run_extract_server.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. # -*- coding: utf-8 -*-
  2. """
  3. Created on Fri Jun 1 18:03:03 2018
  4. @author: DONG
  5. """
  6. import sys
  7. import os
  8. from flask import Flask, jsonify
  9. from flask import abort
  10. from flask import request
  11. sys.path.append(os.path.dirname(__file__)+"/..")
  12. os.environ["KERAS_BACKEND"] = "tensorflow"
  13. app = Flask(__name__)
  14. app.config['JSON_AS_ASCII'] = False
  15. limit_num = "4"
  16. os.environ["OMP_NUM_THREADS"] = limit_num # 1为一个核,设置为5的时候,系统显示用了10个核,不太清楚之间的具体数量关系
  17. os.environ["OMP_NUM_THREADS"] = limit_num # export OMP_NUM_THREADS=1
  18. os.environ["OPENBLAS_NUM_THREADS"] = limit_num # export OPENBLAS_NUM_THREADS=1
  19. os.environ["MKL_NUM_THREADS"] = limit_num # export MKL_NUM_THREADS=1
  20. os.environ["VECLIB_MAXIMUM_THREADS"] = limit_num # export VECLIB_MAXIMUM_THREADS=1
  21. os.environ["NUMEXPR_NUM_THREADS"] = limit_num # export NUMEXPR_NUM_THREADS=1
  22. import time
  23. import uuid
  24. import numpy as np
  25. import ctypes
  26. import inspect
  27. from threading import Thread
  28. import traceback
  29. import json
  30. os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
  31. os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
  32. sys.path.append(os.path.abspath("."))
  33. #自定义jsonEncoder
  34. class MyEncoder(json.JSONEncoder):
  35. def default(self, obj):
  36. if isinstance(obj, np.ndarray):
  37. return obj.tolist()
  38. elif isinstance(obj, bytes):
  39. return str(obj, encoding='utf-8')
  40. elif isinstance(obj, (np.float_, np.float16, np.float32,
  41. np.float64)):
  42. return float(obj)
  43. return json.JSONEncoder.default(self, obj)
  44. def _async_raise(tid, exctype):
  45. """raises the exception, performs cleanup if needed"""
  46. tid = ctypes.c_long(tid)
  47. if not inspect.isclass(exctype):
  48. exctype = type(exctype)
  49. res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
  50. if res == 0:
  51. raise ValueError("invalid thread id")
  52. elif res != 1:
  53. ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
  54. raise SystemError("PyThreadState_SetAsyncExc failed")
  55. def stop_thread(thread):
  56. _async_raise(thread.ident, SystemExit)
  57. def run_thread(data,list_result):
  58. # data = data.decode("utf8")
  59. # data = json.loads(data,encoding="utf8")
  60. k = str(uuid.uuid4())
  61. cost_time = dict()
  62. _doc_id = data.get("doc_id","")
  63. _title = data.get("title","")
  64. _content = data.get("content","")
  65. _page_time = data.get("page_time","")
  66. data_res = ""
  67. web_source_no = data.get("web_source_no","")
  68. web_source_name = data.get("web_source_name","")
  69. original_docchannel = data.get("original_docchannel","")
  70. is_fail = False
  71. try:
  72. if _content!="":
  73. data_res = predict(_doc_id,_content,_title,_page_time,web_source_no=web_source_no,web_source_name=web_source_name,original_docchannel=original_docchannel)
  74. else:
  75. data_res = json.dumps({"success":False,"msg":"content not passed"})
  76. # is_fail = True
  77. except Exception as e:
  78. traceback.print_exc()
  79. data_res = json.dumps({"success":False,"msg":str(e)})
  80. is_fail = True
  81. # 以json形式返回结果
  82. #_resp = json.dumps(data_res,cls=MyEncoder)
  83. #log(str(data["flag"])+str(data))
  84. log("done for doc_id:%s with result:%s"%(_doc_id,str(data_res)))
  85. list_result.append(data_res)
  86. if is_fail:
  87. list_result.append(is_fail)
  88. @app.route("/test",methods=['POST'])
  89. def test():
  90. from BiddingKG.dl.common.Utils import log
  91. from BiddingKG.dl.interface.extract import predict
  92. global predict,log
  93. _time = time.time()
  94. a = request.form.get("content")
  95. log("get form takes %.2fs"%(time.time()-_time))
  96. return json.dumps(sys.getsizeof(request.form)),201
  97. @app.route('/content_extract', methods=['POST'])
  98. def text_predict():
  99. from BiddingKG.dl.common.Utils import log
  100. from BiddingKG.dl.interface.extract import predict
  101. global predict,log
  102. _time = time.time()
  103. data = request.json
  104. status_code = 200
  105. list_result = []
  106. _timeout = data.get("timeout",400)
  107. log("get data cost:%.2fs"%((time.time()-_time)))
  108. t = Thread(target=run_thread,args=(data,list_result))
  109. start_time = time.time()
  110. t.start()
  111. t.join(_timeout)
  112. if t.is_alive():
  113. stop_thread(t)
  114. status_code = 302#超时被kill
  115. data_res = json.dumps({"success":False,"msg":"timeout"})
  116. else:
  117. # status_code += int((time.time()-start_time)%10+1)
  118. status_code = 201
  119. data_res = list_result[0]
  120. if len(list_result)>1 and list_result[1] ==True:
  121. status_code = 500
  122. _resp = data_res
  123. # _resp = predict(doc_id=_doc_id,text=_content,title=_title,page_time=_page_time)
  124. return _resp,status_code
  125. def getPort(argv):
  126. port = 15030
  127. print(argv)
  128. for item in argv:
  129. _l = str(item).split("port=")
  130. if len(_l)>1:
  131. port = int(_l[-1])
  132. break
  133. return port
  134. def getWorkers(argv):
  135. worker = 15
  136. for item in argv:
  137. _l = str(item).split("worker=")
  138. if len(_l)>1:
  139. worker = int(_l[-1])
  140. break
  141. return worker
  142. def start_with_tornado(port,process_num):
  143. from tornado.wsgi import WSGIContainer
  144. from tornado.httpserver import HTTPServer
  145. from tornado.ioloop import IOLoop
  146. http_server = HTTPServer(WSGIContainer(app))
  147. # http_server.listen(port) #shortcut for bind and start
  148. http_server.bind(port)
  149. http_server.start(process_num)
  150. IOLoop.instance().start()
  151. def start_with_flask():
  152. port = getPort(argv=sys.argv)
  153. app.run(host='0.0.0.0', port=port, threaded=True, debug=False)
  154. log("ContentExtractor running")
  155. # app.run()
  156. if __name__ == '__main__':
  157. port = getPort(argv=sys.argv)
  158. workers = getWorkers(argv=sys.argv)
  159. start_with_tornado(port,workers)
  160. pass