html_2_kvtree.py 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. #coding:utf8
  2. from bs4 import BeautifulSoup
  3. import json
  4. import re
  5. import traceback
  6. import logging
  7. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  8. logger = logging.getLogger(__name__)
  9. logger.setLevel(logging.INFO)
  10. from BiddingKG.dl.interface.Preprocessing import tableToText
  11. from uuid import uuid4
  12. def log(msg):
  13. '''
  14. @summary:打印信息
  15. '''
  16. logger.info(msg)
  17. class DotDict(dict):
  18. def __getattr__(self,name):
  19. try:
  20. return self[name]
  21. except KeyError:
  22. raise AttributeError("No attribute '%s'" % name)
  23. def __setattr__(self,name,value):
  24. self[name] = value
  25. def get_tables(soup,dict_table = None):
  26. is_first = False
  27. if dict_table is None:
  28. dict_table = {"children":[]}
  29. is_first = True
  30. if soup and soup.name:
  31. childs = soup.contents
  32. else:
  33. childs = []
  34. # tr+tbody
  35. _flag = False
  36. if len(childs)>=2:
  37. if childs[0].name=="tr" and childs[1].name=="tbody":
  38. childs[1].insert(0,copy.copy(childs[0]))
  39. childs[0].decompose()
  40. _flag = True
  41. childs_bak = childs
  42. # tbody+tbody
  43. _flag = False
  44. if soup and soup.name:
  45. childs = soup.find_all("tbody",recursive=False)
  46. if len(childs)>=2:
  47. if childs[0].name=="tbody" and childs[1].name=="tbody":
  48. child0_tr = childs[0].find_all("tr",recursive=False)
  49. has_td_count = 0
  50. tr_line = None
  51. for tr in child0_tr:
  52. if len(tr.find_all("td",recursive=False))>0:
  53. has_td_count += 1
  54. tr_line = tr
  55. if has_td_count==1:
  56. childs[1].insert(0,copy.copy(tr_line))
  57. childs[0].decompose()
  58. _flag = True
  59. childs = childs_bak
  60. for child in childs:
  61. _d = {"children":[]}
  62. if child.name in ("table","tbody"):
  63. if len(child.find_all("tr",recursive=False))>0:
  64. # _d["table"] = str(child)
  65. _d["table"] = child
  66. dict_table["children"].append(_d)
  67. child_dict_table = get_tables(child,_d)
  68. if is_first:
  69. if soup.name in ("table","tbody"):
  70. if not _flag:
  71. if len(soup.find_all("tr",recursive=False))>0:
  72. # dict_table["table"] = str(soup)
  73. dict_table["table"] = soup
  74. dict_table = squeeze_tables(dict_table)
  75. return dict_table
  76. def squeeze_tables(dict_table):
  77. _i = -1
  78. new_children = []
  79. for child in dict_table["children"]:
  80. _i += 1
  81. child_table = squeeze_tables(child)
  82. if child_table is not None:
  83. new_children.append(child_table)
  84. if dict_table.get("table") is not None:
  85. if len(new_children)>0:
  86. dict_table["children"] = new_children
  87. else:
  88. del dict_table["children"]
  89. return dict_table
  90. if len(new_children)==1:
  91. return new_children[0]
  92. if len(new_children)>1:
  93. dict_table["children"] = new_children
  94. return dict_table
  95. return None
  96. def table_to_tree(soup,json_obj=None):
  97. if json_obj is None:
  98. json_obj = DotDict({"tag": "table","children":[]})
  99. dict_table = get_tables(soup)
  100. children = dict_table.get("children",[])
  101. for child in children:
  102. _d = DotDict({"tag": "table","children":[]})
  103. json_obj["children"].append(_d)
  104. table = child.get("table")
  105. if table is not None:
  106. table_id = str(uuid4())
  107. table_to_tree(table,_d)
  108. table = dict_table.get("table")
  109. if table is not None:
  110. table_id = str(uuid4())
  111. json_obj["table_id"] = table_id
  112. soup, kv_list, text = tableToText(table,return_kv=True)
  113. _flag = False
  114. if soup and soup.name:
  115. if soup.contents:
  116. _flag = True
  117. soup.contents[0].insert_before(table_id)
  118. if not _flag:
  119. soup.insert_before(table_id)
  120. json_obj["text"] = text
  121. json_obj["kv"] = kv_list
  122. for _d in kv_list:
  123. _d["position"] = {"key_begin_sentence":0,
  124. "key_begin_sentence_start":_d.get("key_sen_index",0),
  125. "key_end_sentence":0,
  126. "key_end_sentence_end":_d.get("key_sen_index",0)+len(_d.get("key","")),
  127. "value_begin_sentence":0,
  128. "value_begin_sentence_start":_d.get("value_sen_index",0),
  129. "value_end_sentence":0,
  130. "value_end_sentence_end":_d.get("value_sen_index",0)+len(_d.get("value",""))
  131. }
  132. if "key_sen_index" in _d:
  133. _d.pop("key_sen_index")
  134. if "value_sen_index" in _d:
  135. _d.pop("value_sen_index")
  136. return json_obj
  137. def update_table_position(table,sentence_index):
  138. def get_table_idx_lengths(list_table_id,index):
  139. _length = 0
  140. for _d in list_table_id:
  141. table_id = _d.get("table_id")
  142. idx = _d.get("idx",-1)
  143. if idx>=0 and _idx<=index:
  144. _length += len(table_id)
  145. return _length
  146. def get_sentence_index(list_sent_span,idx):
  147. list_sent_span.sort(key=lambda x:x[0])
  148. for _i in range(len(list_sent_span)):
  149. if list_sent_span[_i][0]<=idx and idx<=list_sent_span[_i][1]:
  150. return _i
  151. return 0
  152. def get_list_tables(table,list_table=[]):
  153. table_id = table.get("table_id")
  154. if table_id:
  155. list_table.append(table)
  156. childs = table.get("children",[])
  157. for child in childs:
  158. get_list_tables(child,list_table)
  159. return list_table
  160. tables = get_list_tables(table)
  161. if tables:
  162. list_table_id = []
  163. text = tables[0].get("text","")
  164. for table in tables:
  165. table_id = table.get("table_id")
  166. if table_id:
  167. _idx = text.find(table_id)
  168. list_table_id.append({"table_id":table_id,"idx":_idx})
  169. if _idx>=0:
  170. kv_list = table.get("kv",[])
  171. for _d in kv_list:
  172. _d["position"]["key_begin_sentence_start"] += _idx
  173. _d["position"]["key_end_sentence_end"] += _idx
  174. _d["position"]["value_begin_sentence_start"] += _idx
  175. _d["position"]["value_end_sentence_end"] += _idx
  176. # remove table_id
  177. for table in tables:
  178. table_id = table.get("table_id")
  179. if table_id:
  180. kv_list = table.get("kv",[])
  181. for _d in kv_list:
  182. _length = get_table_idx_lengths(list_table_id,_d["position"]["key_begin_sentence_start"])
  183. _d["position"]["key_begin_sentence_start"] -= _length
  184. _length = get_table_idx_lengths(list_table_id,_d["position"]["key_end_sentence_end"])
  185. _d["position"]["key_end_sentence_end"] -= _length
  186. _length = get_table_idx_lengths(list_table_id,_d["position"]["value_begin_sentence_start"])
  187. _d["position"]["value_begin_sentence_start"] -= _length
  188. _length = get_table_idx_lengths(list_table_id,_d["position"]["value_end_sentence_end"])
  189. _d["position"]["value_end_sentence_end"] -= _length
  190. for table in tables:
  191. if table.get("table_id"):
  192. text = table.get("text","")
  193. for _d in list_table_id:
  194. table_id = _d.get("table_id")
  195. text = text.replace(table_id,"")
  196. table["text"] = text
  197. # split sentence
  198. text = tables[0].get("text","")
  199. list_sentence = str(text).split("。")
  200. list_sent_span = []
  201. _begin = 0
  202. for _i in range(len(list_sentence)):
  203. list_sentence[_i] += "。"
  204. _end = _begin+len(list_sentence[_i])
  205. list_sent_span.append([_begin,_end])
  206. _begin = _end
  207. tables[0]["sentences"] = list_sentence
  208. for table in tables:
  209. kv_list = table.get("kv",[])
  210. for _d in kv_list:
  211. key_begin_sentence = get_sentence_index(list_sent_span,_d["position"]["key_begin_sentence_start"])
  212. _d["position"]["key_begin_sentence"] = key_begin_sentence+sentence_index
  213. key_end_sentence = get_sentence_index(list_sent_span,_d["position"]["key_end_sentence_end"])
  214. _d["position"]["key_end_sentence"] = key_end_sentence+sentence_index
  215. value_begin_sentence = get_sentence_index(list_sent_span,_d["position"]["value_begin_sentence_start"])
  216. _d["position"]["value_begin_sentence"] = value_begin_sentence+sentence_index
  217. value_end_sentence = get_sentence_index(list_sent_span,_d["position"]["value_end_sentence_end"])
  218. _d["position"]["value_end_sentence"] = value_end_sentence+sentence_index
  219. return sentence_index + len(list_sentence)
  220. return sentence_index
  221. def tree_reposition(tree,sentence_index=None):
  222. if sentence_index is None:
  223. sentence_index = 0
  224. wordOffset_begin = 0
  225. wordOffset_end = 0
  226. for obj in tree:
  227. is_table = True if obj.get("tag","")=="table" else False
  228. if not is_table:
  229. sentence_index += 1
  230. obj["sentence_index"] = sentence_index
  231. obj["sentences"] = [obj.get("text","")]
  232. for _t in obj["sentences"]:
  233. wordOffset_end += len(_t)
  234. obj["wordOffset_begin"] = wordOffset_begin
  235. obj["wordOffset_end"] = wordOffset_end
  236. wordOffset_begin = wordOffset_end
  237. list_kv = obj.get("kv",[])
  238. for _d in list_kv:
  239. _d["position"]["key_begin_sentence"] = sentence_index
  240. _d["position"]["key_end_sentence"] = sentence_index
  241. _d["position"]["value_begin_sentence"] = sentence_index
  242. _d["position"]["value_end_sentence"] = sentence_index
  243. else:
  244. sentence_index += 1
  245. obj["sentence_index"] = sentence_index
  246. obj["sentence_index_start"] = sentence_index
  247. obj["sentences"] = [obj.get("text","")]
  248. sentence_index_end = update_table_position(obj,sentence_index)
  249. obj["sentence_index_end"] = sentence_index_end
  250. sentence_index = sentence_index_end
  251. for _t in obj["sentences"]:
  252. wordOffset_end += len(_t)
  253. obj["wordOffset_begin"] = wordOffset_begin
  254. obj["wordOffset_end"] = wordOffset_end
  255. wordOffset_begin = wordOffset_end
  256. # 递归地将 DOM 转换为 JSON
  257. def dom_to_tree(node):
  258. if node.name: # 如果是标签节点
  259. json_obj = DotDict({"tag": node.name})
  260. if node.attrs:
  261. json_obj["attributes"] = node.attrs
  262. is_table = False
  263. if node.name in ("table","tbody"):
  264. json_obj = table_to_tree(node)
  265. is_table = True
  266. if not is_table:
  267. children = []
  268. for child in node.contents:
  269. _child = dom_to_tree(child)
  270. if _child is not None:
  271. children.append(_child)
  272. if children:
  273. json_obj["children"] = children
  274. json_obj["name"] = json_obj.get("tag")
  275. return json_obj
  276. elif node.string and node.string.strip(): # 如果是纯文本节点
  277. _text = node.string.strip()
  278. _text = re.sub('\xa0','',_text)
  279. list_text = re.split("\s",_text)
  280. _text = ""
  281. for _t in list_text:
  282. if len(_t)<3:
  283. if len(_t)>0:
  284. _text += _t
  285. else:
  286. _text += _t+" "
  287. _text = _text.strip()
  288. return DotDict({"tag":"text","name":"text","text": _text})
  289. return None # 忽略空白字符
  290. def tree_pop_parent(tree):
  291. if isinstance(tree,list):
  292. for child in tree:
  293. tree_pop_parent(child)
  294. if isinstance(tree,dict):
  295. if "parent" in tree:
  296. del tree["parent"]
  297. for child in tree.get("children",[]):
  298. tree_pop_parent(child)
  299. def html_to_tree(html_content):
  300. # 使用 BeautifulSoup 解析 HTML
  301. soup = BeautifulSoup(html_content, "lxml")
  302. dom_tree = dom_to_tree(soup)
  303. extract_kv_from_tree(dom_tree)
  304. list_objs = get_outobjs_from_tree(dom_tree)
  305. tree_reposition(list_objs)
  306. return dom_tree
  307. def print_tree(dom_tree):
  308. # 转换为 JSON 格式
  309. tree_pop_parent(dom_tree)
  310. json_output = json.dumps(dom_tree,ensure_ascii=False, indent=2)
  311. # kv_pattern = "\s*(?P<key>.{,10})[::]\s*(?P<value>[^::。,()]+?)(\s+|$|;|;)(?![\u4e00-\u9fa5]+:)"
  312. kv_pattern = r"(?P<key>[\u4e00-\u9fa5]+):\s*(?P<value>[^\s,。();;]+)"
  313. def get_kv_pattern():
  314. import re
  315. text = """
  316. name: John age: 30 note: invalid;
  317. """
  318. # 正则模式
  319. kv_pattern = r"(?P<key>[a-zA-Z]+)[::](?P<value>.+(?!.*[::]))"
  320. # 提取匹配
  321. matches = re.findall(kv_pattern, text)
  322. # 打印结果
  323. for match in matches:
  324. key, value = match
  325. print("{%s}: {%s}"%(key,value))
  326. def extract_kv_from_sentence(sentence):
  327. list_kv = []
  328. _iter = re.finditer("[::]", sentence)
  329. if _iter:
  330. list_span = []
  331. for iter in _iter:
  332. list_span.append(iter.span())
  333. if len(list_span)==1:
  334. _begin,_end = list_span[0]
  335. if _begin<20 and _end<len(sentence)-1:
  336. _d = DotDict({"key":sentence[0:_begin],"value":sentence[_end:]})
  337. _d["position"] = {"key_begin_sentence":0,
  338. "key_begin_sentence_start":0,
  339. "key_end_sentence":0,
  340. "key_end_sentence_end":_begin,
  341. "value_begin_sentence":0,
  342. "value_begin_sentence_start":_end,
  343. "value_end_sentence":0,
  344. "value_end_sentence_end":len(sentence)
  345. }
  346. list_kv.append(_d)
  347. else:
  348. _begin = 0
  349. _end = len(sentence)-1
  350. iter = re.search(kv_pattern,sentence[_begin:_end])
  351. if iter is not None:
  352. _d = DotDict({})
  353. _d["key"] = iter.group("key")
  354. _d["value"] = iter.group("value")
  355. _d["position"] = {"key_begin_sentence":0,
  356. "key_begin_sentence_start":iter.span("key")[0],
  357. "key_end_sentence":0,
  358. "key_end_sentence_end":iter.span("key")[0]+len(_d.get("key","")),
  359. "value_begin_sentence":0,
  360. "value_begin_sentence_start":iter.span("value")[0],
  361. "value_end_sentence":0,
  362. "value_end_sentence_end":iter.span("value")[0]+len(_d.get("value",""))
  363. }
  364. list_kv.append(_d)
  365. elif len(list_span)>1:
  366. _begin,_end = list_span[0]
  367. if _begin<20 and len(sentence)>100:
  368. _d = DotDict({"key":sentence[0:_begin],"value":sentence[_end:]})
  369. _d["position"] = {"key_begin_sentence":0,
  370. "key_begin_sentence_start":0,
  371. "key_end_sentence":0,
  372. "key_end_sentence_end":_begin,
  373. "value_begin_sentence":0,
  374. "value_begin_sentence_start":_end,
  375. "value_end_sentence":0,
  376. "value_end_sentence_end":len(sentence)
  377. }
  378. list_kv.append(_d)
  379. else:
  380. _begin = 0
  381. for _i in range(len(list_span)-1):
  382. _end = list_span[_i+1][0]
  383. iter = re.search(kv_pattern,sentence[_begin:_end])
  384. _begin = list_span[_i][1]
  385. if iter is not None:
  386. _d = DotDict({})
  387. _d["key"] = iter.group("key")
  388. _d["value"] = iter.group("value")
  389. _d["position"] = {"key_begin_sentence":0,
  390. "key_begin_sentence_start":iter.span("key")[0],
  391. "key_end_sentence":0,
  392. "key_end_sentence_end":iter.span("key")[0]+len(_d.get("key","")),
  393. "value_begin_sentence":0,
  394. "value_begin_sentence_start":iter.span("value")[0],
  395. "value_end_sentence":0,
  396. "value_end_sentence_end":iter.span("value")[0]+len(_d.get("value",""))
  397. }
  398. list_kv.append(_d)
  399. _begin = list_span[-2][1]
  400. _end = len(sentence)
  401. iter = re.search(kv_pattern,sentence[_begin:_end])
  402. if iter is not None:
  403. _d = DotDict({})
  404. _d["key"] = iter.group("key")
  405. _d["value"] = iter.group("value")
  406. _d["position"] = {"key_begin_sentence":0,
  407. "key_begin_sentence_start":iter.span("key")[0],
  408. "key_end_sentence":0,
  409. "key_end_sentence_end":iter.span("key")[0]+len(_d.get("key","")),
  410. "value_begin_sentence":0,
  411. "value_begin_sentence_start":iter.span("value")[0],
  412. "value_end_sentence":0,
  413. "value_end_sentence_end":iter.span("value")[0]+len(_d.get("value",""))
  414. }
  415. list_kv.append(_d)
  416. # for iter in _iter:
  417. # _d = DotDict({})
  418. # _d["key"] = iter.group("key")
  419. # _d["value"] = iter.group("value")
  420. # _d["key_span"] = iter.span("key")
  421. # _d["value_span"] = iter.span("value")
  422. # list_kv.append(_d)
  423. return list_kv
  424. def extract_kv_from_node(node):
  425. list_kv = []
  426. list_text = []
  427. childs = node.get("children",[])
  428. _text = ""
  429. has_br = False
  430. if childs:
  431. for child in childs:
  432. node_name = child.get("tag","")
  433. child_text = child.get("text")
  434. if node_name=="br":
  435. list_text.append([])
  436. has_br = True
  437. if child_text:
  438. if len(list_text)==0:
  439. list_text.append([])
  440. list_text[-1].append(child)
  441. node["kv"] = []
  442. if has_br:
  443. new_children = []
  444. for texts in list_text:
  445. if texts:
  446. _text = "".join([a.get("text") for a in texts])
  447. tag = texts[0]
  448. list_kv = extract_kv_from_sentence(_text)
  449. _n = DotDict({"tag":tag,"name":tag,"text":_text,"children":[],"kv":list_kv})
  450. new_children.append(_n)
  451. node["children"] = new_children
  452. else:
  453. for texts in list_text:
  454. _text = "".join([a.get("text") for a in texts])
  455. if _text:
  456. list_kv = extract_kv_from_sentence(_text)
  457. node["kv"].extend(list_kv)
  458. else:
  459. _text = node.get("text")
  460. if _text:
  461. list_kv = extract_kv_from_sentence(_text)
  462. node["kv"] = list_kv
  463. return list_kv
  464. def get_child_text(node):
  465. _text = node.get("text","")
  466. for child in node.get("children",[]):
  467. _text += get_child_text(child)
  468. return _text
  469. def extract_kv_from_tree(tree):
  470. if isinstance(tree,list):
  471. _count = 0
  472. has_table = False
  473. for child in tree:
  474. _c,_t = extract_kv_from_tree(child)
  475. _count += _c
  476. if _t:
  477. has_table = _t
  478. return _count,has_table
  479. if isinstance(tree,dict):
  480. if tree.get("tag","")!="table":
  481. childs = tree.get("children",[])
  482. if len(childs)>0:
  483. _count = 0
  484. has_table = False
  485. child_has_p_div = False
  486. child_has_br = False
  487. for child in childs:
  488. _c,_t = extract_kv_from_tree(child)
  489. _count += _c
  490. if _t:
  491. has_table = _t
  492. if child.get("tag","") in ("p","div"):
  493. child_has_p_div = True
  494. if child.get("tag","")=="br":
  495. child_has_br = True
  496. if _count==0:
  497. if not has_table and not child_has_p_div and not child_has_br:
  498. _text = get_child_text(tree)
  499. if "children" in tree:
  500. del tree["children"]
  501. tree["text"] = _text
  502. list_kv = extract_kv_from_node(tree)
  503. _count = len(list_kv)
  504. return _count,has_table
  505. if tree.get("tag","") in ("p","div") and not has_table and not child_has_p_div:
  506. if not child_has_br:
  507. _text = get_child_text(tree)
  508. tree["text"] = _text
  509. p_list_kv = extract_kv_from_node(tree)
  510. if len(p_list_kv)>=_count:
  511. if "children" in tree:
  512. del tree["children"]
  513. else:
  514. tree["text"] = ""
  515. return len(p_list_kv),has_table
  516. return _count,has_table
  517. else:
  518. list_kv = extract_kv_from_node(tree)
  519. return len(list_kv),False
  520. else:
  521. return len(tree.get("kv",[])),True
  522. return 0,False
  523. def update_kv_span(list_kv,append_length):
  524. for _d in list_kv:
  525. _d["position"] = {"key_begin_sentence":0,
  526. "key_begin_sentence_start":_d.get("key_sen_index",0),
  527. "key_end_sentence":0,
  528. "key_end_sentence_end":_d.get("key_sen_index",0)+len(_d.get("key","")),
  529. "value_begin_sentence":0,
  530. "value_begin_sentence_start":_d.get("value_sen_index",0),
  531. "value_end_sentence":0,
  532. "value_end_sentence_end":_d.get("value_sen_index",0)+len(_d.get("value",""))
  533. }
  534. _d["position"]["key_begin_sentence_start"] += append_length
  535. _d["position"]["key_end_sentence_end"] += append_length
  536. _d["position"]["value_begin_sentence_start"] += append_length
  537. _d["position"]["value_end_sentence_end"] += append_length
  538. def get_outobjs_from_tree(tree,list_outobjs=None):
  539. is_first = False
  540. if list_outobjs is None:
  541. list_outobjs = []
  542. is_first = True
  543. if isinstance(tree,list):
  544. for child in tree:
  545. get_outobjs_from_tree(child,list_outobjs)
  546. if isinstance(tree,dict):
  547. childs = tree.get("children",[])
  548. _text = tree.get("text","")
  549. is_table = True if tree.get("tag","")=="table" else False
  550. if is_table:
  551. list_outobjs.append(tree)
  552. else:
  553. if _text!="":
  554. tree.name = tree.tag
  555. list_outobjs.append(tree)
  556. for child in childs:
  557. get_outobjs_from_tree(child,list_outobjs)
  558. return list_outobjs
  559. def standard_title_context(_title_context):
  560. return _title_context.replace("(","(").replace(")",")").replace(":",":").replace(":",";").replace(",",".").replace(",",".").replace("、",".").replace(".",".")
  561. def standard_product(sentence):
  562. return sentence.replace("(","(").replace(")",")")
  563. import Levenshtein
  564. import copy
  565. def jaccard_score(source,target):
  566. source_set = set([s for s in source])
  567. target_set = set([s for s in target])
  568. if len(source_set)==0 or len(target_set)==0:
  569. return 0
  570. return max(len(source_set&target_set)/len(source_set),len(source_set&target_set)/len(target_set))
  571. def judge_pur_chinese(keyword):
  572. """
  573. 中文字符的编码范围为: u'\u4e00' -- u'\u9fff:只要在此范围内就可以判断为中文字符串
  574. @param keyword:
  575. @return:
  576. """
  577. # 定义一个需要删除的标点符号字符串列表
  578. remove_chars = '[·’!"\#$%&\'()#!()*+,-./:;<=>?\@,:?¥★、….>【】[]《》?“”‘’\[\\]^_`{|}~]+'
  579. # 利用re.sub来删除中文字符串中的标点符号
  580. strings = re.sub(remove_chars, "", keyword) # 将keyword中文字符串中remove_chars中包含的标点符号替换为空字符串
  581. for ch in strings:
  582. if u'\u4e00' <= ch <= u'\u9fff':
  583. pass
  584. else:
  585. return False
  586. return True
  587. def is_similar(source,target,_radio=None):
  588. source = str(source).lower()
  589. target = str(target).lower()
  590. max_len = max(len(source),len(target))
  591. min_len = min(len(source),len(target))
  592. min_ratio = 90
  593. if min_len>=3:
  594. min_ratio = 87
  595. if min_len>=5:
  596. min_ratio = 85
  597. if _radio is not None:
  598. min_ratio = _radio
  599. # dis_len = abs(len(source)-len(target))
  600. # min_dis = min(max_len*0.2,4)
  601. if min_len==0 and max_len>0:
  602. return False
  603. if max_len<=2:
  604. if source==target:
  605. return True
  606. if min_len<2:
  607. return False
  608. #判断相似度
  609. similar = Levenshtein.ratio(source,target)*100
  610. if similar>=min_ratio:
  611. log("%s and %s similar_jaro %d"%(source,target,similar))
  612. return True
  613. similar_jaro = Levenshtein.jaro(source,target)
  614. if similar_jaro*100>=min_ratio:
  615. log("%s and %s similar_jaro %d"%(source,target,similar_jaro*100))
  616. return True
  617. similar_jarow = Levenshtein.jaro_winkler(source,target)
  618. if similar_jarow*100>=min_ratio:
  619. log("%s and %s similar_jaro %d"%(source,target,similar_jarow*100))
  620. return True
  621. if min_len>=5:
  622. if len(source)==max_len and str(source).find(target)>=0:
  623. return True
  624. elif len(target)==max_len and target.find(source)>=0:
  625. return True
  626. elif jaccard_score(source, target)==1 and judge_pur_chinese(source) and judge_pur_chinese(target):
  627. return True
  628. return False
  629. end_pattern = "商务要求|评分标准|商务条件|商务条件"
  630. _param_pattern = "(产品|技术|清单|配置|参数|具体|明细|项目|招标|货物|服务|规格|工作|具体)[及和与]?(指标|配置|条件|要求|参数|需求|规格|条款|名称及要求)|配置清单|(质量|技术).{,10}要求|验收标准|^(参数|功能)$"
  631. meter_pattern = "[><≤≥±]\d+|\d+(?:[μucmkK微毫千]?[米升LlgGmMΩ]|摄氏度|英寸|度|天|VA|dB|bpm|rpm|kPa|mol|cmH20|%|°|Mpa|Hz|K?HZ|℃|W|min|[*×xX])|[*×xX]\d+|/min|\ds[^a-zA-Z]|GB.{,20}标准|PVC|PP|角度|容积|色彩|自动|流量|外径|轴位|折射率|帧率|柱镜|振幅|磁场|镜片|防漏|强度|允差|心率|倍数|瞳距|底座|色泽|噪音|间距|材质|材料|表面|频率|阻抗|浓度|兼容|防尘|防水|内径|实时|一次性|误差|性能|距离|精确|温度|超温|范围|跟踪|对比度|亮度|[横纵]向|均压|负压|正压|可调|设定值|功能|检测|高度|厚度|宽度|深度|[单双多]通道|效果|指数|模式|尺寸|重量|峰值|谷值|容量|寿命|稳定性|高温|信号|电源|电流|转换率|效率|释放量|转速|离心力|向心力|弯曲|电压|功率|气量|国标|标准协议|灵敏度|最大值|最小值|耐磨|波形|高压|性强|工艺|光源|低压|压力|压强|速度|湿度|重量|毛重|[MLX大中小]+码|净重|颜色|[红橙黄绿青蓝紫]色|不锈钢|输入|输出|噪声|认证|配置"
  632. not_meter_pattern = "投标报价|中标金额|商务部分|公章|分值构成|业绩|详见|联系人|联系电话|合同价|金额|采购预算|资金来源|费用|质疑|评审因素|评审标准|商务资信|商务评分|专家论证意见|评标方法|代理服务费|售后服务|评分类型|评分项目|预算金额|得\d+分|项目金额|详见招标文件|乙方"
  633. def getTrs(tbody):
  634. #获取所有的tr
  635. trs = []
  636. if tbody.name=="table":
  637. body = tbody.find("tbody",recursive=False)
  638. if body is not None:
  639. tbody = body
  640. objs = tbody.find_all(recursive=False)
  641. for obj in objs:
  642. if obj.name=="tr":
  643. trs.append(obj)
  644. if obj.name=="tbody" or obj.name=="table":
  645. for tr in obj.find_all("tr",recursive=False):
  646. trs.append(tr)
  647. return trs
  648. def fixSpan(tbody):
  649. # 处理colspan, rowspan信息补全问题
  650. #trs = tbody.findChildren('tr', recursive=False)
  651. trs = getTrs(tbody)
  652. ths_len = 0
  653. ths = list()
  654. trs_set = set()
  655. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  656. # 遍历每一个tr
  657. for indtr, tr in enumerate(trs):
  658. ths_tmp = tr.findChildren('th', recursive=False)
  659. #不补全含有表格的tr
  660. if len(tr.findChildren('table'))>0:
  661. continue
  662. if len(ths_tmp) > 0:
  663. ths_len = ths_len + len(ths_tmp)
  664. for th in ths_tmp:
  665. ths.append(th)
  666. trs_set.add(tr)
  667. # 遍历每行中的element
  668. tds = tr.findChildren(recursive=False)
  669. for indtd, td in enumerate(tds):
  670. # 若有colspan 则补全同一行下一个位置
  671. if 'colspan' in td.attrs:
  672. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  673. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  674. if col<100 and len(td.get_text())<1000:
  675. td['colspan'] = 1
  676. for i in range(1, col, 1):
  677. td.insert_after(copy.copy(td))
  678. for indtr, tr in enumerate(trs):
  679. ths_tmp = tr.findChildren('th', recursive=False)
  680. #不补全含有表格的tr
  681. if len(tr.findChildren('table'))>0:
  682. continue
  683. if len(ths_tmp) > 0:
  684. ths_len = ths_len + len(ths_tmp)
  685. for th in ths_tmp:
  686. ths.append(th)
  687. trs_set.add(tr)
  688. # 遍历每行中的element
  689. tds = tr.findChildren(recursive=False)
  690. for indtd, td in enumerate(tds):
  691. # 若有rowspan 则补全下一行同样位置
  692. if 'rowspan' in td.attrs:
  693. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  694. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  695. td['rowspan'] = 1
  696. for i in range(1, row, 1):
  697. # 获取下一行的所有td, 在对应的位置插入
  698. if indtr+i<len(trs):
  699. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  700. if len(tds1) >= (indtd) and len(tds1)>0:
  701. if indtd > 0:
  702. tds1[indtd - 1].insert_after(copy.copy(td))
  703. else:
  704. tds1[0].insert_before(copy.copy(td))
  705. elif indtd-2>0 and len(tds1) > 0 and len(tds1) == indtd - 1: # 修正某些表格最后一列没补全
  706. tds1[indtd-2].insert_after(copy.copy(td))
  707. def getTable(tbody):
  708. #trs = tbody.findChildren('tr', recursive=False)
  709. fixSpan(tbody)
  710. trs = getTrs(tbody)
  711. inner_table = []
  712. for tr in trs:
  713. tr_line = []
  714. tds = tr.findChildren(['td','th'], recursive=False)
  715. if len(tds)==0:
  716. tr_line.append([re.sub('\xa0','',tr.get_text()),0]) # 2021/12/21 修复部分表格没有td 造成数据丢失
  717. for td in tds:
  718. tr_line.append([re.sub('\xa0','',td.get_text()),0])
  719. #tr_line.append([td.get_text(),0])
  720. inner_table.append(tr_line)
  721. return inner_table
  722. def extract_products(list_data,_product,_param_pattern = "产品名称|设备材料|采购内存|标的名称|采购内容|(标的|维修|系统|报价构成|商品|产品|物料|物资|货物|设备|采购品|采购条目|物品|材料|印刷品?|采购|物装|配件|资产|耗材|清单|器材|仪器|器械|备件|拍卖物|标的物|物件|药品|药材|药械|货品|食品|食材|品目|^品名|气体|标项|分项|项目|计划|包组|标段|[分子]?包|子目|服务|招标|中标|成交|工程|招标内容)[\))的]?([、\w]{,4}名称|内容|描述)|标的|标项|项目$|商品|产品|物料|物资|货物|设备|采购品|采购条目|物品|材料|印刷品|物装|配件|资产|招标内容|耗材|清单|器材|仪器|器械|备件|拍卖物|标的物|物件|药品|药材|药械|货品|食品|食材|菜名|^品目$|^品名$|^名称|^内容$"):
  723. _product = standard_product(_product)
  724. list_result = []
  725. list_table_products = []
  726. for _data_i in range(len(list_data)):
  727. _data = list_data[_data_i]
  728. _type = _data["type"]
  729. _text = _data["text"]
  730. if _type=="table":
  731. list_table = _data["list_table"]
  732. if list_table is None:
  733. continue
  734. _check = True
  735. max_length = max([len(a) for a in list_table])
  736. min_length = min([len(a) for a in list_table])
  737. if min_length<max_length/2:
  738. continue
  739. list_head_index = []
  740. _begin_index = 0
  741. head_cell_text = ""
  742. for line_i in range(len(list_table[:2])):
  743. line = list_table[line_i]
  744. line_text = ",".join([cell[0] for cell in line])
  745. for cell_i in range(len(line)):
  746. cell = line[cell_i]
  747. cell_text = cell[0]
  748. if len(cell_text)<10 and re.search(_param_pattern,cell_text) is not None and re.search("单价|数量|预算|限价|总价|品牌|规格|型号|用途|要求|采购量",line_text) is not None:
  749. _begin_index = line_i+1
  750. list_head_index.append(cell_i)
  751. for line_i in range(len(list_table)):
  752. line = list_table[line_i]
  753. for cell_i in list_head_index:
  754. if cell_i>=len(line):
  755. continue
  756. cell = line[cell_i]
  757. cell_text = cell[0]
  758. head_cell_text += cell_text
  759. # print("===head_cell_text",head_cell_text)
  760. if re.search("招标人|采购人|项目编号|项目名称|金额|^\d+$",head_cell_text) is not None:
  761. list_head_index = []
  762. for line in list_table:
  763. line_text = ",".join([cell[0] for cell in line])
  764. for cell_i in range(len(line)):
  765. cell = line[cell_i]
  766. cell_text = cell[0]
  767. if cell_text is not None and _product is not None and len(cell_text)<len(_product)*10 and cell_text.find(_product)>=0 and re.search("单价|数量|总价|规格|品牌|型号|用途|要求|采购量",line_text) is not None:
  768. list_head_index.append(cell_i)
  769. list_head_index = list(set(list_head_index))
  770. if len(list_head_index)>0:
  771. has_number = False
  772. for cell_i in list_head_index:
  773. table_products = []
  774. for line_i in range(_begin_index,len(list_table)):
  775. line = list_table[line_i]
  776. for _i in range(len(line)):
  777. cell = line[_i]
  778. cell_text = cell[0]
  779. if re.search("^\d+$",cell_text) is not None:
  780. has_number = True
  781. if cell_i>=len(line):
  782. continue
  783. cell = line[cell_i]
  784. cell_text = cell[0]
  785. if re.search(_param_pattern,cell_text) is None or has_number:
  786. if re.search("^[\da-zA-Z]+$",cell_text) is None:
  787. table_products.append(cell_text)
  788. if len(table_products)>0:
  789. logger.debug("table products %s"%(str(table_products)))
  790. if min([len(x) for x in table_products])>0 and max([len(x) for x in table_products])<=30:
  791. if re.search("招标人|代理人|预算|数量|交货期|品牌|产地","".join(table_products)) is None:
  792. list_table_products.append(table_products)
  793. _find = False
  794. for table_products in list_table_products:
  795. for _p in table_products:
  796. if is_similar(_product,_p,90):
  797. _find = True
  798. logger.debug("similar table_products %s"%(str(table_products)))
  799. list_result = list(set([a for a in table_products if len(a)>1 and len(a)<20 and re.search("费用|预算|合计|金额|万元|运费|^其他$",a) is None]))
  800. break
  801. if not _find:
  802. for table_products in list_table_products:
  803. list_result.extend(table_products)
  804. list_result = list(set([a for a in list_result if len(a)>1 and len(a)<30 and re.search("费用|预算|合计|金额|万元|运费",a) is None]))
  805. return list_result
  806. def get_childs(childs, max_depth=None):
  807. list_data = []
  808. for _child in childs:
  809. list_data.append(_child)
  810. childs2 = _child.get("child_title",[])
  811. if len(childs2)>0 and (max_depth==None or max_depth>0):
  812. for _child2 in childs2:
  813. if max_depth != None:
  814. list_data.extend(get_childs([_child2], max_depth-1))
  815. else:
  816. list_data.extend(get_childs([_child2], None))
  817. return list_data
  818. class Html2KVTree():
  819. def __init__(self,_html,auto_merge_table=True,list_obj = []):
  820. if _html is None:
  821. _html = ""
  822. self.html = _html
  823. self.auto_merge_table = auto_merge_table
  824. if list_obj:
  825. self.list_obj = list_obj
  826. else:
  827. _tree = html_to_tree(html_content)
  828. self.list_obj = get_outobjs_from_tree(_tree)
  829. # for obj in self.list_obj:
  830. # print("obj",obj.get_text()[:20])
  831. self.tree = self.buildParsetree(self.list_obj,[],auto_merge_table)
  832. # #识别目录树
  833. # self.print_tree(self.tree,"-|")
  834. def get_soup_objs(self,soup,list_obj=None):
  835. if list_obj is None:
  836. list_obj = []
  837. childs = soup.find_all(recursive=False)
  838. for _obj in childs:
  839. childs1 = _obj.find_all(recursive=False)
  840. if len(childs1)==0 or len(_obj.get_text())<40 or _obj.name=="table":
  841. list_obj.append(_obj)
  842. elif _obj.name=="p":
  843. list_obj.append(_obj)
  844. else:
  845. self.get_soup_objs(_obj,list_obj)
  846. return list_obj
  847. def fix_tree(self,_product):
  848. products = extract_products(self.tree,_product)
  849. if len(products)>0:
  850. self.tree = self.buildParsetree(self.list_obj,products,self.auto_merge_table)
  851. def print_tree(self,tree,append="",set_tree_id=None):
  852. if set_tree_id is None:
  853. set_tree_id = set()
  854. if append=="":
  855. for t in tree:
  856. logger.debug("%s text:%s title:%s title_text:%s before:%s after%s product:%s"%("==>",t["text"][:50],t["sentence_title"],t["sentence_title_text"],t["title_before"],t["title_after"],t["has_product"]))
  857. for t in tree:
  858. _id = id(t)
  859. if _id in set_tree_id:
  860. continue
  861. set_tree_id.add(_id)
  862. logger.info("%s text:%s title:%s title_text:%s before:%s after%s product:%s kv:%s"%(append,t["text"][:50],t["sentence_title"],t["sentence_title_text"],t["title_before"],t["title_after"],t["has_product"],str(t["kv"])))
  863. childs = t["child_title"]
  864. self.print_tree(childs,append=append+"-|",set_tree_id=set_tree_id)
  865. def is_title_first(self,title):
  866. if title in ("一","1","Ⅰ","a","A"):
  867. return True
  868. return False
  869. def find_title_by_pattern(self,_text,_pattern="(^|★|▲|:|:|\s+)(?P<title_1>(?P<title_1_index_0_0>第?)(?P<title_1_index_1_1>[一二三四五六七八九十ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]+)(?P<title_1_index_2_0>[、章册包标部.::]+))|" \
  870. "([\s★▲\*]*)(?P<title_3>(?P<title_3_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?)(?P<title_3_index_0_1>[ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]+)(?P<title_3_index_0_2>[、章册包标部.::]+))|" \
  871. "([\s★▲\*]*)(?P<title_4>(?P<title_4_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?第?)(?P<title_4_index_1_1>[一二三四五六七八九十]+)(?P<title_4_index_2_0>[节章册部\.::、、]+))|" \
  872. "([\s★▲\*]*)(?P<title_5>(?P<title_5_index_0_0>^)(?P<title_5_index_1_1>[一二三四五六七八九十]+)(?P<title_5_index_2_0>)[^一二三四五六七八九十节章册部\.::、])|" \
  873. "([\s★▲\*]*)(?P<title_12>(?P<title_12_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?\d{1,2}[\..、\s\-]\d{1,2}[\..、\s\-]\d{1,2}[\..、\s\-]\d{1,2}[\..、\s\-])(?P<title_12_index_1_1>\d{1,2})(?P<title_12_index_2_0>[\..、\s\-]?))|"\
  874. "([\s★▲\*]*)(?P<title_11>(?P<title_11_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?\d{1,2}[\..、\s\-]\d{1,2}[\..、\s\-]\d{1,2}[\..、\s\-])(?P<title_11_index_1_1>\d{1,2})(?P<title_11_index_2_0>[\..、\s\-]?))|" \
  875. "([\s★▲\*]*)(?P<title_10>(?P<title_10_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?\d{1,2}[\..、\s\-]\d{1,2}[\..、\s\-])(?P<title_10_index_1_1>\d{1,2})(?P<title_10_index_2_0>[\..、\s\-]?))|" \
  876. "([\s★▲\*]*)(?P<title_7>(?P<title_7_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?\d{1,2}[\..\s\-])(?P<title_7_index_1_1>\d{1,2})(?P<title_7_index_2_0>[\..包标::、\s\-]*))|" \
  877. "(^[\s★▲\*]*)(?P<title_6>(?P<title_6_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?包?)(?P<title_6_index_0_1>\d{1,2})(?P<title_6_index_2_0>[\..、\s\-包标]*))|" \
  878. "([\s★▲\*]*)(?P<title_15>(?P<title_15_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?[((]?)(?P<title_15_index_1_1>\d{1,2})(?P<title_15_index_2_0>[))包标\..::、]+))|" \
  879. "([\s★▲\*]+)(?P<title_17>(?P<title_17_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?[((]?)(?P<title_17_index_1_1>[a-zA-Z]+)(?P<title_17_index_2_0>[))包标\..::、]+))|" \
  880. "([\s★▲\*]*)(?P<title_19>(?P<title_19_index_0_0>[^一二三四五六七八九十\dⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]{,3}?[((]?)(?P<title_19_index_1_1>[一二三四五六七八九十ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]+)(?P<title_19_index_2_0>[))]))"
  881. ):
  882. _se = re.search(_pattern,_text)
  883. groups = []
  884. if _se is not None:
  885. e = _se.end()
  886. if re.search('(时间|日期|编号|账号|号码|手机|价格|\w价|人民币|金额|得分|分值|总分|满分|最高得|扣|减|数量|评委)[::]?\d', _se.group(0)) or (re.search('\d[.::]?$', _se.group(0)) and re.search('^[\d年月日万元天个分秒台条A-Za-z]|^(小时)', _text[e:])):
  887. return None
  888. elif re.match('[二三四五六七八九十]\w{1,2}[市区县]|五金|四川|八疆|九龙|[一二三四五六七八九十][层天标包]', _text) and re.match('[一二三四五六七八九十]', _se.group(0)): # 289765335 排除三明市等开头作为大纲
  889. return None
  890. elif re.search('^[\u4e00-\u9fa5]+[::]', _text[:e]):
  891. return None
  892. _gd = _se.groupdict()
  893. for k,v in _gd.items():
  894. if v is not None:
  895. groups.append((k,v))
  896. if len(groups):
  897. groups.sort(key=lambda x:x[0])
  898. return groups
  899. return None
  900. def make_increase(self,_sort,_title,_add=1):
  901. if len(_title)==0 and _add==0:
  902. return ""
  903. if len(_title)==0 and _add==1:
  904. return _sort[0]
  905. _index = _sort.index(_title[-1])
  906. next_index = (_index+_add)%len(_sort)
  907. next_chr = _sort[next_index]
  908. if _index==len(_sort)-1:
  909. _add = 1
  910. else:
  911. _add = 0
  912. return next_chr+self.make_increase(_sort,_title[:-1],_add)
  913. def get_next_title(self,_title):
  914. if re.search("^\d+$",_title) is not None:
  915. return str(int(_title)+1)
  916. if re.search("^[一二三四五六七八九十百]+$",_title) is not None:
  917. if _title[-1]=="十":
  918. return _title+"一"
  919. if _title[-1]=="百":
  920. return _title+"零一"
  921. if _title[-1]=="九":
  922. if len(_title)==1:
  923. return "十"
  924. if len(_title)==2:
  925. if _title[0]=="十":
  926. return "二十"
  927. if len(_title)==3:
  928. if _title[0]=="九":
  929. return "一百"
  930. else:
  931. _next_title = self.make_increase(['一','二','三','四','五','六','七','八','九','十'],re.sub("[十百]",'',_title[0]))
  932. return _next_title+"十"
  933. _next_title = self.make_increase(['一','二','三','四','五','六','七','八','九','十'],re.sub("[十百]",'',_title))
  934. _next_title = list(_next_title)
  935. _next_title.reverse()
  936. if _next_title[-1]!="十":
  937. if len(_next_title)>=2:
  938. _next_title.insert(-1,'十')
  939. if len(_next_title)>=4:
  940. _next_title.insert(-3,'百')
  941. if _title[0]=="十":
  942. if _next_title=="十":
  943. _next_title = ["二","十"]
  944. _next_title.insert(0,"十")
  945. _next_title = "".join(_next_title)
  946. return _next_title
  947. if re.search("^[a-z]+$",_title) is not None:
  948. _next_title = self.make_increase([chr(i+ord('a')) for i in range(26)],_title)
  949. _next_title = list(_next_title)
  950. _next_title.reverse()
  951. return "".join(_next_title)
  952. if re.search("^[A-Z]+$",_title) is not None:
  953. _next_title = self.make_increase([chr(i+ord('A')) for i in range(26)],_title)
  954. _next_title = list(_next_title)
  955. _next_title.reverse()
  956. return "".join(_next_title)
  957. if re.search("^[ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ]$",_title) is not None:
  958. _sort = ["Ⅰ","Ⅱ","Ⅲ","Ⅳ","Ⅴ","Ⅵ","Ⅶ","Ⅷ","Ⅸ","Ⅹ","Ⅺ","Ⅻ"]
  959. _index = _sort.index(_title)
  960. if _index<len(_sort)-1:
  961. return _sort[_index+1]
  962. return None
  963. def count_title_before(self,list_obj):
  964. dict_before = {}
  965. dict_sentence_count = {}
  966. illegal_sentence = set()
  967. for obj_i in range(len(list_obj)):
  968. obj = list_obj[obj_i]
  969. _type = "sentence"
  970. _text = obj.text.strip()
  971. if obj.name=="table":
  972. _type = "table"
  973. _text = str(obj)
  974. _append = False
  975. if _type=="sentence":
  976. if len(_text)>10 and len(_text)<100:
  977. if _text not in dict_sentence_count:
  978. dict_sentence_count[_text] = 0
  979. dict_sentence_count[_text] += 1
  980. if re.search("\d+页",_text) is not None:
  981. illegal_sentence.add(_text)
  982. elif len(_text)<10:
  983. if re.search("第\d+页",_text) is not None:
  984. illegal_sentence.add(_text)
  985. sentence_groups = self.find_title_by_pattern(_text[:10])
  986. if sentence_groups:
  987. # c062f53cf83401e671822003d63c1828print("sentence_groups",sentence_groups)
  988. sentence_title = sentence_groups[0][0]
  989. sentence_title_text = sentence_groups[0][1]
  990. title_index = sentence_groups[-2][1]
  991. title_before = sentence_groups[1][1].replace("(","(").replace(":",":").replace(":",";").replace(",",".").replace(",",".").replace("、",".")
  992. title_after = sentence_groups[-1][1].replace(")",")").replace(":",":").replace(":",";").replace(",",".").replace(",",".").replace("、",".")
  993. next_index = self.get_next_title(title_index)
  994. if title_before not in dict_before:
  995. dict_before[title_before] = 0
  996. dict_before[title_before] += 1
  997. for k,v in dict_sentence_count.items():
  998. if v>10:
  999. illegal_sentence.add(k)
  1000. return dict_before,illegal_sentence
  1001. def is_page_no(self,sentence):
  1002. if len(sentence)<10:
  1003. if re.search("\d+页|^\-\d+\-$",sentence) is not None:
  1004. return True
  1005. def block_tree(self,childs):
  1006. for child in childs:
  1007. if not child["block"]:
  1008. child["block"] = True
  1009. childs2 = child["child_title"]
  1010. self.block_tree(childs2)
  1011. def buildParsetree(self,list_obj,products=[],auto_merge_table=True,auto_append=False):
  1012. self.parseTree = None
  1013. trees = []
  1014. list_length = []
  1015. for obj in list_obj[:200]:
  1016. if obj.name!="table":
  1017. list_length.append(len(obj.text))
  1018. if len(list_length)>0:
  1019. max_length = max(list_length)
  1020. else:
  1021. max_length = 40
  1022. max_length = min(max_length,40)
  1023. logger.debug("%s:%d"%("max_length",max_length))
  1024. list_data = []
  1025. last_table_index = None
  1026. last_table_columns = None
  1027. last_table = None
  1028. dict_before,illegal_sentence = self.count_title_before(list_obj)
  1029. for obj_i in range(len(list_obj)):
  1030. obj = list_obj[obj_i]
  1031. # logger.debug("==obj %s"%obj.text[:20])
  1032. _type = "sentence"
  1033. _text = standard_product(obj.text)
  1034. if obj.name=="table":
  1035. _type = "table"
  1036. _text = standard_product(str(obj))
  1037. _append = False
  1038. sentence_title = None
  1039. sentence_title_text = None
  1040. sentence_groups = None
  1041. title_index = None
  1042. next_index = None
  1043. parent_title = None
  1044. title_before = None
  1045. title_after = None
  1046. title_next = None
  1047. childs = []
  1048. # new
  1049. sentence_index = obj.sentence_index
  1050. wordOffset_begin = obj.wordOffset_begin
  1051. wordOffset_end = obj.wordOffset_end
  1052. sentences = obj.sentences
  1053. list_kv = obj.get("kv",[])
  1054. table_id = obj.get("table_id")
  1055. list_table = None
  1056. block = False
  1057. has_product = False
  1058. position = obj.get("position",{})
  1059. if _type=="sentence":
  1060. if _text in illegal_sentence:
  1061. continue
  1062. sentence_groups = self.find_title_by_pattern(_text[:10])
  1063. if sentence_groups:
  1064. title_before = standard_title_context(sentence_groups[1][1])
  1065. title_after = sentence_groups[-1][1]
  1066. sentence_title_text = sentence_groups[0][1]
  1067. other_text = _text.replace(sentence_title_text,"")
  1068. if (title_before in dict_before and dict_before[title_before]>1) or title_after!="":
  1069. sentence_title = sentence_groups[0][0]
  1070. title_index = sentence_groups[-2][1]
  1071. next_index = self.get_next_title(title_index)
  1072. other_text = _text.replace(sentence_title_text,"")
  1073. for p in products:
  1074. if other_text.strip()==p.strip():
  1075. has_product = True
  1076. else:
  1077. _fix = False
  1078. for p in products:
  1079. if other_text.strip()==p.strip():
  1080. title_before = "=产品"
  1081. sentence_title = "title_0"
  1082. sentence_title_text = p
  1083. title_index = "0"
  1084. title_after = "产品="
  1085. next_index = "0"
  1086. _fix = True
  1087. has_product = True
  1088. break
  1089. if not _fix:
  1090. title_before = None
  1091. title_after = None
  1092. sentence_title_text = None
  1093. else:
  1094. if len(_text)<40 and re.search(_param_pattern,_text) is not None:
  1095. for p in products:
  1096. if _text.find(p)>=0:
  1097. title_before = "=产品"
  1098. sentence_title = "title_0"
  1099. sentence_title_text = p
  1100. title_index = "0"
  1101. title_after = "产品="
  1102. next_index = "0"
  1103. _fix = True
  1104. has_product = True
  1105. break
  1106. # 合并两个非标题句子 20241106 注销,由于 485441521 招标内容结束位置不对
  1107. if auto_append:
  1108. if _type=="sentence":
  1109. if sentence_title is None and len(list_data)>0 and list_data[-1]["sentence_title"] is not None and list_data[-1]["line_width"]>=max_length*0.6:
  1110. list_data[-1]["text"] += _text
  1111. list_data[-1]["line_width"] = len(_text)
  1112. update_kv_span(list_kv,len(_text))
  1113. list_data[-1]["kv"].extend(list_kv)
  1114. list_data[-1]["sentences"].extend(sentences)
  1115. _append = True
  1116. elif sentence_title is None and len(list_data)>0 and _type==list_data[-1]["type"]:
  1117. if list_data[-1]["line_width"]>=max_length*0.7:
  1118. list_data[-1]["text"] += _text
  1119. list_data[-1]["line_width"] = len(_text)
  1120. update_kv_span(list_kv,len(_text))
  1121. list_data[-1]["kv"].extend(list_kv)
  1122. list_data[-1]["sentences"].extend(sentences)
  1123. _append = True
  1124. if not _append:
  1125. _data = {"type":_type,"tag":obj.get("tag"),"table_id":table_id, "text":_text,"sentences":sentences,"list_table":list_table,
  1126. "line_width":len(_text),"sentence_title":sentence_title,"title_index":title_index,
  1127. "sentence_title_text":sentence_title_text,"sentence_groups":sentence_groups,"parent_title":parent_title,
  1128. "child_title":childs,"title_before":title_before,"title_after":title_after,"title_next":title_next,"next_index":next_index,
  1129. "block":block,"has_product":has_product,
  1130. "sentence_index":sentence_index,"wordOffset_begin":wordOffset_begin,"wordOffset_end":wordOffset_end,
  1131. "kv":list_kv,"position":position
  1132. }
  1133. if sentence_title is not None:
  1134. if len(list_data)>0:
  1135. if self.is_title_first(title_index):
  1136. for i in range(1,len(list_data)+1):
  1137. _d = list_data[-i]
  1138. if _d["sentence_title"] is not None:
  1139. _data["parent_title"] = _d
  1140. _d["child_title"].append(_data)
  1141. break
  1142. else:
  1143. _find = False
  1144. for i in range(1,len(list_data)+1):
  1145. if _find:
  1146. break
  1147. _d = list_data[-i]
  1148. if _d.get("sentence_title")==sentence_title and title_before==_d["title_before"] and title_after==_d["title_after"]:
  1149. if _d["next_index"]==title_index and _d["title_next"] is None and not _d["block"]:
  1150. _data["parent_title"] = _d["parent_title"]
  1151. _d["title_next"] = _data
  1152. if len(_d["child_title"])>0:
  1153. _d["child_title"][-1]["title_next"] = ""
  1154. self.block_tree(_d["child_title"])
  1155. if _d["parent_title"] is not None:
  1156. _d["parent_title"]["child_title"].append(_data)
  1157. _find = True
  1158. break
  1159. for i in range(1,len(list_data)+1):
  1160. if _find:
  1161. break
  1162. _d = list_data[-i]
  1163. if i==1 and not _d["block"] and _d.get("sentence_title")==sentence_title and title_before==_d["title_before"] and title_after==_d["title_after"]:
  1164. _data["parent_title"] = _d["parent_title"]
  1165. _d["title_next"] = _data
  1166. if len(_d["child_title"])>0:
  1167. _d["child_title"][-1]["title_next"] = ""
  1168. self.block_tree(_d["child_title"])
  1169. if _d["parent_title"] is not None:
  1170. _d["parent_title"]["child_title"].append(_data)
  1171. _find = True
  1172. break
  1173. title_before = standard_title_context(title_before)
  1174. title_after = standard_title_context(title_after)
  1175. for i in range(1,len(list_data)+1):
  1176. if _find:
  1177. break
  1178. _d = list_data[-i]
  1179. if _d.get("sentence_title")==sentence_title and title_before==standard_title_context(_d["title_before"]) and title_after==standard_title_context(_d["title_after"]):
  1180. if _d["next_index"]==title_index and _d["title_next"] is None and not _d["block"]:
  1181. _data["parent_title"] = _d["parent_title"]
  1182. _d["title_next"] = _data
  1183. if len(_d["child_title"])>0:
  1184. _d["child_title"][-1]["title_next"] = ""
  1185. self.block_tree(_d["child_title"])
  1186. if _d["parent_title"] is not None:
  1187. _d["parent_title"]["child_title"].append(_data)
  1188. _find = True
  1189. break
  1190. for i in range(1,len(list_data)+1):
  1191. if _find:
  1192. break
  1193. _d = list_data[-i]
  1194. if not _d["block"] and _d.get("sentence_title")==sentence_title and title_before==standard_title_context(_d["title_before"]) and title_after==standard_title_context(_d["title_after"]):
  1195. _data["parent_title"] = _d["parent_title"]
  1196. _d["title_next"] = _data
  1197. if len(_d["child_title"])>0:
  1198. _d["child_title"][-1]["title_next"] = ""
  1199. # self.block_tree(_d["child_title"])
  1200. if _d["parent_title"] is not None:
  1201. _d["parent_title"]["child_title"].append(_data)
  1202. _find = True
  1203. break
  1204. for i in range(1,min(len(list_data)+1,20)):
  1205. if _find:
  1206. break
  1207. _d = list_data[-i]
  1208. if not _d["block"] and _d.get("sentence_title")==sentence_title and title_before==standard_title_context(_d["title_before"]):
  1209. _data["parent_title"] = _d["parent_title"]
  1210. _d["title_next"] = _data
  1211. if len(_d["child_title"])>0:
  1212. _d["child_title"][-1]["title_next"] = ""
  1213. # self.block_tree(_d["child_title"])
  1214. if _d["parent_title"] is not None:
  1215. _d["parent_title"]["child_title"].append(_data)
  1216. _find = True
  1217. break
  1218. if not _find:
  1219. if len(list_data)>0:
  1220. for i in range(1,len(list_data)+1):
  1221. _d = list_data[-i]
  1222. if _d.get("sentence_title") is not None:
  1223. _data["parent_title"] = _d
  1224. _d["child_title"].append(_data)
  1225. break
  1226. else:
  1227. if len(list_data)>0:
  1228. for i in range(1,len(list_data)+1):
  1229. _d = list_data[-i]
  1230. if _d.get("sentence_title") is not None:
  1231. _data["parent_title"] = _d
  1232. _d["child_title"].append(_data)
  1233. break
  1234. list_data.append(_data)
  1235. for _data in list_data:
  1236. childs = _data["child_title"]
  1237. for c_i in range(len(childs)):
  1238. cdata = childs[c_i]
  1239. if cdata["has_product"]:
  1240. continue
  1241. else:
  1242. if c_i>0:
  1243. last_cdata = childs[c_i-1]
  1244. if cdata["sentence_title"] is not None and last_cdata["sentence_title"] is not None and last_cdata["title_before"]==cdata["title_before"] and last_cdata["title_after"]==cdata["title_after"] and last_cdata["has_product"]:
  1245. cdata["has_product"] = True
  1246. if c_i<len(childs)-1:
  1247. last_cdata = childs[c_i+1]
  1248. if cdata["sentence_title"] is not None and last_cdata["sentence_title"] is not None and last_cdata["title_before"]==cdata["title_before"] and last_cdata["title_after"]==cdata["title_after"] and last_cdata["has_product"]:
  1249. cdata["has_product"] = True
  1250. for c_i in range(len(childs)):
  1251. cdata = childs[len(childs)-1-c_i]
  1252. if cdata["has_product"]:
  1253. continue
  1254. else:
  1255. if c_i>0:
  1256. last_cdata = childs[c_i-1]
  1257. if cdata["sentence_title"] is not None and last_cdata["sentence_title"] is not None and last_cdata["title_before"]==cdata["title_before"] and last_cdata["title_after"]==cdata["title_after"] and last_cdata["has_product"]:
  1258. cdata["has_product"] = True
  1259. if c_i<len(childs)-1:
  1260. last_cdata = childs[c_i+1]
  1261. if cdata["sentence_title"] is not None and last_cdata["sentence_title"] is not None and last_cdata["title_before"]==cdata["title_before"] and last_cdata["title_after"]==cdata["title_after"] and last_cdata["has_product"]:
  1262. cdata["has_product"] = True
  1263. return list_data
  1264. def get_tree_sentence(self):
  1265. list_sentence = []
  1266. for obj in self.tree:
  1267. list_sentence.extend(obj.get("sentences",[]))
  1268. return list_sentence
  1269. def extract_kvs_from_table(self,list_pattern,tree=None,result_kv=None):
  1270. if result_kv is None:
  1271. result_kv = [[] for i in list_pattern]
  1272. try:
  1273. for pattern in list_pattern:
  1274. re.compile(pattern)
  1275. except Exception as e:
  1276. log("list_pattern error: "+str(e))
  1277. return result_kv
  1278. if tree is None:
  1279. tree = self.tree
  1280. for obj in tree:
  1281. is_table = True if obj.get("tag","")=="table" else False
  1282. if is_table:
  1283. table_id = obj.get("table_id")
  1284. list_kv = obj.get("kv")
  1285. for _pi in range(len(list_pattern)):
  1286. table_kvs = []
  1287. for _d0 in list_kv:
  1288. _k = _d0.get("key","")
  1289. _v = _d0.get("value","")
  1290. _d = {"key":_k,"value":_v,"position":_d0.get("position",{})}
  1291. if re.search(list_pattern[_pi],_k) is not None:
  1292. table_kvs.append(_d)
  1293. if table_kvs:
  1294. result_kv[_pi].append({"table_id":table_id,"kv":table_kvs})
  1295. childs = obj.get("children",[])
  1296. for child in childs:
  1297. self.extract_kvs_from_table(list_pattern,child,result_kv)
  1298. return result_kv
  1299. def extract_kvs_from_sentence(self,list_pattern,tree=None,result_kv=None):
  1300. if result_kv is None:
  1301. result_kv = [[] for i in list_pattern]
  1302. try:
  1303. for pattern in list_pattern:
  1304. re.compile(pattern)
  1305. except Exception as e:
  1306. log("list_pattern error: "+str(e))
  1307. return result_kv
  1308. if tree is None:
  1309. tree = self.tree
  1310. for obj in tree:
  1311. is_table = True if obj.get("tag","")=="table" else False
  1312. if not is_table:
  1313. list_kv = obj.get("kv",[])
  1314. for _pi in range(len(list_pattern)):
  1315. for _d in list_kv:
  1316. _k = _d.get("key","")
  1317. _v = _d.get("value","")
  1318. if re.search(list_pattern[_pi],_k) is not None:
  1319. result_kv[_pi].append(_d)
  1320. return result_kv
  1321. def extract_kvs_from_outline(self,list_pattern,tree=None,result_kv=None):
  1322. if result_kv is None:
  1323. result_kv = [[] for i in list_pattern]
  1324. try:
  1325. for pattern in list_pattern:
  1326. re.compile(pattern)
  1327. except Exception as e:
  1328. log("list_pattern error: "+str(e))
  1329. return result_kv
  1330. if tree is None:
  1331. tree = self.tree
  1332. for obj in tree:
  1333. is_table = True if obj.get("tag","")=="table" else False
  1334. if not is_table:
  1335. _text = obj["text"]
  1336. for _pi in range(len(list_pattern)):
  1337. sentence_index_from = obj["sentence_index"]
  1338. sentence_index_to = sentence_index_from
  1339. if re.search(list_pattern[_pi],_text) is not None and obj.get("sentence_title") is not None:
  1340. childs = get_childs([obj])
  1341. _child_text = ""
  1342. for _child in childs:
  1343. sentence_index_to = _child["sentence_index"]
  1344. _child_text+=_child["text"]+"\n"
  1345. result_kv[_pi].append({"key":_text,"value":_child_text,"from_outline":True,"key_sentence_index_from":sentence_index_from,
  1346. "key_sentence_index_to":sentence_index_from,"value_sentence_index_from":sentence_index_from,
  1347. "value_sentence_index_to":sentence_index_to,})
  1348. return result_kv
  1349. def extract_kv(self,k_pattern,from_sentence=True,from_outline=True,from_table=True):
  1350. result_kv = []
  1351. try:
  1352. re.compile(k_pattern)
  1353. except Exception as e:
  1354. log("k_pattern error: "+str(e))
  1355. traceback.print_exc()
  1356. return result_kv
  1357. result_kv = []
  1358. if from_table:
  1359. result_kv_table = self.extract_kvs_from_table([k_pattern])
  1360. for table_d in result_kv_table[0]:
  1361. table_id = table_d.get("table_id")
  1362. table_kvs = table_d.get("kv",[])
  1363. for _d in table_kvs:
  1364. _d["from_table"] = True
  1365. result_kv.extend(table_kvs)
  1366. if from_sentence:
  1367. result_kv_sentence = self.extract_kvs_from_sentence([k_pattern])
  1368. for _d in result_kv_sentence[0]:
  1369. _d["from_sentence"] = True
  1370. result_kv.extend(result_kv_sentence[0])
  1371. if from_outline:
  1372. result_kv_outline = self.extract_kvs_from_outline([k_pattern])
  1373. for _d in result_kv_outline[0]:
  1374. _d["from_outline"] = True
  1375. result_kv.extend(result_kv_outline[0])
  1376. return result_kv
  1377. # def extract_kvs_from_table(self,list_pattern):
  1378. if __name__ == '__main__':
  1379. # HTML 文本
  1380. html_content = """
  1381. <div>
  1382. <div>
  1383. <div>
  1384. <div>
  1385. <span>项目名称:</span>
  1386. <span><mark data-markjs="true">广东公司肇庆热力供热管网设计服务项目询价采购</mark></span>
  1387. </div>
  1388. <div>
  1389. <span>采购机构:</span>
  1390. <span><a target="_blank" class="markBlue" href="/bdqyhx/340219751287832576.html" style="color: #3083EB !important;text-decoration: underline;">国能物资南方有限公司</a></span>
  1391. </div>
  1392. <div>
  1393. <span>采购编号:</span>
  1394. <span>NFSB-FWXJ-2024110471</span>
  1395. </div>
  1396. <div>
  1397. <span>采购人:</span>
  1398. <span><a target="_blank" class="markBlue" href="/bdqyhx/213048615245266944.html" style="color: #3083EB !important;text-decoration: underline;">肇庆大旺电力热力有限公司</a></span>
  1399. </div>
  1400. <div>
  1401. <span>报价人资格条件:</span>
  1402. <span>报价人资质要求:报价人须同时满足以下资质证书 1. 工程设计资质证书-市政-市政行业资质乙级 或 工程设计资质证书-电力-电力行业资质乙级 2. 特种设备生产许可证-压力管道-公用管道GB2。报价人业绩要求:报价人须满足以下业绩 1. 报价人须提供近五年内(2019年1月1日至报价截止日期) 管道设计(长度大于3公里) 合同 至少 2 个, 报价人须提供符合本采购要求的业绩合同扫描件,必须包含采购范围、合同签订时间、甲乙方盖章页, 报价人须同时提供业绩合同对应的其他证明文件: 结算发票(开票时间2019-01-01至2024-11-30) ,未按上述要求提供的业绩证明文件为无效证明文件。</span>
  1403. </div>
  1404. <div>
  1405. <span>采购方式:</span>
  1406. <span> 询价采购</span>
  1407. </div>
  1408. <div>
  1409. <span>询价方式:</span>
  1410. <span> 公开询价</span>
  1411. </div>
  1412. <div>
  1413. <span>物资分类:</span>
  1414. <span> 火电设备-&gt;热控系统设备及配件;服务-&gt;其它;燃机设备-&gt;锅炉设备;火电设备-&gt;除灰设备及配件;服务-&gt;综合服务;火电设备-&gt;汽机辅机设备及配件;服务-&gt;勘察设计;火电设备-&gt;脱硫设备及配件;火电设备-&gt;锅炉主机设备及配件;燃机设备-&gt;燃气轮机设备及配件;</span>
  1415. </div>
  1416. <div>
  1417. <span>主要技术要求:</span>
  1418. <span> 本设计服务采购范围包括但不限于: 1.新增或改造供热管网开口项目编制建设项目可行性研究报告、设计方案、勘察设计、初步设计、施工图设计文件、非标准设备设计文件、施工图预算文件等服务。 2.报价人自行组织现场踏勘,采购人可提供供热管网母管参数、用汽用户需求参数等资料,报价人根据相关资料提供项目设计方案,内容应包含项目概况、热负荷计算、管网敷设方案、工程投资估算等。</span>
  1419. </div>
  1420. </div>
  1421. <div>
  1422. <div>
  1423. <div>
  1424. <span>发布人:</span>
  1425. <span> 任灏洋</span>
  1426. </div>
  1427. <div>
  1428. <span>报价方式:</span>
  1429. <span>整单</span>
  1430. </div>
  1431. </div>
  1432. <div>
  1433. <div>
  1434. <span>联系电话:</span>
  1435. </div>
  1436. <div>
  1437. <span>发布时间:</span>
  1438. <span>2024-11-29 16:43:56</span>
  1439. </div>
  1440. </div>
  1441. <div>
  1442. <div>
  1443. <span>服务时间:</span>
  1444. <span>合同签订后730天内 </span>
  1445. </div>
  1446. <div>
  1447. <span>报价截止时间:</span>
  1448. <span> 2024-12-04 09:00:00</span>
  1449. </div>
  1450. </div>
  1451. <div>
  1452. <div>
  1453. <span>支付方式:</span>
  1454. <span> 电汇</span>
  1455. </div>
  1456. <div>
  1457. <span>运费承接:</span>
  1458. <span> 供应方承担</span>
  1459. </div>
  1460. </div>
  1461. <div>
  1462. <div>
  1463. <span>服务地点:</span>
  1464. <span><a target="_blank" class="markBlue" href="/bdqyhx/213048615245266944.html" style="color: #3083EB !important;text-decoration: underline;">肇庆大旺电力热力有限公司</a>物资工厂</span>
  1465. </div>
  1466. <div>
  1467. <span>异议联系人:</span>
  1468. <span> 杨帆</span>
  1469. </div>
  1470. </div>
  1471. </div>
  1472. <div>
  1473. <div>
  1474. <div>
  1475. <div>
  1476. 附件:
  1477. </div>
  1478. <div>
  1479. <p> 有 </p>
  1480. </div>
  1481. </div>
  1482. <div>
  1483. <span>异议接收单位:</span>
  1484. <span> <a target="_blank" class="markBlue" href="/bdqyhx/340219751287832576.html" style="color: #3083EB !important;text-decoration: underline;">国能物资南方有限公司</a></span>
  1485. </div>
  1486. </div>
  1487. </div>
  1488. <div>
  1489. <div>
  1490. <div>
  1491. <span>备注:</span>
  1492. </div>
  1493. </div>
  1494. </div>
  1495. <div>
  1496. <div>
  1497. <span>发布平台:</span>
  1498. <span>国家能源e购(网址:www.neep.shop),报价人须在发布平台注册、经审核通过并缴纳供应商分类年费后才能参与具体项目报价。</span>
  1499. </div>
  1500. </div>
  1501. </div>
  1502. </div>
  1503. """
  1504. _tree = html_to_tree(html_content)
  1505. _pd = Html2KVTree(html_content)
  1506. _pd.print_tree(_pd.tree,"-|")
  1507. list_kv = _pd.extract_kv("资质要求")
  1508. print(list_kv)
  1509. #获取预处理后的所有句子,该句子与kv值对应
  1510. print(_pd.get_tree_sentence())
  1511. # soup = BeautifulSoup(html_content,"lxml")
  1512. # table_tree = table_to_tree(soup)
  1513. # print(json.dumps(table_tree,ensure_ascii=False))