entityLink.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. #coding:UTF8
  2. '''
  3. Created on 2019年5月21日
  4. @author: User
  5. '''
  6. import re
  7. import os
  8. import time
  9. import pandas as pd
  10. _time = time.time()
  11. from BiddingKG.dl.common.Utils import *
  12. from BiddingKG.dl.interface.Entitys import *
  13. import json
  14. def edit_distance(source,target):
  15. dp = [["" for i in range(len(source)+1)] for j in range(len(target)+1)]
  16. for i in range(len(dp)):
  17. for j in range(len(dp[i])):
  18. if i==0:
  19. dp[i][j] = j
  20. elif j==0:
  21. dp[i][j] = i
  22. else:
  23. if source[j-1]==target[i-1]:
  24. cost = 0
  25. else:
  26. cost = 2
  27. dp[i][j] = min([dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+cost])
  28. return dp[-1][-1]
  29. def jaccard_score(source,target):
  30. source_set = set([s for s in source])
  31. target_set = set([s for s in target])
  32. if len(source_set)==0 or len(target_set)==0:
  33. return 0
  34. return max(len(source_set&target_set)/len(source_set),len(source_set&target_set)/len(target_set))
  35. def get_place_list():
  36. path = os.path.abspath(__file__) + '/../../place_info.csv'
  37. place_df = pd.read_csv(path)
  38. place_list = []
  39. for index, row in place_df.iterrows():
  40. place_list.append(row[1])
  41. place_list.append('台湾')
  42. place_list.append('澳门')
  43. place_list.append('香港')
  44. # place_list.append('東莞')
  45. # place_list.append('廣州')
  46. # place_list.append('韩国')
  47. # place_list.append('德国')
  48. # place_list.append('英国')
  49. # place_list.append('日本')
  50. # place_list.append('意大利')
  51. # place_list.append('新加坡')
  52. # place_list.append('加拿大')
  53. # place_list.append('西班牙')
  54. # place_list.append('澳大利亚')
  55. # place_list.append('美国')
  56. place_list = list(set(place_list))
  57. return place_list
  58. place_list = get_place_list()
  59. def link_entitys(list_entitys,on_value=0.8):
  60. for list_entity in list_entitys:
  61. range_entity = []
  62. for _entity in list_entity:
  63. if _entity.entity_type in ["org","company"]:
  64. range_entity.append(_entity)
  65. range_entity = range_entity[:1000]
  66. for first_i in range(len(range_entity)):
  67. _entity = range_entity[first_i]
  68. for second_i in range(first_i+1,len(range_entity)):
  69. _ent = range_entity[second_i]
  70. # 2021/5/21 update: 两个实体标签互斥(一个是招标人、一个是代理人)且entity_text不相等时,跳过
  71. if _entity.entity_text != _ent.entity_text and _entity.label != _ent.label and _entity.label in [0,1] and _ent.label in [0, 1]:
  72. continue
  73. _score = jaccard_score(_entity.entity_text, _ent.entity_text)
  74. if _entity.entity_text!=_ent.entity_text and _score>=on_value:
  75. _entity.linked_entitys.append(_ent)
  76. _ent.linked_entitys.append(_entity)
  77. #替换公司名称
  78. for _entity in range_entity:
  79. if re.search("公司",_entity.entity_text) is None:
  80. for _ent in _entity.linked_entitys:
  81. if re.search("公司$",_ent.entity_text) is not None:
  82. if len(_ent.entity_text)>len(_entity.entity_text):
  83. _entity.entity_text = _ent.entity_text
  84. # 2021/12/21 替换通过字典识别到的取长度最大的相似实体
  85. for _entity in range_entity:
  86. used_linked_entitys = []
  87. if not _entity.linked_entitys:
  88. continue
  89. _entity.linked_entitys.sort(key=lambda x: len(x.entity_text), reverse=True)
  90. for _ent in _entity.linked_entitys:
  91. if _ent in used_linked_entitys:
  92. break
  93. # print("_entity, _ent", _entity.entity_text, _ent.if_dict_match, _ent.entity_text)
  94. if _ent.if_dict_match == 1:
  95. if len(_ent.entity_text) > len(_entity.entity_text):
  96. # 判断两个公司地区相同
  97. match_list_1, match_list_2 = [], []
  98. for place in place_list:
  99. if place in _entity.entity_text:
  100. match_list_1.append(place)
  101. if place in _ent.entity_text:
  102. match_list_2.append(place)
  103. if str(match_list_1) == str(match_list_2):
  104. # print("字典替换", _entity.entity_text, "->", _ent.entity_text)
  105. _entity.origin_entity_text = _entity.entity_text
  106. _entity.entity_text = _ent.entity_text
  107. used_linked_entitys.append(_ent)
  108. # print(_entity.entity_text, _entity.if_dict_match, _ent.entity_text, _ent.if_dict_match)
  109. def getEnterprisePath():
  110. filename = "../LEGAL_ENTERPRISE.txt"
  111. real_path = getFileFromSysPath(filename)
  112. if real_path is None:
  113. real_path = filename
  114. return real_path
  115. DICT_ENTERPRISE = {}
  116. DICT_ENTERPRISE_DONE = False
  117. def getDict_enterprise():
  118. global DICT_ENTERPRISE,DICT_ENTERPRISE_DONE
  119. real_path = getEnterprisePath()
  120. with open(real_path,"r",encoding="UTF8") as f:
  121. for _e in f:
  122. if not _e:
  123. continue
  124. _e = _e.strip()
  125. if len(_e)>=4:
  126. key_enter = _e[:4]
  127. if key_enter not in DICT_ENTERPRISE:
  128. DICT_ENTERPRISE[key_enter] = set()
  129. DICT_ENTERPRISE[key_enter].add(_e[4:])
  130. # for _e in ["河南省柘源","建筑工程有限公司"]:
  131. # if not _e:
  132. # continue
  133. # _e = _e.strip()
  134. # if len(_e)>=4:
  135. # key_enter = _e[:4]
  136. # if key_enter not in DICT_ENTERPRISE:
  137. # DICT_ENTERPRISE[key_enter] = set()
  138. # DICT_ENTERPRISE[key_enter].add(_e[4:])
  139. DICT_ENTERPRISE_DONE = True
  140. return DICT_ENTERPRISE
  141. import threading
  142. import time
  143. load_enterprise_thread = threading.Thread(target=getDict_enterprise)
  144. load_enterprise_thread.start()
  145. MAX_ENTERPRISE_LEN = 30
  146. def match_enterprise_max_first(sentence):
  147. while True:
  148. if not DICT_ENTERPRISE_DONE:
  149. time.sleep(1)
  150. else:
  151. break
  152. list_match = []
  153. begin_index = 0
  154. if len(sentence)>4:
  155. while True:
  156. if begin_index+4<len(sentence):
  157. key_enter = sentence[begin_index:begin_index+4]
  158. if key_enter in DICT_ENTERPRISE:
  159. for _i in range(MAX_ENTERPRISE_LEN-4+1):
  160. enter_name = sentence[begin_index+4:begin_index+MAX_ENTERPRISE_LEN-_i]
  161. if enter_name in DICT_ENTERPRISE[key_enter]:
  162. match_item = {"entity_text":"%s%s"%(key_enter,enter_name),"begin_index":begin_index,"end_index":begin_index+len(key_enter)+len(enter_name)}
  163. list_match.append(match_item)
  164. begin_index += (len(key_enter)+len(enter_name))-1
  165. break
  166. begin_index += 1
  167. else:
  168. break
  169. return list_match
  170. def calibrateEnterprise(list_articles,list_sentences,list_entitys):
  171. for _article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  172. list_calibrate = []
  173. match_add = False
  174. match_replace = False
  175. range_entity = []
  176. for p_entity in list_entity:
  177. if p_entity.entity_type in ("org","company","location"):
  178. range_entity.append(p_entity)
  179. if len(range_entity)>1000:
  180. break
  181. for p_sentence in list_sentence:
  182. sentence = p_sentence.sentence_text
  183. list_match = match_enterprise_max_first(sentence)
  184. # print("list_match", list_match)
  185. doc_id = p_sentence.doc_id
  186. sentence_index = p_sentence.sentence_index
  187. tokens = p_sentence.tokens
  188. list_match.sort(key=lambda x:x["begin_index"])
  189. for _match_index in range(len(list_match)):
  190. _match = list_match[_match_index]
  191. find_flag = False
  192. for p_entity in range_entity:
  193. if p_entity.sentence_index!=p_sentence.sentence_index:
  194. continue
  195. if p_entity.entity_type=="location" and p_entity.entity_text==_match["entity_text"]:
  196. find_flag = True
  197. p_entity.entity_type = "company"
  198. p_entity.if_dict_match = 1
  199. if p_entity.entity_type not in ["location","org","company"]:
  200. continue
  201. if _match["entity_text"] == p_entity.entity_text:
  202. p_entity.if_dict_match = 1
  203. #有重叠
  204. #match部分被包含则不处理
  205. if _match["begin_index"]>=p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  206. find_flag = True
  207. #判断是否是多个公司
  208. for _match_j in range(_match_index,len(list_match)):
  209. if not list_match[_match_j]["end_index"]<=p_entity.wordOffset_end:
  210. _match_j -= 1
  211. break
  212. if _match_j>_match_index:
  213. match_replace = True
  214. match_add = True
  215. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  216. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  217. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  218. p_entity.entity_text = _match["entity_text"]
  219. p_entity.wordOffset_begin = _match["begin_index"]
  220. p_entity.wordOffset_end = _match["end_index"]
  221. p_entity.begin_index = begin_index
  222. p_entity.end_index = end_index
  223. # 该公司实体是字典识别的
  224. p_entity.if_dict_match = 1
  225. for _match_h in range(_match_index+1,_match_j+1):
  226. entity_text = list_match[_match_h]["entity_text"]
  227. entity_type = "company"
  228. begin_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["begin_index"])
  229. end_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["end_index"])
  230. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  231. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,list_match[_match_h]["begin_index"],list_match[_match_h]["end_index"])
  232. add_entity.if_dict_match = 1
  233. list_entity.append(add_entity)
  234. range_entity.append(add_entity)
  235. list_calibrate.append({"type":"add","from":"","to":entity_text})
  236. _match_index = _match_j
  237. break
  238. continue
  239. elif _match["begin_index"]<=p_entity.wordOffset_begin and _match["end_index"]>p_entity.wordOffset_begin:
  240. find_flag = True
  241. if _match["begin_index"]<p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  242. if p_entity.entity_type in ("org","company"):
  243. _diff_text = sentence[p_entity.wordOffset_end:_match["end_index"]]
  244. if re.search("分",_diff_text) is not None:
  245. pass
  246. else:
  247. match_replace = True
  248. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  249. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  250. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  251. p_entity.entity_text = _match["entity_text"]
  252. p_entity.wordOffset_begin = _match["begin_index"]
  253. p_entity.wordOffset_end = _match["end_index"]
  254. p_entity.begin_index = begin_index
  255. p_entity.end_index = end_index
  256. p_entity.if_dict_match = 1
  257. elif _match["end_index"]>=p_entity.wordOffset_end:
  258. match_replace = True
  259. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  260. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  261. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  262. p_entity.entity_text = _match["entity_text"]
  263. p_entity.wordOffset_begin = _match["begin_index"]
  264. p_entity.wordOffset_end = _match["end_index"]
  265. p_entity.begin_index = begin_index
  266. p_entity.end_index = end_index
  267. p_entity.entity_type = "company"
  268. p_entity.if_dict_match = 1
  269. elif _match["begin_index"]<p_entity.wordOffset_end and _match["end_index"]>p_entity.wordOffset_end:
  270. find_flag = True
  271. if p_entity.entity_type in ("org","company"):
  272. match_replace = True
  273. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  274. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  275. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  276. p_entity.entity_text = _match["entity_text"]
  277. p_entity.wordOffset_begin = _match["begin_index"]
  278. p_entity.wordOffset_end = _match["end_index"]
  279. p_entity.begin_index = begin_index
  280. p_entity.end_index = end_index
  281. p_entity.if_dict_match = 1
  282. if not find_flag:
  283. match_add = True
  284. entity_text = _match["entity_text"]
  285. entity_type = "company"
  286. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  287. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  288. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  289. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,_match["begin_index"],_match["end_index"])
  290. list_entity.append(add_entity)
  291. range_entity.append(add_entity)
  292. list_calibrate.append({"type":"add","from":"","to":entity_text})
  293. #去重
  294. set_calibrate = set()
  295. list_match_enterprise = []
  296. for _calibrate in list_calibrate:
  297. _from = _calibrate.get("from","")
  298. _to = _calibrate.get("to","")
  299. _key = _from+_to
  300. if _key not in set_calibrate:
  301. list_match_enterprise.append(_calibrate)
  302. set_calibrate.add(_key)
  303. match_enterprise_type = 0
  304. if match_add:
  305. match_enterprise_type += 1
  306. if match_replace:
  307. match_enterprise_type += 2
  308. _article.match_enterprise = list_match_enterprise
  309. _article.match_enterprise_type = match_enterprise_type
  310. def isLegalEnterprise(name):
  311. is_legal = True
  312. if re.search("^[省市区县]",name) is not None or re.search("^.{,3}(分(公司|行|支)|街道|中心|办事处|经营部)$",name) or re.search("标段|标包|名称",name) is not None:
  313. is_legal = False
  314. return is_legal
  315. def fix_LEGAL_ENTERPRISE():
  316. unlegal_enterprise = []
  317. _path = getEnterprisePath()
  318. _sum = 0
  319. set_enter = set()
  320. paths = [_path,"enterprise_name.txt"]
  321. for _p in paths:
  322. with open(_p,"r",encoding="utf8") as f:
  323. while True:
  324. line = f.readline()
  325. if not line:
  326. break
  327. line = line.strip()
  328. if isLegalEnterprise(line):
  329. set_enter.add(line)
  330. with open("enter.txt","w",encoding="utf8") as fwrite:
  331. for line in list(set_enter):
  332. fwrite.write(line.replace("(","(").replace(")",")"))
  333. fwrite.write("\n")
  334. # if re.search("标段|地址|标包|名称",line) is not None:#\(|\)||
  335. # _count += 1
  336. # print("=",line)
  337. # print("%d/%d"%(_count,_sum))
  338. if __name__=="__main__":
  339. # edit_distance("GUMBO","GAMBOL")
  340. # print(jaccard_score("周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目竞争性谈判公告","周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目-成交公告"))
  341. #
  342. # sentences = "广州比地数据科技有限公司比地数据科技有限公司1111111123沈阳南光工贸有限公司"
  343. # print(match_enterprise_max_first(sentences))
  344. #
  345. # print("takes %d s"%(time.time()-_time))
  346. fix_LEGAL_ENTERPRISE()