Preprocessing.py 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import getPredictor
  13. from BiddingKG.dl.common.nerUtils import *
  14. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  15. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  16. from BiddingKG.dl.bidway.re_bidway import extract_bidway
  17. from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint
  18. from BiddingKG.dl.entityLink.entityLink import *
  19. #
  20. def tableToText(soup):
  21. '''
  22. @param:
  23. soup:网页html的soup
  24. @return:处理完表格信息的网页text
  25. '''
  26. def getTrs(tbody):
  27. #获取所有的tr
  28. trs = []
  29. objs = tbody.find_all(recursive=False)
  30. for obj in objs:
  31. if obj.name=="tr":
  32. trs.append(obj)
  33. if obj.name=="tbody":
  34. for tr in obj.find_all("tr",recursive=False):
  35. trs.append(tr)
  36. return trs
  37. def fixSpan(tbody):
  38. # 处理colspan, rowspan信息补全问题
  39. #trs = tbody.findChildren('tr', recursive=False)
  40. trs = getTrs(tbody)
  41. ths_len = 0
  42. ths = list()
  43. trs_set = set()
  44. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  45. # 遍历每一个tr
  46. for indtr, tr in enumerate(trs):
  47. ths_tmp = tr.findChildren('th', recursive=False)
  48. #不补全含有表格的tr
  49. if len(tr.findChildren('table'))>0:
  50. continue
  51. if len(ths_tmp) > 0:
  52. ths_len = ths_len + len(ths_tmp)
  53. for th in ths_tmp:
  54. ths.append(th)
  55. trs_set.add(tr)
  56. # 遍历每行中的element
  57. tds = tr.findChildren(recursive=False)
  58. for indtd, td in enumerate(tds):
  59. # 若有colspan 则补全同一行下一个位置
  60. if 'colspan' in td.attrs:
  61. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  62. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  63. if col<100 and len(td.get_text())<1000:
  64. td['colspan'] = 1
  65. for i in range(1, col, 1):
  66. td.insert_after(copy.copy(td))
  67. for indtr, tr in enumerate(trs):
  68. ths_tmp = tr.findChildren('th', recursive=False)
  69. #不补全含有表格的tr
  70. if len(tr.findChildren('table'))>0:
  71. continue
  72. if len(ths_tmp) > 0:
  73. ths_len = ths_len + len(ths_tmp)
  74. for th in ths_tmp:
  75. ths.append(th)
  76. trs_set.add(tr)
  77. # 遍历每行中的element
  78. tds = tr.findChildren(recursive=False)
  79. for indtd, td in enumerate(tds):
  80. # 若有rowspan 则补全下一行同样位置
  81. if 'rowspan' in td.attrs:
  82. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  83. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  84. td['rowspan'] = 1
  85. for i in range(1, row, 1):
  86. # 获取下一行的所有td, 在对应的位置插入
  87. if indtr+i<len(trs):
  88. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  89. if len(tds1) >= (indtd) and len(tds1)>0:
  90. if indtd > 0:
  91. tds1[indtd - 1].insert_after(copy.copy(td))
  92. else:
  93. tds1[0].insert_before(copy.copy(td))
  94. def getTable(tbody):
  95. #trs = tbody.findChildren('tr', recursive=False)
  96. trs = getTrs(tbody)
  97. inner_table = []
  98. for tr in trs:
  99. tr_line = []
  100. tds = tr.findChildren(['td','th'], recursive=False)
  101. for td in tds:
  102. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  103. #tr_line.append([td.get_text(),0])
  104. inner_table.append(tr_line)
  105. return inner_table
  106. #处理表格不对齐的问题
  107. def fixTable(inner_table,fix_value="~~"):
  108. maxWidth = 0
  109. for item in inner_table:
  110. if len(item)>maxWidth:
  111. maxWidth = len(item)
  112. for i in range(len(inner_table)):
  113. if len(inner_table[i])<maxWidth:
  114. for j in range(maxWidth-len(inner_table[i])):
  115. inner_table[i].append([fix_value,0])
  116. return inner_table
  117. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  118. height = len(inner_table)
  119. width = len(inner_table[0])
  120. for i in range(height):
  121. point = ""
  122. for j in range(width):
  123. if inner_table[i][j][0]==point and point!="":
  124. inner_table[i][j][0] = pad_row
  125. else:
  126. if inner_table[i][j][0] not in [pad_row,pad_col]:
  127. point = inner_table[i][j][0]
  128. for j in range(width):
  129. point = ""
  130. for i in range(height):
  131. if inner_table[i][j][0]==point and point!="":
  132. inner_table[i][j][0] = pad_col
  133. else:
  134. if inner_table[i][j][0] not in [pad_row,pad_col]:
  135. point = inner_table[i][j][0]
  136. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  137. height = len(inner_table)
  138. width = len(inner_table[0])
  139. for i in range(height):
  140. for j in range(width):
  141. if inner_table[i][j][0]==pad_row:
  142. inner_table[i][j][0] = inner_table[i][j-1][0]
  143. inner_table[i][j][1] = inner_table[i][j-1][1]
  144. if inner_table[i][j][0]==pad_col:
  145. inner_table[i][j][0] = inner_table[i-1][j][0]
  146. inner_table[i][j][1] = inner_table[i-1][j][1]
  147. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  148. '''
  149. @summary: 修复表头识别,将明显错误的进行修正
  150. '''
  151. def repairNeeded(line):
  152. first_1 = -1
  153. last_1 = -1
  154. first_0 = -1
  155. last_0 = -1
  156. count_1 = 0
  157. count_0 = 0
  158. for i in range(len(line)):
  159. if line[i][0]==fix_value:
  160. continue
  161. if line[i][1]==1:
  162. if first_1==-1:
  163. first_1 = i
  164. last_1 = i
  165. count_1 += 1
  166. if line[i][1]==0:
  167. if first_0 == -1:
  168. first_0 = i
  169. last_0 = i
  170. count_0 += 1
  171. if first_1 ==-1 or last_0 == -1:
  172. return False
  173. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  174. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  175. return True
  176. return False
  177. def getsimilarity(line,line1):
  178. same_count = 0
  179. for item,item1 in zip(line,line1):
  180. if item[1]==item1[1]:
  181. same_count += 1
  182. return same_count/len(line)
  183. def selfrepair(inner_table,index,dye_set,key_set):
  184. '''
  185. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  186. '''
  187. #print("B",inner_table[index])
  188. min_presure = 3
  189. list_dye = []
  190. first = None
  191. count = 0
  192. temp_set = set()
  193. _index = 0
  194. for item in inner_table[index]:
  195. if first is None:
  196. first = item[1]
  197. if item[0] not in temp_set:
  198. count += 1
  199. temp_set.add(item[0])
  200. else:
  201. if first == item[1]:
  202. if item[0] not in temp_set:
  203. temp_set.add(item[0])
  204. count += 1
  205. else:
  206. list_dye.append([first,count,_index])
  207. first = item[1]
  208. temp_set.add(item[0])
  209. count = 1
  210. _index += 1
  211. list_dye.append([first,count,_index])
  212. if len(list_dye)>1:
  213. begin = 0
  214. end = 0
  215. for i in range(len(list_dye)):
  216. end = list_dye[i][2]
  217. dye_flag = False
  218. #首尾要求压力减一
  219. if i==0:
  220. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  221. dye_flag = True
  222. dye_type = list_dye[i+1][0]
  223. elif i==len(list_dye)-1:
  224. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  225. dye_flag = True
  226. dye_type = list_dye[i-1][0]
  227. else:
  228. if list_dye[i][1]>1:
  229. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  230. dye_flag = True
  231. dye_type = list_dye[i+1][0]
  232. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  233. dye_flag = True
  234. dye_type = list_dye[i-1][0]
  235. else:
  236. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  237. dye_flag = True
  238. dye_type = list_dye[i+1][0]
  239. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  240. dye_flag = True
  241. dye_type = list_dye[i-1][0]
  242. if dye_flag:
  243. for h in range(begin,end):
  244. inner_table[index][h][1] = dye_type
  245. dye_set.add((inner_table[index][h][0],dye_type))
  246. key_set.add(inner_table[index][h][0])
  247. begin = end
  248. #print("E",inner_table[index])
  249. def otherrepair(inner_table,index,dye_set,key_set):
  250. list_provide_repair = []
  251. if index==0 and len(inner_table)>1:
  252. list_provide_repair.append(index+1)
  253. elif index==len(inner_table)-1:
  254. list_provide_repair.append(index-1)
  255. else:
  256. list_provide_repair.append(index+1)
  257. list_provide_repair.append(index-1)
  258. for provide_index in list_provide_repair:
  259. if not repairNeeded(inner_table[provide_index]):
  260. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  261. if same_prob>=0.8:
  262. for i in range(len(inner_table[provide_index])):
  263. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  264. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  265. key_set.add(inner_table[index][i][0])
  266. inner_table[index][i][1] = inner_table[provide_index][i][1]
  267. elif same_prob<=0.2:
  268. for i in range(len(inner_table[provide_index])):
  269. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  270. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  271. key_set.add(inner_table[index][i][0])
  272. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  273. len_dye_set = len(dye_set)
  274. height = len(inner_table)
  275. for i in range(height):
  276. if repairNeeded(inner_table[i]):
  277. selfrepair(inner_table,i,dye_set,key_set)
  278. #otherrepair(inner_table,i,dye_set,key_set)
  279. for h in range(len(inner_table)):
  280. for w in range(len(inner_table[0])):
  281. if inner_table[h][w][0] in key_set:
  282. for item in dye_set:
  283. if inner_table[h][w][0]==item[0]:
  284. inner_table[h][w][1] = item[1]
  285. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  286. if len(dye_set)!=len(key_set):
  287. for i in range(height):
  288. if repairNeeded(inner_table[i]):
  289. selfrepair(inner_table,i,dye_set,key_set)
  290. #otherrepair(inner_table,i,dye_set,key_set)
  291. return
  292. if len(dye_set)==len_dye_set:
  293. '''
  294. for i in range(height):
  295. if repairNeeded(inner_table[i]):
  296. otherrepair(inner_table,i,dye_set,key_set)
  297. '''
  298. return
  299. repairTable(inner_table, dye_set, key_set)
  300. def sliceTable(inner_table,fix_value="~~"):
  301. #进行分块
  302. height = len(inner_table)
  303. width = len(inner_table[0])
  304. head_list = []
  305. head_list.append(0)
  306. last_head = None
  307. last_is_same_value = False;
  308. for h in range(height):
  309. is_all_key = True#是否是全表头行
  310. is_all_value = True#是否是全属性值
  311. is_same_with_lastHead = True#和上一行的结构是否相同
  312. is_same_value=True#一行的item都一样
  313. #is_same_first_item = True#与上一行的第一项是否相同
  314. same_value = inner_table[h][0][0]
  315. for w in range(width):
  316. if last_head is not None:
  317. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  318. is_all_key = False
  319. if inner_table[h][w][0]==1:
  320. is_all_value = False
  321. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  322. is_same_with_lastHead = False
  323. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  324. is_same_value = False
  325. else:
  326. if re.search("\d+",same_value) is not None:
  327. is_same_value = False
  328. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  329. is_same_first_item = False
  330. last_head = h
  331. if last_is_same_value:
  332. last_is_same_value = is_same_value
  333. continue
  334. if is_same_value:
  335. head_list.append(h)
  336. last_is_same_value = is_same_value
  337. continue
  338. if not is_all_key:
  339. if not is_same_with_lastHead:
  340. head_list.append(h)
  341. head_list.append(height)
  342. return head_list
  343. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  344. set_item = set()
  345. height = len(inner_table)
  346. width = len(inner_table[0])
  347. for i in range(height):
  348. for j in range(width):
  349. item = inner_table[i][j][0]
  350. set_item.add(item)
  351. list_item = list(set_item)
  352. x = []
  353. for item in list_item:
  354. x.append(getPredictor("form").encode(item))
  355. predict_y = getPredictor("form").predict(np.array(x),type="item")
  356. _dict = dict()
  357. for item,values in zip(list_item,list(predict_y)):
  358. _dict[item] = values[1]
  359. # print("##",item,values)
  360. #print(_dict)
  361. for i in range(height):
  362. for j in range(width):
  363. item = inner_table[i][j][0]
  364. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  365. # print("=====")
  366. # for item in inner_table:
  367. # print(item)
  368. # print("======")
  369. repairTable(inner_table)
  370. head_list = sliceTable(inner_table)
  371. return inner_table,head_list
  372. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  373. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  374. predict_y = getPredictor("form").getModel("context").predict(data_x)
  375. for _position,_y in zip(data_position,predict_y):
  376. _w = _position[0]
  377. _h = _position[1]
  378. if _y[1]>prob_min:
  379. inner_table[_h][_w][1] = 1
  380. else:
  381. inner_table[_h][_w][1] = 0
  382. # print("=====")
  383. # for item in inner_table:
  384. # print(item)
  385. # print("======")
  386. repairTable(inner_table)
  387. head_list = sliceTable(inner_table)
  388. return inner_table,head_list
  389. #设置表头
  390. def setHead_inline(inner_table,prob_min=0.64):
  391. pad_row = "@@"
  392. pad_col = "##"
  393. removePadding(inner_table, pad_row, pad_col)
  394. pad_pattern = re.compile(pad_row+"|"+pad_col)
  395. height = len(inner_table)
  396. width = len(inner_table[0])
  397. head_list = []
  398. head_list.append(0)
  399. #行表头
  400. is_head_last = False
  401. for i in range(height):
  402. is_head = False
  403. is_long_value = False
  404. #判断是否是全padding值
  405. is_same_value = True
  406. same_value = inner_table[i][0][0]
  407. for j in range(width):
  408. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  409. is_same_value = False
  410. break
  411. #predict is head or not with model
  412. temp_item = ""
  413. for j in range(width):
  414. temp_item += inner_table[i][j][0]+"|"
  415. temp_item = re.sub(pad_pattern,"",temp_item)
  416. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  417. if form_prob is not None:
  418. if form_prob[0][1]>prob_min:
  419. is_head = True
  420. else:
  421. is_head = False
  422. #print(temp_item,form_prob)
  423. if len(inner_table[i][0][0])>40:
  424. is_long_value = True
  425. if is_head or is_long_value or is_same_value:
  426. #不把连续表头分开
  427. if not is_head_last:
  428. head_list.append(i)
  429. if is_long_value or is_same_value:
  430. head_list.append(i+1)
  431. if is_head:
  432. for j in range(width):
  433. inner_table[i][j][1] = 1
  434. is_head_last = is_head
  435. head_list.append(height)
  436. #列表头
  437. for i in range(len(head_list)-1):
  438. head_begin = head_list[i]
  439. head_end = head_list[i+1]
  440. #最后一列不设置为列表头
  441. for i in range(width-1):
  442. is_head = False
  443. #predict is head or not with model
  444. temp_item = ""
  445. for j in range(head_begin,head_end):
  446. temp_item += inner_table[j][i][0]+"|"
  447. temp_item = re.sub(pad_pattern,"",temp_item)
  448. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  449. if form_prob is not None:
  450. if form_prob[0][1]>prob_min:
  451. is_head = True
  452. else:
  453. is_head = False
  454. if is_head:
  455. for j in range(head_begin,head_end):
  456. inner_table[j][i][1] = 2
  457. addPadding(inner_table, pad_row, pad_col)
  458. return inner_table,head_list
  459. #设置表头
  460. def setHead_withRule(inner_table,pattern,pat_value,count):
  461. height = len(inner_table)
  462. width = len(inner_table[0])
  463. head_list = []
  464. head_list.append(0)
  465. #行表头
  466. is_head_last = False
  467. for i in range(height):
  468. set_match = set()
  469. is_head = False
  470. is_long_value = False
  471. is_same_value = True
  472. same_value = inner_table[i][0][0]
  473. for j in range(width):
  474. if inner_table[i][j][0]!=same_value:
  475. is_same_value = False
  476. break
  477. for j in range(width):
  478. if re.search(pat_value,inner_table[i][j][0]) is not None:
  479. is_head = False
  480. break
  481. str_find = re.findall(pattern,inner_table[i][j][0])
  482. if len(str_find)>0:
  483. set_match.add(inner_table[i][j][0])
  484. if len(set_match)>=count:
  485. is_head = True
  486. if len(inner_table[i][0][0])>40:
  487. is_long_value = True
  488. if is_head or is_long_value or is_same_value:
  489. if not is_head_last:
  490. head_list.append(i)
  491. if is_head:
  492. for j in range(width):
  493. inner_table[i][j][1] = 1
  494. is_head_last = is_head
  495. head_list.append(height)
  496. #列表头
  497. for i in range(len(head_list)-1):
  498. head_begin = head_list[i]
  499. head_end = head_list[i+1]
  500. #最后一列不设置为列表头
  501. for i in range(width-1):
  502. set_match = set()
  503. is_head = False
  504. for j in range(head_begin,head_end):
  505. if re.search(pat_value,inner_table[j][i][0]) is not None:
  506. is_head = False
  507. break
  508. str_find = re.findall(pattern,inner_table[j][i][0])
  509. if len(str_find)>0:
  510. set_match.add(inner_table[j][i][0])
  511. if len(set_match)>=count:
  512. is_head = True
  513. if is_head:
  514. for j in range(head_begin,head_end):
  515. inner_table[j][i][1] = 2
  516. return inner_table,head_list
  517. #取得表格的处理方向
  518. def getDirect(inner_table,begin,end):
  519. '''
  520. column_head = set()
  521. row_head = set()
  522. widths = len(inner_table[0])
  523. for height in range(begin,end):
  524. for width in range(widths):
  525. if inner_table[height][width][1] ==1:
  526. row_head.add(height)
  527. if inner_table[height][width][1] ==2:
  528. column_head.add(width)
  529. company_pattern = re.compile("公司")
  530. if 0 in column_head and begin not in row_head:
  531. return "column"
  532. if 0 in column_head and begin in row_head:
  533. for height in range(begin,end):
  534. count = 0
  535. count_flag = True
  536. for width_index in range(width):
  537. if inner_table[height][width_index][1]==0:
  538. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  539. count += 1
  540. else:
  541. count_flag = False
  542. if count_flag and count>=2:
  543. return "column"
  544. return "row"
  545. '''
  546. count_row_keys = 0
  547. count_column_keys = 0
  548. width = len(inner_table[0])
  549. if begin<end:
  550. for w in range(len(inner_table[begin])):
  551. if inner_table[begin][w][1]!=0:
  552. count_row_keys += 1
  553. for h in range(begin,end):
  554. if inner_table[h][0][1]!=0:
  555. count_column_keys += 1
  556. company_pattern = re.compile("有限(责任)?公司")
  557. for height in range(begin,end):
  558. count_set = set()
  559. count_flag = True
  560. for width_index in range(width):
  561. if inner_table[height][width_index][1]==0:
  562. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  563. count_set.add(inner_table[height][width_index][0])
  564. else:
  565. count_flag = False
  566. if count_flag and len(count_set)>=2:
  567. return "column"
  568. if count_column_keys>count_row_keys:
  569. return "column"
  570. return "row"
  571. #根据表格处理方向生成句子,
  572. def getTableText(inner_table,head_list,key_direct=False):
  573. # packPattern = "(标包|[标包][号段名])"
  574. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  575. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标)" # 2020/11/23 大网站规则,添加序号为排序
  576. entityPattern = "((候选|([中投]标|报价))(单位|公司|人|供应商))"
  577. moneyPattern = "([中投]标|报价)(金额|价)"
  578. height = len(inner_table)
  579. width = len(inner_table[0])
  580. text = ""
  581. for head_i in range(len(head_list)-1):
  582. head_begin = head_list[head_i]
  583. head_end = head_list[head_i+1]
  584. direct = getDirect(inner_table, head_begin, head_end)
  585. #若只有一行,则直接按行读取
  586. if head_end-head_begin==1:
  587. text_line = ""
  588. for i in range(head_begin,head_end):
  589. for w in range(len(inner_table[i])):
  590. if inner_table[i][w][1]==1:
  591. _punctuation = ":"
  592. else:
  593. _punctuation = ","
  594. if w>0:
  595. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  596. text_line += inner_table[i][w][0]+_punctuation
  597. else:
  598. text_line += inner_table[i][w][0]+_punctuation
  599. text_line = text_line+"。" if text_line!="" else text_line
  600. text += text_line
  601. else:
  602. #构建一个共现矩阵
  603. table_occurence = []
  604. for i in range(head_begin,head_end):
  605. line_oc = []
  606. for j in range(width):
  607. cell = inner_table[i][j]
  608. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0})
  609. table_occurence.append(line_oc)
  610. occu_height = len(table_occurence)
  611. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  612. #为每个属性值寻找表头
  613. for i in range(occu_height):
  614. for j in range(occu_width):
  615. cell = table_occurence[i][j]
  616. #是属性值
  617. if cell["type"]==0 and cell["text"]!="":
  618. left_head = ""
  619. top_head = ""
  620. find_flag = False
  621. temp_head = ""
  622. for loop_i in range(1,i+1):
  623. if not key_direct:
  624. key_values = [1,2]
  625. else:
  626. key_values = [1]
  627. if table_occurence[i-loop_i][j]["type"] in key_values:
  628. if find_flag:
  629. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  630. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  631. else:
  632. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  633. find_flag = True
  634. temp_head = table_occurence[i-loop_i][j]["text"]
  635. table_occurence[i-loop_i][j]["occu_count"] += 1
  636. else:
  637. #找到表头后遇到属性值就返回
  638. if find_flag:
  639. break
  640. cell["top_head"] += top_head
  641. find_flag = False
  642. temp_head = ""
  643. for loop_j in range(1,j+1):
  644. if not key_direct:
  645. key_values = [1,2]
  646. else:
  647. key_values = [2]
  648. if table_occurence[i][j-loop_j]["type"] in key_values:
  649. if find_flag:
  650. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  651. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  652. else:
  653. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  654. find_flag = True
  655. temp_head = table_occurence[i][j-loop_j]["text"]
  656. table_occurence[i][j-loop_j]["occu_count"] += 1
  657. else:
  658. if find_flag:
  659. break
  660. cell["left_head"] += left_head
  661. if direct=="row":
  662. for i in range(occu_height):
  663. pack_text = ""
  664. rank_text = ""
  665. entity_text = ""
  666. text_line = ""
  667. money_text = ""
  668. #在同一句话中重复的可以去掉
  669. text_set = set()
  670. for j in range(width):
  671. cell = table_occurence[i][j]
  672. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  673. cell = table_occurence[i][j]
  674. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  675. head += cell["left_head"]
  676. if str(head+cell["text"]) in text_set:
  677. continue
  678. if re.search(packPattern,head) is not None:
  679. pack_text += head+cell["text"]+","
  680. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  681. #排名替换为同一种表达
  682. rank_text += head+cell["text"]+","
  683. #print(rank_text)
  684. elif re.search(entityPattern,head) is not None:
  685. entity_text += head+cell["text"]+","
  686. #print(entity_text)
  687. else:
  688. if re.search(moneyPattern,head) is not None and entity_text!="":
  689. money_text += head+cell["text"]+","
  690. else:
  691. text_line += head+cell["text"]+","
  692. text_set.add(str(head+cell["text"]))
  693. text += pack_text+rank_text+entity_text+money_text+text_line
  694. text = text[:-1]+"。" if len(text)>0 else text
  695. else:
  696. for j in range(occu_width):
  697. pack_text = ""
  698. rank_text = ""
  699. entity_text = ""
  700. text_line = ""
  701. text_set = set()
  702. for i in range(occu_height):
  703. cell = table_occurence[i][j]
  704. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  705. cell = table_occurence[i][j]
  706. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  707. head += cell["top_head"]
  708. if str(head+cell["text"]) in text_set:
  709. continue
  710. if re.search(packPattern,head) is not None:
  711. pack_text += head+cell["text"]+","
  712. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  713. #排名替换为同一种表达
  714. rank_text += head+cell["text"]+","
  715. #print(rank_text)
  716. elif re.search(entityPattern,head) is not None:
  717. entity_text += head+cell["text"]+","
  718. #print(entity_text)
  719. else:
  720. text_line += head+cell["text"]+","
  721. text_set.add(str(head+cell["text"]))
  722. text += pack_text+rank_text+entity_text+text_line
  723. text = text[:-1]+"。" if len(text)>0 else text
  724. # if direct=="row":
  725. # for i in range(head_begin,head_end):
  726. # pack_text = ""
  727. # rank_text = ""
  728. # entity_text = ""
  729. # text_line = ""
  730. # #在同一句话中重复的可以去掉
  731. # text_set = set()
  732. # for j in range(width):
  733. # cell = inner_table[i][j]
  734. # #是属性值
  735. # if cell[1]==0 and cell[0]!="":
  736. # head = ""
  737. #
  738. # find_flag = False
  739. # temp_head = ""
  740. # for loop_i in range(0,i+1-head_begin):
  741. # if not key_direct:
  742. # key_values = [1,2]
  743. # else:
  744. # key_values = [1]
  745. # if inner_table[i-loop_i][j][1] in key_values:
  746. # if find_flag:
  747. # if inner_table[i-loop_i][j][0]!=temp_head:
  748. # head = inner_table[i-loop_i][j][0]+":"+head
  749. # else:
  750. # head = inner_table[i-loop_i][j][0]+":"+head
  751. # find_flag = True
  752. # temp_head = inner_table[i-loop_i][j][0]
  753. # else:
  754. # #找到表头后遇到属性值就返回
  755. # if find_flag:
  756. # break
  757. #
  758. # find_flag = False
  759. # temp_head = ""
  760. #
  761. #
  762. #
  763. # for loop_j in range(1,j+1):
  764. # if not key_direct:
  765. # key_values = [1,2]
  766. # else:
  767. # key_values = [2]
  768. # if inner_table[i][j-loop_j][1] in key_values:
  769. # if find_flag:
  770. # if inner_table[i][j-loop_j][0]!=temp_head:
  771. # head = inner_table[i][j-loop_j][0]+":"+head
  772. # else:
  773. # head = inner_table[i][j-loop_j][0]+":"+head
  774. # find_flag = True
  775. # temp_head = inner_table[i][j-loop_j][0]
  776. # else:
  777. # if find_flag:
  778. # break
  779. #
  780. # if str(head+inner_table[i][j][0]) in text_set:
  781. # continue
  782. # if re.search(packPattern,head) is not None:
  783. # pack_text += head+inner_table[i][j][0]+","
  784. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  785. # #排名替换为同一种表达
  786. # rank_text += head+inner_table[i][j][0]+","
  787. # #print(rank_text)
  788. # elif re.search(entityPattern,head) is not None:
  789. # entity_text += head+inner_table[i][j][0]+","
  790. # #print(entity_text)
  791. # else:
  792. # text_line += head+inner_table[i][j][0]+","
  793. # text_set.add(str(head+inner_table[i][j][0]))
  794. # text += pack_text+rank_text+entity_text+text_line
  795. # text = text[:-1]+"。" if len(text)>0 else text
  796. # else:
  797. # for j in range(width):
  798. #
  799. # rank_text = ""
  800. # entity_text = ""
  801. # text_line = ""
  802. # text_set = set()
  803. # for i in range(head_begin,head_end):
  804. # cell = inner_table[i][j]
  805. # #是属性值
  806. # if cell[1]==0 and cell[0]!="":
  807. # find_flag = False
  808. # head = ""
  809. # temp_head = ""
  810. #
  811. # for loop_j in range(1,j+1):
  812. # if not key_direct:
  813. # key_values = [1,2]
  814. # else:
  815. # key_values = [2]
  816. # if inner_table[i][j-loop_j][1] in key_values:
  817. # if find_flag:
  818. # if inner_table[i][j-loop_j][0]!=temp_head:
  819. # head = inner_table[i][j-loop_j][0]+":"+head
  820. # else:
  821. # head = inner_table[i][j-loop_j][0]+":"+head
  822. # find_flag = True
  823. # temp_head = inner_table[i][j-loop_j][0]
  824. # else:
  825. # if find_flag:
  826. # break
  827. # find_flag = False
  828. # temp_head = ""
  829. # for loop_i in range(0,i+1-head_begin):
  830. # if not key_direct:
  831. # key_values = [1,2]
  832. # else:
  833. # key_values = [1]
  834. # if inner_table[i-loop_i][j][1] in key_values:
  835. # if find_flag:
  836. # if inner_table[i-loop_i][j][0]!=temp_head:
  837. # head = inner_table[i-loop_i][j][0]+":"+head
  838. # else:
  839. # head = inner_table[i-loop_i][j][0]+":"+head
  840. # find_flag = True
  841. # temp_head = inner_table[i-loop_i][j][0]
  842. # else:
  843. # if find_flag:
  844. # break
  845. # if str(head+inner_table[i][j][0]) in text_set:
  846. # continue
  847. # if re.search(rankPattern,head) is not None:
  848. # rank_text += head+inner_table[i][j][0]+","
  849. # #print(rank_text)
  850. # elif re.search(entityPattern,head) is not None:
  851. # entity_text += head+inner_table[i][j][0]+","
  852. # #print(entity_text)
  853. # else:
  854. # text_line += head+inner_table[i][j][0]+","
  855. # text_set.add(str(head+inner_table[i][j][0]))
  856. # text += rank_text+entity_text+text_line
  857. # text = text[:-1]+"。" if len(text)>0 else text
  858. return text
  859. def removeFix(inner_table,fix_value="~~"):
  860. height = len(inner_table)
  861. width = len(inner_table[0])
  862. for h in range(height):
  863. for w in range(width):
  864. if inner_table[h][w][0]==fix_value:
  865. inner_table[h][w][0] = ""
  866. def trunTable(tbody):
  867. fixSpan(tbody)
  868. inner_table = getTable(tbody)
  869. inner_table = fixTable(inner_table)
  870. if len(inner_table)>0 and len(inner_table[0])>0:
  871. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  872. #inner_table,head_list = setHead_inline(inner_table)
  873. # inner_table,head_list = setHead_initem(inner_table,pat_head)
  874. inner_table,head_list = setHead_incontext(inner_table,pat_head)
  875. # print(inner_table)
  876. # for begin in range(len(head_list[:-1])):
  877. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  878. # print(item)
  879. # print("====")
  880. removeFix(inner_table)
  881. # print("----")
  882. # print(head_list)
  883. # for item in inner_table:
  884. # print(item)
  885. tbody.string = getTableText(inner_table,head_list)
  886. #print(tbody.string)
  887. tbody.name = "turntable"
  888. return inner_table
  889. return None
  890. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  891. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  892. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  893. list_innerTable = []
  894. tbodies = soup.find_all('table')
  895. # 遍历表格中的每个tbody
  896. #逆序处理嵌套表格
  897. for tbody_index in range(1,len(tbodies)+1):
  898. tbody = tbodies[len(tbodies)-tbody_index]
  899. inner_table = trunTable(tbody)
  900. list_innerTable.append(inner_table)
  901. tbodies = soup.find_all('tbody')
  902. # 遍历表格中的每个tbody
  903. #逆序处理嵌套表格
  904. for tbody_index in range(1,len(tbodies)+1):
  905. tbody = tbodies[len(tbodies)-tbody_index]
  906. inner_table = trunTable(tbody)
  907. list_innerTable.append(inner_table)
  908. return soup
  909. # return list_innerTable
  910. #数据清洗
  911. def segment(soup,final=True):
  912. # print("==")
  913. # print(soup)
  914. # print("====")
  915. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  916. subspaceList = ["td",'a',"span","p"]
  917. if soup.name in subspaceList:
  918. #判断有值叶子节点数
  919. _count = 0
  920. for child in soup.find_all(recursive=True):
  921. if child.get_text().strip()!="" and len(child.find_all())==0:
  922. _count += 1
  923. if _count<=1:
  924. text = soup.get_text()
  925. # 2020/11/24 大网站规则添加
  926. if 'title' in soup.attrs:
  927. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  928. text = soup.attrs['title']
  929. _list = []
  930. for x in re.split("\s+",text):
  931. if x.strip()!="":
  932. _list.append(len(x))
  933. if len(_list)>0:
  934. _minLength = min(_list)
  935. if _minLength>2:
  936. _substr = ","
  937. else:
  938. _substr = ""
  939. else:
  940. _substr = ""
  941. text = text.replace("\r\n",",").replace("\n",",")
  942. text = re.sub("\s+",_substr,text)
  943. # text = re.sub("\s+","##space##",text)
  944. return text
  945. segList = ["title"]
  946. commaList = ["div","br","td","p"]
  947. #commaList = []
  948. spaceList = ["span"]
  949. tbodies = soup.find_all('tbody')
  950. if len(tbodies) == 0:
  951. tbodies = soup.find_all('table')
  952. # 递归遍历所有节点,插入符号
  953. for child in soup.find_all(recursive=True):
  954. if child.name in segList:
  955. child.insert_after("。")
  956. if child.name in commaList:
  957. child.insert_after(",")
  958. # if child.name in subspaceList:
  959. # child.insert_before("#subs"+str(child.name)+"#")
  960. # child.insert_after("#sube"+str(child.name)+"#")
  961. # if child.name in spaceList:
  962. # child.insert_after(" ")
  963. text = str(soup.get_text())
  964. #替换英文冒号为中文冒号
  965. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  966. #替换为中文逗号
  967. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  968. #替换为中文分号
  969. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  970. #替换"""为"“",否则导入deepdive出错
  971. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  972. text = re.sub("\s{4,}",",",text)
  973. #替换标点
  974. #替换连续的标点
  975. if final:
  976. text = re.sub("##space##"," ",text)
  977. punc_pattern = "(?P<del>[。,;::,\s]+)"
  978. list_punc = re.findall(punc_pattern,text)
  979. list_punc.sort(key=lambda x:len(x),reverse=True)
  980. for punc_del in list_punc:
  981. if len(punc_del)>1:
  982. if len(punc_del.strip())>0:
  983. if ":" in punc_del.strip():
  984. text = re.sub(punc_del,":",text)
  985. else:
  986. text = re.sub(punc_del,punc_del.strip()[-1],text)
  987. else:
  988. text = re.sub(punc_del,"",text)
  989. #将连续的中文句号替换为一个
  990. text_split = text.split("。")
  991. text_split = [x for x in text_split if len(x)>0]
  992. text = "。".join(text_split)
  993. # #删除标签中的所有空格
  994. # for subs in subspaceList:
  995. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  996. # while(True):
  997. # oneMatch = re.search(re.compile(patten),text)
  998. # if oneMatch is not None:
  999. # _match = oneMatch.group(1)
  1000. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  1001. # else:
  1002. # break
  1003. # text过大报错
  1004. LOOP_LEN = 10000
  1005. LOOP_BEGIN = 0
  1006. _text = ""
  1007. if len(text)<10000000:
  1008. while(LOOP_BEGIN<len(text)):
  1009. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  1010. LOOP_BEGIN += LOOP_LEN
  1011. text = _text
  1012. return text
  1013. '''
  1014. #数据清洗
  1015. def segment(soup):
  1016. segList = ["title"]
  1017. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1018. spaceList = ["span"]
  1019. tbodies = soup.find_all('tbody')
  1020. if len(tbodies) == 0:
  1021. tbodies = soup.find_all('table')
  1022. # 递归遍历所有节点,插入符号
  1023. for child in soup.find_all(recursive=True):
  1024. if child.name == 'br':
  1025. child.insert_before(',')
  1026. child_text = re.sub('\s', '', child.get_text())
  1027. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1028. continue
  1029. if child.name in segList:
  1030. child.insert_after("。")
  1031. if child.name in commaList:
  1032. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1033. child.insert_after(",")
  1034. elif len(child_text) >=50:
  1035. child.insert_after("。")
  1036. #if child.name in spaceList:
  1037. #child.insert_after(" ")
  1038. text = str(soup.get_text())
  1039. text = re.sub("\s{5,}",",",text)
  1040. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1041. #替换"""为"“",否则导入deepdive出错
  1042. text = text.replace('"',"“")
  1043. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1044. #删除所有空格
  1045. text = re.sub("\s+","#nbsp#",text)
  1046. text_list = text.split('#nbsp#')
  1047. new_text = ''
  1048. for i in range(len(text_list)-1):
  1049. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1050. new_text += text_list[i]
  1051. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1052. new_text += text_list[i] + '。'
  1053. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1054. new_text += text_list[i] + ';'
  1055. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1056. new_text += text_list[i] + ' '
  1057. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1058. new_text += text_list[i]
  1059. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1060. new_text += text_list[i] + ','
  1061. else:
  1062. new_text += text_list[i]
  1063. new_text += text_list[-1]
  1064. text = new_text
  1065. #替换英文冒号为中文冒号
  1066. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1067. #替换为中文逗号
  1068. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1069. #替换为中文分号
  1070. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1071. #替换标点
  1072. while(True):
  1073. #替换连续的标点
  1074. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1075. if punc is not None:
  1076. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1077. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1078. if punc is not None:
  1079. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1080. else:
  1081. #替换标点之后的空格
  1082. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1083. if punc is not None:
  1084. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1085. else:
  1086. break
  1087. #将连续的中文句号替换为一个
  1088. text_split = text.split("。")
  1089. text_split = [x for x in text_split if len(x)>0]
  1090. text = "。".join(text_split)
  1091. #替换中文括号为英文括号
  1092. text = re.sub("(","(",text)
  1093. text = re.sub(")",")",text)
  1094. return text
  1095. '''
  1096. #连续实体合并(弃用)
  1097. def union_ner(list_ner):
  1098. result_list = []
  1099. union_index = []
  1100. union_index_set = set()
  1101. for i in range(len(list_ner)-1):
  1102. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1103. if list_ner[i][1]-list_ner[i+1][0]==1:
  1104. union_index_set.add(i)
  1105. union_index_set.add(i+1)
  1106. union_index.append((i,i+1))
  1107. for i in range(len(list_ner)):
  1108. if i not in union_index_set:
  1109. result_list.append(list_ner[i])
  1110. for item in union_index:
  1111. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1112. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1113. return result_list
  1114. # def get_preprocessed(articles,useselffool=False):
  1115. # '''
  1116. # @summary:预处理步骤,NLP处理、实体识别
  1117. # @param:
  1118. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1119. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1120. # '''
  1121. # list_articles = []
  1122. # list_sentences = []
  1123. # list_entitys = []
  1124. # cost_time = dict()
  1125. # for article in articles:
  1126. # list_sentences_temp = []
  1127. # list_entitys_temp = []
  1128. # doc_id = article[0]
  1129. # sourceContent = article[1]
  1130. # _send_doc_id = article[3]
  1131. # _title = article[4]
  1132. # #表格处理
  1133. # key_preprocess = "tableToText"
  1134. # start_time = time.time()
  1135. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1136. #
  1137. # # log(article_processed)
  1138. #
  1139. # if key_preprocess not in cost_time:
  1140. # cost_time[key_preprocess] = 0
  1141. # cost_time[key_preprocess] += time.time()-start_time
  1142. #
  1143. # #article_processed = article[1]
  1144. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1145. # #nlp处理
  1146. # if article_processed is not None and len(article_processed)!=0:
  1147. # split_patten = "。"
  1148. # sentences = []
  1149. # _begin = 0
  1150. # for _iter in re.finditer(split_patten,article_processed):
  1151. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1152. # _begin = _iter.span()[1]
  1153. # sentences.append(article_processed[_begin:])
  1154. #
  1155. # lemmas = []
  1156. # doc_offsets = []
  1157. # dep_types = []
  1158. # dep_tokens = []
  1159. #
  1160. # time1 = time.time()
  1161. #
  1162. # '''
  1163. # tokens_all = fool.cut(sentences)
  1164. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1165. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1166. # ner_entitys_all = fool.ner(sentences)
  1167. # '''
  1168. # #限流执行
  1169. # key_nerToken = "nerToken"
  1170. # start_time = time.time()
  1171. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1172. # if key_nerToken not in cost_time:
  1173. # cost_time[key_nerToken] = 0
  1174. # cost_time[key_nerToken] += time.time()-start_time
  1175. #
  1176. #
  1177. # for sentence_index in range(len(sentences)):
  1178. #
  1179. #
  1180. #
  1181. # list_sentence_entitys = []
  1182. # sentence_text = sentences[sentence_index]
  1183. # tokens = tokens_all[sentence_index]
  1184. #
  1185. # list_tokenbegin = []
  1186. # begin = 0
  1187. # for i in range(0,len(tokens)):
  1188. # list_tokenbegin.append(begin)
  1189. # begin += len(str(tokens[i]))
  1190. # list_tokenbegin.append(begin+1)
  1191. # #pos_tag = pos_all[sentence_index]
  1192. # pos_tag = ""
  1193. #
  1194. # ner_entitys = ner_entitys_all[sentence_index]
  1195. #
  1196. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1197. #
  1198. # #识别package
  1199. #
  1200. #
  1201. # #识别实体
  1202. # for ner_entity in ner_entitys:
  1203. # begin_index_temp = ner_entity[0]
  1204. # end_index_temp = ner_entity[1]
  1205. # entity_type = ner_entity[2]
  1206. # entity_text = ner_entity[3]
  1207. #
  1208. # for j in range(len(list_tokenbegin)):
  1209. # if list_tokenbegin[j]==begin_index_temp:
  1210. # begin_index = j
  1211. # break
  1212. # elif list_tokenbegin[j]>begin_index_temp:
  1213. # begin_index = j-1
  1214. # break
  1215. # begin_index_temp += len(str(entity_text))
  1216. # for j in range(begin_index,len(list_tokenbegin)):
  1217. # if list_tokenbegin[j]>=begin_index_temp:
  1218. # end_index = j-1
  1219. # break
  1220. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1221. #
  1222. # #去掉标点符号
  1223. # entity_text = re.sub("[,,。:]","",entity_text)
  1224. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1225. #
  1226. #
  1227. # #使用正则识别金额
  1228. # entity_type = "money"
  1229. #
  1230. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1231. #
  1232. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1233. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1234. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1235. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1236. #
  1237. # set_begin = set()
  1238. # for pattern_key in list_money_pattern.keys():
  1239. # pattern = re.compile(list_money_pattern[pattern_key])
  1240. # all_match = re.findall(pattern, sentence_text)
  1241. # index = 0
  1242. # for i in range(len(all_match)):
  1243. # if len(all_match[i][0])>0:
  1244. # # print("===",all_match[i])
  1245. # #print(all_match[i][0])
  1246. # unit = ""
  1247. # entity_text = all_match[i][3]
  1248. # if pattern_key in ["key_word","front_m"]:
  1249. # unit = all_match[i][1]
  1250. # else:
  1251. # unit = all_match[i][4]
  1252. # if entity_text.find("元")>=0:
  1253. # unit = ""
  1254. #
  1255. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1256. #
  1257. # begin_index_temp = index
  1258. # for j in range(len(list_tokenbegin)):
  1259. # if list_tokenbegin[j]==index:
  1260. # begin_index = j
  1261. # break
  1262. # elif list_tokenbegin[j]>index:
  1263. # begin_index = j-1
  1264. # break
  1265. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1266. # end_index_temp = index
  1267. # #index += len(str(all_match[i][0]))
  1268. # for j in range(begin_index,len(list_tokenbegin)):
  1269. # if list_tokenbegin[j]>=index:
  1270. # end_index = j-1
  1271. # break
  1272. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1273. #
  1274. #
  1275. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1276. # if len(unit)>0:
  1277. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1278. # else:
  1279. # entity_text = str(getUnifyMoney(entity_text))
  1280. #
  1281. # _exists = False
  1282. # for item in list_sentence_entitys:
  1283. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1284. # _exists = True
  1285. # if not _exists:
  1286. # if float(entity_text)>10:
  1287. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1288. #
  1289. # else:
  1290. # index += 1
  1291. #
  1292. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1293. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1294. # list_sentences.append(list_sentences_temp)
  1295. # list_entitys.append(list_entitys_temp)
  1296. # return list_articles,list_sentences,list_entitys,cost_time
  1297. def get_preprocessed(articles,useselffool=False):
  1298. '''
  1299. @summary:预处理步骤,NLP处理、实体识别
  1300. @param:
  1301. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1302. @return:list of articles,list of each article of sentences,list of each article of entitys
  1303. '''
  1304. cost_time = dict()
  1305. list_articles = get_preprocessed_article(articles,cost_time)
  1306. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1307. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1308. calibrateEnterprise(list_articles,list_sentences,list_entitys)
  1309. return list_articles,list_sentences,list_entitys,cost_time
  1310. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1311. '''
  1312. :param articles: 待处理的article source html
  1313. :param useselffool: 是否使用selffool
  1314. :return: list_articles
  1315. '''
  1316. list_articles = []
  1317. for article in articles:
  1318. doc_id = article[0]
  1319. sourceContent = article[1]
  1320. _send_doc_id = article[3]
  1321. _title = article[4]
  1322. #表格处理
  1323. key_preprocess = "tableToText"
  1324. start_time = time.time()
  1325. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1326. # log(article_processed)
  1327. if key_preprocess not in cost_time:
  1328. cost_time[key_preprocess] = 0
  1329. cost_time[key_preprocess] += time.time()-start_time
  1330. #article_processed = article[1]
  1331. _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title)
  1332. _article.fingerprint = getFingerprint(_title+sourceContent)
  1333. list_articles.append(_article)
  1334. return list_articles
  1335. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1336. '''
  1337. :param list_articles: 经过预处理的article text
  1338. :return: list_sentences
  1339. '''
  1340. list_sentences = []
  1341. for article in list_articles:
  1342. list_sentences_temp = []
  1343. list_entitys_temp = []
  1344. doc_id = article.id
  1345. _send_doc_id = article.doc_id
  1346. _title = article.title
  1347. #表格处理
  1348. key_preprocess = "tableToText"
  1349. start_time = time.time()
  1350. article_processed = article.content
  1351. if key_preprocess not in cost_time:
  1352. cost_time[key_preprocess] = 0
  1353. cost_time[key_preprocess] += time.time()-start_time
  1354. #nlp处理
  1355. if article_processed is not None and len(article_processed)!=0:
  1356. split_patten = "。"
  1357. sentences = []
  1358. _begin = 0
  1359. sentences_set = set()
  1360. for _iter in re.finditer(split_patten,article_processed):
  1361. _sen = article_processed[_begin:_iter.span()[1]]
  1362. if len(_sen)>0 and _sen not in sentences_set:
  1363. sentences.append(_sen)
  1364. sentences_set.add(_sen)
  1365. _begin = _iter.span()[1]
  1366. _sen = article_processed[_begin:]
  1367. if len(_sen)>0 and _sen not in sentences_set:
  1368. sentences.append(_sen)
  1369. sentences_set.add(_sen)
  1370. article.content = "".join(sentences)
  1371. # sentences.append(article_processed[_begin:])
  1372. lemmas = []
  1373. doc_offsets = []
  1374. dep_types = []
  1375. dep_tokens = []
  1376. time1 = time.time()
  1377. '''
  1378. tokens_all = fool.cut(sentences)
  1379. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1380. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1381. ner_entitys_all = fool.ner(sentences)
  1382. '''
  1383. #限流执行
  1384. key_nerToken = "nerToken"
  1385. start_time = time.time()
  1386. tokens_all = getTokens(sentences,useselffool=useselffool)
  1387. if key_nerToken not in cost_time:
  1388. cost_time[key_nerToken] = 0
  1389. cost_time[key_nerToken] += time.time()-start_time
  1390. for sentence_index in range(len(sentences)):
  1391. sentence_text = sentences[sentence_index]
  1392. tokens = tokens_all[sentence_index]
  1393. #pos_tag = pos_all[sentence_index]
  1394. pos_tag = ""
  1395. ner_entitys = ""
  1396. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1397. if len(list_sentences_temp)==0:
  1398. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1399. list_sentences.append(list_sentences_temp)
  1400. return list_sentences
  1401. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1402. '''
  1403. :param list_sentences:分局情况
  1404. :param cost_time:
  1405. :return: list_entitys
  1406. '''
  1407. list_entitys = []
  1408. for list_sentence in list_sentences:
  1409. sentences = []
  1410. list_entitys_temp = []
  1411. for _sentence in list_sentence:
  1412. sentences.append(_sentence.sentence_text)
  1413. lemmas = []
  1414. doc_offsets = []
  1415. dep_types = []
  1416. dep_tokens = []
  1417. time1 = time.time()
  1418. '''
  1419. tokens_all = fool.cut(sentences)
  1420. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1421. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1422. ner_entitys_all = fool.ner(sentences)
  1423. '''
  1424. #限流执行
  1425. key_nerToken = "nerToken"
  1426. start_time = time.time()
  1427. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1428. if key_nerToken not in cost_time:
  1429. cost_time[key_nerToken] = 0
  1430. cost_time[key_nerToken] += time.time()-start_time
  1431. for sentence_index in range(len(list_sentence)):
  1432. list_sentence_entitys = []
  1433. sentence_text = list_sentence[sentence_index].sentence_text
  1434. tokens = list_sentence[sentence_index].tokens
  1435. doc_id = list_sentence[sentence_index].doc_id
  1436. list_tokenbegin = []
  1437. begin = 0
  1438. for i in range(0,len(tokens)):
  1439. list_tokenbegin.append(begin)
  1440. begin += len(str(tokens[i]))
  1441. list_tokenbegin.append(begin+1)
  1442. #pos_tag = pos_all[sentence_index]
  1443. pos_tag = ""
  1444. ner_entitys = ner_entitys_all[sentence_index]
  1445. #识别package
  1446. #识别实体
  1447. for ner_entity in ner_entitys:
  1448. begin_index_temp = ner_entity[0]
  1449. end_index_temp = ner_entity[1]
  1450. entity_type = ner_entity[2]
  1451. entity_text = ner_entity[3]
  1452. for j in range(len(list_tokenbegin)):
  1453. if list_tokenbegin[j]==begin_index_temp:
  1454. begin_index = j
  1455. break
  1456. elif list_tokenbegin[j]>begin_index_temp:
  1457. begin_index = j-1
  1458. break
  1459. begin_index_temp += len(str(entity_text))
  1460. for j in range(begin_index,len(list_tokenbegin)):
  1461. if list_tokenbegin[j]>=begin_index_temp:
  1462. end_index = j-1
  1463. break
  1464. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1465. #去掉标点符号
  1466. entity_text = re.sub("[,,。:]","",entity_text)
  1467. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1468. #使用正则识别金额
  1469. entity_type = "money"
  1470. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1471. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1472. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1473. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1474. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1475. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1476. set_begin = set()
  1477. # for pattern_key in list_money_pattern.keys():
  1478. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1479. # # pattern = re.compile(list_money_pattern[pattern_key])
  1480. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1481. # all_match = re.findall(pattern, sentence_text)
  1482. # index = 0
  1483. # for i in range(len(all_match)):
  1484. # if len(all_match[i][0])>0:
  1485. # print("===",all_match[i])
  1486. # #print(all_match[i][0])
  1487. # unit = ""
  1488. # entity_text = all_match[i][3]
  1489. # if pattern_key in ["key_word","front_m"]:
  1490. # unit = all_match[i][1]
  1491. # if pattern_key=="key_word":
  1492. # if all_match[i][1]=="" and all_match[i][4]!="":
  1493. # unit = all_match[i][4]
  1494. # else:
  1495. # unit = all_match[i][4]
  1496. # if entity_text.find("元")>=0:
  1497. # unit = ""
  1498. #
  1499. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1500. # begin_index_temp = index
  1501. # for j in range(len(list_tokenbegin)):
  1502. # if list_tokenbegin[j]==index:
  1503. # begin_index = j
  1504. # break
  1505. # elif list_tokenbegin[j]>index:
  1506. # begin_index = j-1
  1507. # break
  1508. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1509. # end_index_temp = index
  1510. # #index += len(str(all_match[i][0]))
  1511. # for j in range(begin_index,len(list_tokenbegin)):
  1512. # if list_tokenbegin[j]>=index:
  1513. # end_index = j-1
  1514. # break
  1515. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1516. #
  1517. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1518. # if len(unit)>0:
  1519. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1520. # else:
  1521. # entity_text = str(getUnifyMoney(entity_text))
  1522. #
  1523. # _exists = False
  1524. # for item in list_sentence_entitys:
  1525. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1526. # _exists = True
  1527. # if not _exists:
  1528. # if float(entity_text)>1:
  1529. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1530. #
  1531. # else:
  1532. # index += 1
  1533. all_match = re.finditer(pattern_money, sentence_text)
  1534. index = 0
  1535. for _match in all_match:
  1536. if len(_match.group())>0:
  1537. # print("===",_match.group())
  1538. # print(_match.groupdict())
  1539. unit = ""
  1540. entity_text = ""
  1541. text_beforeMoney = ""
  1542. filter = ""
  1543. filter_unit = False
  1544. for k,v in _match.groupdict().items():
  1545. if v!="" and v is not None:
  1546. if k.split("_")[0]=="money":
  1547. entity_text = v
  1548. if k.split("_")[0]=="unit":
  1549. unit = v
  1550. if k.split("_")[0]=="text":
  1551. text_beforeMoney = v
  1552. if k.split("_")[0]=="filter":
  1553. filter = v
  1554. if re.search("filter_unit",k) is not None:
  1555. filter_unit = True
  1556. if entity_text.find("元")>=0:
  1557. unit = ""
  1558. else:
  1559. if filter_unit:
  1560. continue
  1561. if filter!="":
  1562. continue
  1563. index = _match.span()[0]+len(text_beforeMoney)
  1564. begin_index_temp = index
  1565. for j in range(len(list_tokenbegin)):
  1566. if list_tokenbegin[j]==index:
  1567. begin_index = j
  1568. break
  1569. elif list_tokenbegin[j]>index:
  1570. begin_index = j-1
  1571. break
  1572. index = _match.span()[1]
  1573. end_index_temp = index
  1574. #index += len(str(all_match[i][0]))
  1575. for j in range(begin_index,len(list_tokenbegin)):
  1576. if list_tokenbegin[j]>=index:
  1577. end_index = j-1
  1578. break
  1579. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1580. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1581. if len(unit)>0:
  1582. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1583. else:
  1584. entity_text = str(getUnifyMoney(entity_text))
  1585. if float(entity_text)<100 or float(entity_text)>100000000000:
  1586. continue
  1587. _exists = False
  1588. for item in list_sentence_entitys:
  1589. if item.entity_id==entity_id and item.entity_type==entity_type:
  1590. _exists = True
  1591. if not _exists:
  1592. if float(entity_text)>1:
  1593. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1594. else:
  1595. index += 1
  1596. # 资金来源提取 2020/12/30 新增
  1597. list_moneySource = extract_moneySource(sentence_text)
  1598. entity_type = "moneysource"
  1599. for moneySource in list_moneySource:
  1600. begin_index_temp = moneySource['begin_index']
  1601. for j in range(len(list_tokenbegin)):
  1602. if list_tokenbegin[j] == begin_index_temp:
  1603. begin_index = j
  1604. break
  1605. elif list_tokenbegin[j] > begin_index_temp:
  1606. begin_index = j - 1
  1607. break
  1608. index = moneySource['end_index']
  1609. end_index_temp = index
  1610. for j in range(begin_index, len(list_tokenbegin)):
  1611. if list_tokenbegin[j] >= index:
  1612. end_index = j - 1
  1613. break
  1614. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1615. entity_text = moneySource['body']
  1616. list_sentence_entitys.append(
  1617. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1618. begin_index_temp, end_index_temp))
  1619. # 服务期限提取 2020/12/30 新增
  1620. list_servicetime = extract_servicetime(sentence_text)
  1621. entity_type = "serviceTime"
  1622. for servicetime in list_servicetime:
  1623. begin_index_temp = servicetime['begin_index']
  1624. for j in range(len(list_tokenbegin)):
  1625. if list_tokenbegin[j] == begin_index_temp:
  1626. begin_index = j
  1627. break
  1628. elif list_tokenbegin[j] > begin_index_temp:
  1629. begin_index = j - 1
  1630. break
  1631. index = servicetime['end_index']
  1632. end_index_temp = index
  1633. for j in range(begin_index, len(list_tokenbegin)):
  1634. if list_tokenbegin[j] >= index:
  1635. end_index = j - 1
  1636. break
  1637. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1638. entity_text = servicetime['body']
  1639. list_sentence_entitys.append(
  1640. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1641. begin_index_temp, end_index_temp))
  1642. # 招标方式提取 2020/12/30 新增
  1643. list_bidway = extract_bidway(sentence_text)
  1644. entity_type = "bidway"
  1645. for bidway in list_bidway:
  1646. begin_index_temp = bidway['begin_index']
  1647. end_index_temp = bidway['end_index']
  1648. begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  1649. end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  1650. if begin_index is None or end_index is None:
  1651. continue
  1652. print(begin_index_temp,end_index_temp,begin_index,end_index)
  1653. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1654. entity_text = bidway['body']
  1655. list_sentence_entitys.append(
  1656. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1657. begin_index_temp, end_index_temp))
  1658. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1659. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1660. list_entitys.append(list_entitys_temp)
  1661. return list_entitys
  1662. def union_result(codeName,prem):
  1663. '''
  1664. @summary:模型的结果拼成字典
  1665. @param:
  1666. codeName:编号名称模型的结果字典
  1667. prem:拿到属性的角色的字典
  1668. @return:拼接起来的字典
  1669. '''
  1670. result = []
  1671. assert len(codeName)==len(prem)
  1672. for item_code,item_prem in zip(codeName,prem):
  1673. result.append(dict(item_code,**item_prem))
  1674. return result
  1675. def persistenceData(data):
  1676. '''
  1677. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1678. '''
  1679. import psycopg2
  1680. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1681. cursor = conn.cursor()
  1682. for item_index in range(len(data)):
  1683. item = data[item_index]
  1684. doc_id = item[0]
  1685. dic = item[1]
  1686. code = dic['code']
  1687. name = dic['name']
  1688. prem = dic['prem']
  1689. if len(code)==0:
  1690. code_insert = ""
  1691. else:
  1692. code_insert = ";".join(code)
  1693. prem_insert = ""
  1694. for item in prem:
  1695. for x in item:
  1696. if isinstance(x, list):
  1697. if len(x)>0:
  1698. for x1 in x:
  1699. prem_insert+="/".join(x1)+","
  1700. prem_insert+="$"
  1701. else:
  1702. prem_insert+=str(x)+"$"
  1703. prem_insert+=";"
  1704. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1705. cursor.execute(sql)
  1706. conn.commit()
  1707. conn.close()
  1708. def persistenceData1(list_entitys,list_sentences):
  1709. '''
  1710. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1711. '''
  1712. import psycopg2
  1713. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1714. cursor = conn.cursor()
  1715. for list_entity in list_entitys:
  1716. for entity in list_entity:
  1717. if entity.values is not None:
  1718. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1719. else:
  1720. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1721. cursor.execute(sql)
  1722. for list_sentence in list_sentences:
  1723. for sentence in list_sentence:
  1724. str_tokens = "["
  1725. for item in sentence.tokens:
  1726. str_tokens += "'"
  1727. if item=="'":
  1728. str_tokens += "''"
  1729. else:
  1730. str_tokens += item
  1731. str_tokens += "',"
  1732. str_tokens = str_tokens[:-1]+"]"
  1733. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1734. cursor.execute(sql)
  1735. conn.commit()
  1736. conn.close()
  1737. def _handle(item,result_queue):
  1738. dochtml = item["dochtml"]
  1739. docid = item["docid"]
  1740. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1741. flag = False
  1742. if list_innerTable:
  1743. flag = True
  1744. for table in list_innerTable:
  1745. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1746. def getPredictTable():
  1747. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1748. import pandas as pd
  1749. import json
  1750. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1751. df = pd.read_csv(filename)
  1752. df_data = {"json_table":[],"docid":[]}
  1753. _count = 0
  1754. _sum = len(df["docid"])
  1755. task_queue = Queue()
  1756. result_queue = Queue()
  1757. _index = 0
  1758. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1759. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1760. _index += 1
  1761. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1762. mh.run()
  1763. while True:
  1764. try:
  1765. item = result_queue.get(block=True,timeout=1)
  1766. df_data["docid"].append(item["docid"])
  1767. df_data["json_table"].append(item["json_table"])
  1768. except Exception as e:
  1769. print(e)
  1770. break
  1771. df_1 = pd.DataFrame(df_data)
  1772. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1773. if __name__=="__main__":
  1774. '''
  1775. import glob
  1776. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1777. file_txt = str(file).replace("html","txt")
  1778. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1779. f.write("\n================\n")
  1780. content = codecs.open(file,"r",encoding="utf8").read()
  1781. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1782. '''
  1783. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1784. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1785. getPredictTable()