # if not key_direct:
  822. # key_values = [1,2]
  823. # else:
  824. # key_values = [2]
  825. # if inner_table[i][j-loop_j][1] in key_values:
  826. # if find_flag:
  827. # if inner_table[i][j-loop_j][0]!=temp_head:
  828. # head = inner_table[i][j-loop_j][0]+":"+head
  829. # else:
  830. # head = inner_table[i][j-loop_j][0]+":"+head
  831. # find_flag = True
  832. # temp_head = inner_table[i][j-loop_j][0]
  833. # else:
  834. # if find_flag:
  835. # break
  836. # find_flag = False
  837. # temp_head = ""
  838. # for loop_i in range(0,i+1-head_begin):
  839. # if not key_direct:
  840. # key_values = [1,2]
  841. # else:
  842. # key_values = [1]
  843. # if inner_table[i-loop_i][j][1] in key_values:
  844. # if find_flag:
  845. # if inner_table[i-loop_i][j][0]!=temp_head:
  846. # head = inner_table[i-loop_i][j][0]+":"+head
  847. # else:
  848. # head = inner_table[i-loop_i][j][0]+":"+head
  849. # find_flag = True
  850. # temp_head = inner_table[i-loop_i][j][0]
  851. # else:
  852. # if find_flag:
  853. # break
  854. # if str(head+inner_table[i][j][0]) in text_set:
  855. # continue
  856. # if re.search(rankPattern,head) is not None:
  857. # rank_text += head+inner_table[i][j][0]+","
  858. # #print(rank_text)
  859. # elif re.search(entityPattern,head) is not None:
  860. # entity_text += head+inner_table[i][j][0]+","
  861. # #print(entity_text)
  862. # else:
  863. # text_line += head+inner_table[i][j][0]+","
  864. # text_set.add(str(head+inner_table[i][j][0]))
  865. # text += rank_text+entity_text+text_line
  866. # text = text[:-1]+"。" if len(text)>0 else text
  867. return text
  868. def removeFix(inner_table,fix_value="~~"):
  869. height = len(inner_table)
  870. width = len(inner_table[0])
  871. for h in range(height):
  872. for w in range(width):
  873. if inner_table[h][w][0]==fix_value:
  874. inner_table[h][w][0] = ""
  875. def trunTable(tbody):
  876. fixSpan(tbody)
  877. inner_table = getTable(tbody)
  878. inner_table = fixTable(inner_table)
  879. if len(inner_table)>0 and len(inner_table[0])>0:
  880. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  881. #inner_table,head_list = setHead_inline(inner_table)
  882. # inner_table,head_list = setHead_initem(inner_table,pat_head)
  883. inner_table,head_list = setHead_incontext(inner_table,pat_head)
  884. # print(inner_table)
  885. # for begin in range(len(head_list[:-1])):
  886. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  887. # print(item)
  888. # print("====")
  889. removeFix(inner_table)
  890. # print("----")
  891. # print(head_list)
  892. # for item in inner_table:
  893. # print(item)
  894. tbody.string = getTableText(inner_table,head_list)
  895. #print(tbody.string)
  896. tbody.name = "turntable"
  897. return inner_table
  898. return None
  899. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  900. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  901. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  902. list_innerTable = []
  903. tbodies = soup.find_all('table')
  904. # 遍历表格中的每个tbody
  905. #逆序处理嵌套表格
  906. for tbody_index in range(1,len(tbodies)+1):
  907. tbody = tbodies[len(tbodies)-tbody_index]
  908. inner_table = trunTable(tbody)
  909. list_innerTable.append(inner_table)
  910. tbodies = soup.find_all('tbody')
  911. # 遍历表格中的每个tbody
  912. #逆序处理嵌套表格
  913. for tbody_index in range(1,len(tbodies)+1):
  914. tbody = tbodies[len(tbodies)-tbody_index]
  915. inner_table = trunTable(tbody)
  916. list_innerTable.append(inner_table)
  917. return soup
  918. # return list_innerTable
  919. #数据清洗
  920. def segment(soup,final=True):
  921. # print("==")
  922. # print(soup)
  923. # print("====")
  924. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  925. subspaceList = ["td",'a',"span","p"]
  926. if soup.name in subspaceList:
  927. #判断有值叶子节点数
  928. _count = 0
  929. for child in soup.find_all(recursive=True):
  930. if child.get_text().strip()!="" and len(child.find_all())==0:
  931. _count += 1
  932. if _count<=1:
  933. text = soup.get_text()
  934. # 2020/11/24 大网站规则添加
  935. if 'title' in soup.attrs:
  936. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  937. text = soup.attrs['title']
  938. _list = []
  939. for x in re.split("\s+",text):
  940. if x.strip()!="":
  941. _list.append(len(x))
  942. if len(_list)>0:
  943. _minLength = min(_list)
  944. if _minLength>2:
  945. _substr = ","
  946. else:
  947. _substr = ""
  948. else:
  949. _substr = ""
  950. text = text.replace("\r\n",",").replace("\n",",")
  951. text = re.sub("\s+",_substr,text)
  952. # text = re.sub("\s+","##space##",text)
  953. return text
  954. segList = ["title"]
  955. commaList = ["div","br","td","p"]
  956. #commaList = []
  957. spaceList = ["span"]
  958. tbodies = soup.find_all('tbody')
  959. if len(tbodies) == 0:
  960. tbodies = soup.find_all('table')
  961. # 递归遍历所有节点,插入符号
  962. for child in soup.find_all(recursive=True):
  963. if child.name in segList:
  964. child.insert_after("。")
  965. if child.name in commaList:
  966. child.insert_after(",")
  967. # if child.name in subspaceList:
  968. # child.insert_before("#subs"+str(child.name)+"#")
  969. # child.insert_after("#sube"+str(child.name)+"#")
  970. # if child.name in spaceList:
  971. # child.insert_after(" ")
  972. text = str(soup.get_text())
  973. #替换英文冒号为中文冒号
  974. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  975. #替换为中文逗号
  976. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  977. #替换为中文分号
  978. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  979. #替换"?"为 " " ,update:2021/7/20
  980. text = re.sub("?+"," ",text)
  981. #替换"""为"“",否则导入deepdive出错
  982. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  983. # print('==1',text)
  984. # text = re.sub("\s{4,}",",",text)
  985. # 解决公告中的" "空格替换问题
  986. if re.search("\s{4,}",text):
  987. _text = ""
  988. for _sent in re.split("。+",text):
  989. for _sent2 in re.split(',+',_sent):
  990. for _sent3 in re.split(":+",_sent2):
  991. for _t in re.split("\s{4,}",_sent3):
  992. if len(_t)<3:
  993. _text += _t
  994. else:
  995. _text += ","+_t
  996. _text += ":"
  997. _text = _text[:-1]
  998. _text += ","
  999. _text = _text[:-1]
  1000. _text += "。"
  1001. _text = _text[:-1]
  1002. text = _text
  1003. # print('==2',text)
  1004. #替换标点
  1005. #替换连续的标点
  1006. if final:
  1007. text = re.sub("##space##"," ",text)
  1008. punc_pattern = "(?P<del>[。,;::,\s]+)"
  1009. list_punc = re.findall(punc_pattern,text)
  1010. list_punc.sort(key=lambda x:len(x),reverse=True)
  1011. for punc_del in list_punc:
  1012. if len(punc_del)>1:
  1013. if len(punc_del.strip())>0:
  1014. if ":" in punc_del.strip():
  1015. text = re.sub(punc_del,":",text)
  1016. else:
  1017. text = re.sub(punc_del,punc_del.strip()[-1],text)
  1018. else:
  1019. text = re.sub(punc_del,"",text)
  1020. #将连续的中文句号替换为一个
  1021. text_split = text.split("。")
  1022. text_split = [x for x in text_split if len(x)>0]
  1023. text = "。".join(text_split)
  1024. # #删除标签中的所有空格
  1025. # for subs in subspaceList:
  1026. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  1027. # while(True):
  1028. # oneMatch = re.search(re.compile(patten),text)
  1029. # if oneMatch is not None:
  1030. # _match = oneMatch.group(1)
  1031. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  1032. # else:
  1033. # break
  1034. # text过大报错
  1035. LOOP_LEN = 10000
  1036. LOOP_BEGIN = 0
  1037. _text = ""
  1038. if len(text)<10000000:
  1039. while(LOOP_BEGIN<len(text)):
  1040. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  1041. LOOP_BEGIN += LOOP_LEN
  1042. text = _text
  1043. return text
  1044. '''
  1045. #数据清洗
  1046. def segment(soup):
  1047. segList = ["title"]
  1048. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1049. spaceList = ["span"]
  1050. tbodies = soup.find_all('tbody')
  1051. if len(tbodies) == 0:
  1052. tbodies = soup.find_all('table')
  1053. # 递归遍历所有节点,插入符号
  1054. for child in soup.find_all(recursive=True):
  1055. if child.name == 'br':
  1056. child.insert_before(',')
  1057. child_text = re.sub('\s', '', child.get_text())
  1058. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1059. continue
  1060. if child.name in segList:
  1061. child.insert_after("。")
  1062. if child.name in commaList:
  1063. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1064. child.insert_after(",")
  1065. elif len(child_text) >=50:
  1066. child.insert_after("。")
  1067. #if child.name in spaceList:
  1068. #child.insert_after(" ")
  1069. text = str(soup.get_text())
  1070. text = re.sub("\s{5,}",",",text)
  1071. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1072. #替换"""为"“",否则导入deepdive出错
  1073. text = text.replace('"',"“")
  1074. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1075. #删除所有空格
  1076. text = re.sub("\s+","#nbsp#",text)
  1077. text_list = text.split('#nbsp#')
  1078. new_text = ''
  1079. for i in range(len(text_list)-1):
  1080. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1081. new_text += text_list[i]
  1082. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1083. new_text += text_list[i] + '。'
  1084. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1085. new_text += text_list[i] + ';'
  1086. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1087. new_text += text_list[i] + ' '
  1088. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1089. new_text += text_list[i]
  1090. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1091. new_text += text_list[i] + ','
  1092. else:
  1093. new_text += text_list[i]
  1094. new_text += text_list[-1]
  1095. text = new_text
  1096. #替换英文冒号为中文冒号
  1097. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1098. #替换为中文逗号
  1099. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1100. #替换为中文分号
  1101. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1102. #替换标点
  1103. while(True):
  1104. #替换连续的标点
  1105. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1106. if punc is not None:
  1107. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1108. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1109. if punc is not None:
  1110. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1111. else:
  1112. #替换标点之后的空格
  1113. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1114. if punc is not None:
  1115. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1116. else:
  1117. break
  1118. #将连续的中文句号替换为一个
  1119. text_split = text.split("。")
  1120. text_split = [x for x in text_split if len(x)>0]
  1121. text = "。".join(text_split)
  1122. #替换中文括号为英文括号
  1123. text = re.sub("(","(",text)
  1124. text = re.sub(")",")",text)
  1125. return text
  1126. '''
  1127. #连续实体合并(弃用)
  1128. def union_ner(list_ner):
  1129. result_list = []
  1130. union_index = []
  1131. union_index_set = set()
  1132. for i in range(len(list_ner)-1):
  1133. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1134. if list_ner[i][1]-list_ner[i+1][0]==1:
  1135. union_index_set.add(i)
  1136. union_index_set.add(i+1)
  1137. union_index.append((i,i+1))
  1138. for i in range(len(list_ner)):
  1139. if i not in union_index_set:
  1140. result_list.append(list_ner[i])
  1141. for item in union_index:
  1142. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1143. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1144. return result_list
  1145. # def get_preprocessed(articles,useselffool=False):
  1146. # '''
  1147. # @summary:预处理步骤,NLP处理、实体识别
  1148. # @param:
  1149. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1150. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1151. # '''
  1152. # list_articles = []
  1153. # list_sentences = []
  1154. # list_entitys = []
  1155. # cost_time = dict()
  1156. # for article in articles:
  1157. # list_sentences_temp = []
  1158. # list_entitys_temp = []
  1159. # doc_id = article[0]
  1160. # sourceContent = article[1]
  1161. # _send_doc_id = article[3]
  1162. # _title = article[4]
  1163. # #表格处理
  1164. # key_preprocess = "tableToText"
  1165. # start_time = time.time()
  1166. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1167. #
  1168. # # log(article_processed)
  1169. #
  1170. # if key_preprocess not in cost_time:
  1171. # cost_time[key_preprocess] = 0
  1172. # cost_time[key_preprocess] += time.time()-start_time
  1173. #
  1174. # #article_processed = article[1]
  1175. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1176. # #nlp处理
  1177. # if article_processed is not None and len(article_processed)!=0:
  1178. # split_patten = "。"
  1179. # sentences = []
  1180. # _begin = 0
  1181. # for _iter in re.finditer(split_patten,article_processed):
  1182. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1183. # _begin = _iter.span()[1]
  1184. # sentences.append(article_processed[_begin:])
  1185. #
  1186. # lemmas = []
  1187. # doc_offsets = []
  1188. # dep_types = []
  1189. # dep_tokens = []
  1190. #
  1191. # time1 = time.time()
  1192. #
  1193. # '''
  1194. # tokens_all = fool.cut(sentences)
  1195. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1196. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1197. # ner_entitys_all = fool.ner(sentences)
  1198. # '''
  1199. # #限流执行
  1200. # key_nerToken = "nerToken"
  1201. # start_time = time.time()
  1202. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1203. # if key_nerToken not in cost_time:
  1204. # cost_time[key_nerToken] = 0
  1205. # cost_time[key_nerToken] += time.time()-start_time
  1206. #
  1207. #
  1208. # for sentence_index in range(len(sentences)):
  1209. #
  1210. #
  1211. #
  1212. # list_sentence_entitys = []
  1213. # sentence_text = sentences[sentence_index]
  1214. # tokens = tokens_all[sentence_index]
  1215. #
  1216. # list_tokenbegin = []
  1217. # begin = 0
  1218. # for i in range(0,len(tokens)):
  1219. # list_tokenbegin.append(begin)
  1220. # begin += len(str(tokens[i]))
  1221. # list_tokenbegin.append(begin+1)
  1222. # #pos_tag = pos_all[sentence_index]
  1223. # pos_tag = ""
  1224. #
  1225. # ner_entitys = ner_entitys_all[sentence_index]
  1226. #
  1227. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1228. #
  1229. # #识别package
  1230. #
  1231. #
  1232. # #识别实体
  1233. # for ner_entity in ner_entitys:
  1234. # begin_index_temp = ner_entity[0]
  1235. # end_index_temp = ner_entity[1]
  1236. # entity_type = ner_entity[2]
  1237. # entity_text = ner_entity[3]
  1238. #
  1239. # for j in range(len(list_tokenbegin)):
  1240. # if list_tokenbegin[j]==begin_index_temp:
  1241. # begin_index = j
  1242. # break
  1243. # elif list_tokenbegin[j]>begin_index_temp:
  1244. # begin_index = j-1
  1245. # break
  1246. # begin_index_temp += len(str(entity_text))
  1247. # for j in range(begin_index,len(list_tokenbegin)):
  1248. # if list_tokenbegin[j]>=begin_index_temp:
  1249. # end_index = j-1
  1250. # break
  1251. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1252. #
  1253. # #去掉标点符号
  1254. # entity_text = re.sub("[,,。:]","",entity_text)
  1255. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1256. #
  1257. #
  1258. # #使用正则识别金额
  1259. # entity_type = "money"
  1260. #
  1261. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1262. #
  1263. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1264. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1265. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1266. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1267. #
  1268. # set_begin = set()
  1269. # for pattern_key in list_money_pattern.keys():
  1270. # pattern = re.compile(list_money_pattern[pattern_key])
  1271. # all_match = re.findall(pattern, sentence_text)
  1272. # index = 0
  1273. # for i in range(len(all_match)):
  1274. # if len(all_match[i][0])>0:
  1275. # # print("===",all_match[i])
  1276. # #print(all_match[i][0])
  1277. # unit = ""
  1278. # entity_text = all_match[i][3]
  1279. # if pattern_key in ["key_word","front_m"]:
  1280. # unit = all_match[i][1]
  1281. # else:
  1282. # unit = all_match[i][4]
  1283. # if entity_text.find("元")>=0:
  1284. # unit = ""
  1285. #
  1286. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1287. #
  1288. # begin_index_temp = index
  1289. # for j in range(len(list_tokenbegin)):
  1290. # if list_tokenbegin[j]==index:
  1291. # begin_index = j
  1292. # break
  1293. # elif list_tokenbegin[j]>index:
  1294. # begin_index = j-1
  1295. # break
  1296. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1297. # end_index_temp = index
  1298. # #index += len(str(all_match[i][0]))
  1299. # for j in range(begin_index,len(list_tokenbegin)):
  1300. # if list_tokenbegin[j]>=index:
  1301. # end_index = j-1
  1302. # break
  1303. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1304. #
  1305. #
  1306. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1307. # if len(unit)>0:
  1308. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1309. # else:
  1310. # entity_text = str(getUnifyMoney(entity_text))
  1311. #
  1312. # _exists = False
  1313. # for item in list_sentence_entitys:
  1314. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1315. # _exists = True
  1316. # if not _exists:
  1317. # if float(entity_text)>10:
  1318. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1319. #
  1320. # else:
  1321. # index += 1
  1322. #
  1323. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1324. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1325. # list_sentences.append(list_sentences_temp)
  1326. # list_entitys.append(list_entitys_temp)
  1327. # return list_articles,list_sentences,list_entitys,cost_time
  1328. def get_preprocessed(articles,useselffool=False):
  1329. '''
  1330. @summary:预处理步骤,NLP处理、实体识别
  1331. @param:
  1332. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1333. @return:list of articles,list of each article of sentences,list of each article of entitys
  1334. '''
  1335. cost_time = dict()
  1336. list_articles = get_preprocessed_article(articles,cost_time)
  1337. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1338. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1339. calibrateEnterprise(list_articles,list_sentences,list_entitys)
  1340. return list_articles,list_sentences,list_entitys,cost_time
  1341. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1342. '''
  1343. :param articles: 待处理的article source html
  1344. :param useselffool: 是否使用selffool
  1345. :return: list_articles
  1346. '''
  1347. list_articles = []
  1348. for article in articles:
  1349. doc_id = article[0]
  1350. sourceContent = article[1]
  1351. _send_doc_id = article[3]
  1352. _title = article[4]
  1353. #表格处理
  1354. key_preprocess = "tableToText"
  1355. start_time = time.time()
  1356. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1357. # 修正被","逗号分隔的时间
  1358. repair_time = re.compile("20,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?日?,?(?:上午|下午)?,?[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d|"
  1359. "20,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?日?,?(?:上午|下午)?,?[0-2]?\d,?[:时点],?[0-6]\d,?分?|"
  1360. "20,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?日?,?(?:上午|下午)?,?[0-2]?\d,?[时点]|"
  1361. "20,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?日?|"
  1362. "[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d"
  1363. )
  1364. for _time in set(re.findall(repair_time,article_processed)):
  1365. if re.search(",",_time):
  1366. article_processed = article_processed.replace(_time,re.sub(",","",_time))
  1367. # print('re_rtime',re.findall(repair_time,article_processed))
  1368. # log(article_processed)
  1369. if key_preprocess not in cost_time:
  1370. cost_time[key_preprocess] = 0
  1371. cost_time[key_preprocess] += time.time()-start_time
  1372. #article_processed = article[1]
  1373. _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title)
  1374. _article.fingerprint = getFingerprint(_title+sourceContent)
  1375. list_articles.append(_article)
  1376. return list_articles
  1377. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1378. '''
  1379. :param list_articles: 经过预处理的article text
  1380. :return: list_sentences
  1381. '''
  1382. list_sentences = []
  1383. for article in list_articles:
  1384. list_sentences_temp = []
  1385. list_entitys_temp = []
  1386. doc_id = article.id
  1387. _send_doc_id = article.doc_id
  1388. _title = article.title
  1389. #表格处理
  1390. key_preprocess = "tableToText"
  1391. start_time = time.time()
  1392. article_processed = article.content
  1393. if key_preprocess not in cost_time:
  1394. cost_time[key_preprocess] = 0
  1395. cost_time[key_preprocess] += time.time()-start_time
  1396. #nlp处理
  1397. if article_processed is not None and len(article_processed)!=0:
  1398. split_patten = "。"
  1399. sentences = []
  1400. _begin = 0
  1401. sentences_set = set()
  1402. for _iter in re.finditer(split_patten,article_processed):
  1403. _sen = article_processed[_begin:_iter.span()[1]]
  1404. if len(_sen)>0 and _sen not in sentences_set:
  1405. sentences.append(_sen)
  1406. sentences_set.add(_sen)
  1407. _begin = _iter.span()[1]
  1408. _sen = article_processed[_begin:]
  1409. if len(_sen)>0 and _sen not in sentences_set:
  1410. sentences.append(_sen)
  1411. sentences_set.add(_sen)
  1412. article.content = "".join(sentences)
  1413. # sentences.append(article_processed[_begin:])
  1414. lemmas = []
  1415. doc_offsets = []
  1416. dep_types = []
  1417. dep_tokens = []
  1418. time1 = time.time()
  1419. '''
  1420. tokens_all = fool.cut(sentences)
  1421. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1422. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1423. ner_entitys_all = fool.ner(sentences)
  1424. '''
  1425. #限流执行
  1426. key_nerToken = "nerToken"
  1427. start_time = time.time()
  1428. tokens_all = getTokens(sentences,useselffool=useselffool)
  1429. if key_nerToken not in cost_time:
  1430. cost_time[key_nerToken] = 0
  1431. cost_time[key_nerToken] += time.time()-start_time
  1432. for sentence_index in range(len(sentences)):
  1433. sentence_text = sentences[sentence_index]
  1434. tokens = tokens_all[sentence_index]
  1435. #pos_tag = pos_all[sentence_index]
  1436. pos_tag = ""
  1437. ner_entitys = ""
  1438. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1439. if len(list_sentences_temp)==0:
  1440. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1441. list_sentences.append(list_sentences_temp)
  1442. return list_sentences
  1443. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1444. '''
  1445. :param list_sentences:分局情况
  1446. :param cost_time:
  1447. :return: list_entitys
  1448. '''
  1449. list_entitys = []
  1450. for list_sentence in list_sentences:
  1451. sentences = []
  1452. list_entitys_temp = []
  1453. for _sentence in list_sentence:
  1454. sentences.append(_sentence.sentence_text)
  1455. lemmas = []
  1456. doc_offsets = []
  1457. dep_types = []
  1458. dep_tokens = []
  1459. time1 = time.time()
  1460. '''
  1461. tokens_all = fool.cut(sentences)
  1462. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1463. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1464. ner_entitys_all = fool.ner(sentences)
  1465. '''
  1466. #限流执行
  1467. key_nerToken = "nerToken"
  1468. start_time = time.time()
  1469. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1470. if key_nerToken not in cost_time:
  1471. cost_time[key_nerToken] = 0
  1472. cost_time[key_nerToken] += time.time()-start_time
  1473. for sentence_index in range(len(list_sentence)):
  1474. list_sentence_entitys = []
  1475. sentence_text = list_sentence[sentence_index].sentence_text
  1476. tokens = list_sentence[sentence_index].tokens
  1477. doc_id = list_sentence[sentence_index].doc_id
  1478. list_tokenbegin = []
  1479. begin = 0
  1480. for i in range(0,len(tokens)):
  1481. list_tokenbegin.append(begin)
  1482. begin += len(str(tokens[i]))
  1483. list_tokenbegin.append(begin+1)
  1484. #pos_tag = pos_all[sentence_index]
  1485. pos_tag = ""
  1486. ner_entitys = ner_entitys_all[sentence_index]
  1487. #识别package
  1488. #识别实体
  1489. for ner_entity in ner_entitys:
  1490. begin_index_temp = ner_entity[0]
  1491. end_index_temp = ner_entity[1]
  1492. entity_type = ner_entity[2]
  1493. entity_text = ner_entity[3]
  1494. for j in range(len(list_tokenbegin)):
  1495. if list_tokenbegin[j]==begin_index_temp:
  1496. begin_index = j
  1497. break
  1498. elif list_tokenbegin[j]>begin_index_temp:
  1499. begin_index = j-1
  1500. break
  1501. begin_index_temp += len(str(entity_text))
  1502. for j in range(begin_index,len(list_tokenbegin)):
  1503. if list_tokenbegin[j]>=begin_index_temp:
  1504. end_index = j-1
  1505. break
  1506. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1507. #去掉标点符号
  1508. entity_text = re.sub("[,,。:]","",entity_text)
  1509. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1510. # 标记文章末尾的"发布人”、“发布时间”实体
  1511. if sentence_index==len(list_sentence)-1:
  1512. if len(list_sentence_entitys[-2:])>2:
  1513. second2last = list_sentence_entitys[-2]
  1514. last = list_sentence_entitys[-1]
  1515. if (second2last.entity_type in ["company",'org'] and last.entity_type=="time") or (
  1516. second2last.entity_type=="time" and last.entity_type in ["company",'org']):
  1517. if last.wordOffset_begin - second2last.wordOffset_end < 6 and len(sentence_text) - last.wordOffset_end<6:
  1518. last.is_tail = True
  1519. second2last.is_tail = True
  1520. #使用正则识别金额
  1521. entity_type = "money"
  1522. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1523. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1524. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1525. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1526. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1527. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1528. set_begin = set()
  1529. # for pattern_key in list_money_pattern.keys():
  1530. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1531. # # pattern = re.compile(list_money_pattern[pattern_key])
  1532. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1533. # all_match = re.findall(pattern, sentence_text)
  1534. # index = 0
  1535. # for i in range(len(all_match)):
  1536. # if len(all_match[i][0])>0:
  1537. # print("===",all_match[i])
  1538. # #print(all_match[i][0])
  1539. # unit = ""
  1540. # entity_text = all_match[i][3]
  1541. # if pattern_key in ["key_word","front_m"]:
  1542. # unit = all_match[i][1]
  1543. # if pattern_key=="key_word":
  1544. # if all_match[i][1]=="" and all_match[i][4]!="":
  1545. # unit = all_match[i][4]
  1546. # else:
  1547. # unit = all_match[i][4]
  1548. # if entity_text.find("元")>=0:
  1549. # unit = ""
  1550. #
  1551. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1552. # begin_index_temp = index
  1553. # for j in range(len(list_tokenbegin)):
  1554. # if list_tokenbegin[j]==index:
  1555. # begin_index = j
  1556. # break
  1557. # elif list_tokenbegin[j]>index:
  1558. # begin_index = j-1
  1559. # break
  1560. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1561. # end_index_temp = index
  1562. # #index += len(str(all_match[i][0]))
  1563. # for j in range(begin_index,len(list_tokenbegin)):
  1564. # if list_tokenbegin[j]>=index:
  1565. # end_index = j-1
  1566. # break
  1567. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1568. #
  1569. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1570. # if len(unit)>0:
  1571. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1572. # else:
  1573. # entity_text = str(getUnifyMoney(entity_text))
  1574. #
  1575. # _exists = False
  1576. # for item in list_sentence_entitys:
  1577. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1578. # _exists = True
  1579. # if not _exists:
  1580. # if float(entity_text)>1:
  1581. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1582. #
  1583. # else:
  1584. # index += 1
  1585. all_match = re.finditer(pattern_money, sentence_text)
  1586. index = 0
  1587. for _match in all_match:
  1588. if len(_match.group())>0:
  1589. # print("===",_match.group())
  1590. # print(_match.groupdict())
  1591. unit = ""
  1592. entity_text = ""
  1593. text_beforeMoney = ""
  1594. filter = ""
  1595. filter_unit = False
  1596. notSure = False
  1597. for k,v in _match.groupdict().items():
  1598. if v!="" and v is not None:
  1599. if k=='text_key_word':
  1600. notSure = True
  1601. if k.split("_")[0]=="money":
  1602. entity_text = v
  1603. if k.split("_")[0]=="unit":
  1604. unit = v
  1605. if k.split("_")[0]=="text":
  1606. text_beforeMoney = v
  1607. if k.split("_")[0]=="filter":
  1608. filter = v
  1609. if re.search("filter_unit",k) is not None:
  1610. filter_unit = True
  1611. if entity_text.find("元")>=0:
  1612. unit = ""
  1613. else:
  1614. if filter_unit:
  1615. continue
  1616. if filter!="":
  1617. continue
  1618. index = _match.span()[0]+len(text_beforeMoney)
  1619. begin_index_temp = index
  1620. for j in range(len(list_tokenbegin)):
  1621. if list_tokenbegin[j]==index:
  1622. begin_index = j
  1623. break
  1624. elif list_tokenbegin[j]>index:
  1625. begin_index = j-1
  1626. break
  1627. index = _match.span()[1]
  1628. end_index_temp = index
  1629. #index += len(str(all_match[i][0]))
  1630. for j in range(begin_index,len(list_tokenbegin)):
  1631. if list_tokenbegin[j]>=index:
  1632. end_index = j-1
  1633. break
  1634. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1635. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1636. if len(unit)>0:
  1637. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1638. else:
  1639. entity_text = str(getUnifyMoney(entity_text))
  1640. if float(entity_text)<100 or float(entity_text)>100000000000:
  1641. continue
  1642. if notSure and unit=="" and float(entity_text)>100*10000:
  1643. continue
  1644. _exists = False
  1645. for item in list_sentence_entitys:
  1646. if item.entity_id==entity_id and item.entity_type==entity_type:
  1647. _exists = True
  1648. if (begin_index >=item.begin_index and begin_index<=item.end_index) or (end_index>=item.begin_index and end_index<=item.end_index):
  1649. _exists = True
  1650. if not _exists:
  1651. if float(entity_text)>1:
  1652. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1653. else:
  1654. index += 1
  1655. # 资金来源提取 2020/12/30 新增
  1656. list_moneySource = extract_moneySource(sentence_text)
  1657. entity_type = "moneysource"
  1658. for moneySource in list_moneySource:
  1659. begin_index_temp = moneySource['begin_index']
  1660. for j in range(len(list_tokenbegin)):
  1661. if list_tokenbegin[j] == begin_index_temp:
  1662. begin_index = j
  1663. break
  1664. elif list_tokenbegin[j] > begin_index_temp:
  1665. begin_index = j - 1
  1666. break
  1667. index = moneySource['end_index']
  1668. end_index_temp = index
  1669. for j in range(begin_index, len(list_tokenbegin)):
  1670. if list_tokenbegin[j] >= index:
  1671. end_index = j - 1
  1672. break
  1673. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1674. entity_text = moneySource['body']
  1675. list_sentence_entitys.append(
  1676. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1677. begin_index_temp, end_index_temp))
  1678. # 服务期限提取 2020/12/30 新增
  1679. list_servicetime = extract_servicetime(sentence_text)
  1680. entity_type = "serviceTime"
  1681. for servicetime in list_servicetime:
  1682. begin_index_temp = servicetime['begin_index']
  1683. for j in range(len(list_tokenbegin)):
  1684. if list_tokenbegin[j] == begin_index_temp:
  1685. begin_index = j
  1686. break
  1687. elif list_tokenbegin[j] > begin_index_temp:
  1688. begin_index = j - 1
  1689. break
  1690. index = servicetime['end_index']
  1691. end_index_temp = index
  1692. for j in range(begin_index, len(list_tokenbegin)):
  1693. if list_tokenbegin[j] >= index:
  1694. end_index = j - 1
  1695. break
  1696. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1697. entity_text = servicetime['body']
  1698. list_sentence_entitys.append(
  1699. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1700. begin_index_temp, end_index_temp))
  1701. # 招标方式提取 2020/12/30 新增
  1702. list_bidway = extract_bidway(sentence_text)
  1703. entity_type = "bidway"
  1704. for bidway in list_bidway:
  1705. begin_index_temp = bidway['begin_index']
  1706. end_index_temp = bidway['end_index']
  1707. begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  1708. end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  1709. if begin_index is None or end_index is None:
  1710. continue
  1711. print(begin_index_temp,end_index_temp,begin_index,end_index)
  1712. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1713. entity_text = bidway['body']
  1714. list_sentence_entitys.append(
  1715. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1716. begin_index_temp, end_index_temp))
  1717. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1718. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1719. list_entitys.append(list_entitys_temp)
  1720. return list_entitys
  1721. def union_result(codeName,prem):
  1722. '''
  1723. @summary:模型的结果拼成字典
  1724. @param:
  1725. codeName:编号名称模型的结果字典
  1726. prem:拿到属性的角色的字典
  1727. @return:拼接起来的字典
  1728. '''
  1729. result = []
  1730. assert len(codeName)==len(prem)
  1731. for item_code,item_prem in zip(codeName,prem):
  1732. result.append(dict(item_code,**item_prem))
  1733. return result
  1734. def persistenceData(data):
  1735. '''
  1736. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1737. '''
  1738. import psycopg2
  1739. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1740. cursor = conn.cursor()
  1741. for item_index in range(len(data)):
  1742. item = data[item_index]
  1743. doc_id = item[0]
  1744. dic = item[1]
  1745. code = dic['code']
  1746. name = dic['name']
  1747. prem = dic['prem']
  1748. if len(code)==0:
  1749. code_insert = ""
  1750. else:
  1751. code_insert = ";".join(code)
  1752. prem_insert = ""
  1753. for item in prem:
  1754. for x in item:
  1755. if isinstance(x, list):
  1756. if len(x)>0:
  1757. for x1 in x:
  1758. prem_insert+="/".join(x1)+","
  1759. prem_insert+="$"
  1760. else:
  1761. prem_insert+=str(x)+"$"
  1762. prem_insert+=";"
  1763. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1764. cursor.execute(sql)
  1765. conn.commit()
  1766. conn.close()
  1767. def persistenceData1(list_entitys,list_sentences):
  1768. '''
  1769. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1770. '''
  1771. import psycopg2
  1772. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1773. cursor = conn.cursor()
  1774. for list_entity in list_entitys:
  1775. for entity in list_entity:
  1776. if entity.values is not None:
  1777. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1778. else:
  1779. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1780. cursor.execute(sql)
  1781. for list_sentence in list_sentences:
  1782. for sentence in list_sentence:
  1783. str_tokens = "["
  1784. for item in sentence.tokens:
  1785. str_tokens += "'"
  1786. if item=="'":
  1787. str_tokens += "''"
  1788. else:
  1789. str_tokens += item
  1790. str_tokens += "',"
  1791. str_tokens = str_tokens[:-1]+"]"
  1792. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1793. cursor.execute(sql)
  1794. conn.commit()
  1795. conn.close()
  1796. def _handle(item,result_queue):
  1797. dochtml = item["dochtml"]
  1798. docid = item["docid"]
  1799. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1800. flag = False
  1801. if list_innerTable:
  1802. flag = True
  1803. for table in list_innerTable:
  1804. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1805. def getPredictTable():
  1806. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1807. import pandas as pd
  1808. import json
  1809. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1810. df = pd.read_csv(filename)
  1811. df_data = {"json_table":[],"docid":[]}
  1812. _count = 0
  1813. _sum = len(df["docid"])
  1814. task_queue = Queue()
  1815. result_queue = Queue()
  1816. _index = 0
  1817. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1818. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1819. _index += 1
  1820. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1821. mh.run()
  1822. while True:
  1823. try:
  1824. item = result_queue.get(block=True,timeout=1)
  1825. df_data["docid"].append(item["docid"])
  1826. df_data["json_table"].append(item["json_table"])
  1827. except Exception as e:
  1828. print(e)
  1829. break
  1830. df_1 = pd.DataFrame(df_data)
  1831. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1832. if __name__=="__main__":
  1833. '''
  1834. import glob
  1835. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1836. file_txt = str(file).replace("html","txt")
  1837. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1838. f.write("\n================\n")
  1839. content = codecs.open(file,"r",encoding="utf8").read()
  1840. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1841. '''
  1842. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1843. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1844. getPredictTable()