modelFactory.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. '''
  2. Created on 2019年5月16日
  3. @author: User
  4. '''
  5. import os
  6. import sys
  7. sys.path.append(os.path.abspath("../.."))
  8. from keras import models
  9. from keras import layers
  10. # from keras_contrib.layers import CRF
  11. from keras.preprocessing.sequence import pad_sequences
  12. from keras import optimizers,losses,metrics
  13. from BiddingKG.dl.common.Utils import *
  14. import tensorflow as tf
  15. import json
  16. class Model_role_classify():
  17. def __init__(self,lazyLoad=getLazyLoad()):
  18. #self.model_role_file = os.path.abspath("../role/models/model_role.model.hdf5")
  19. self.model_role_file = os.path.dirname(__file__)+"/../role/log/new_biLSTM-ep012-loss0.028-val_loss0.040-f10.954.h5"
  20. self.model_role = None
  21. self.graph = tf.get_default_graph()
  22. if not lazyLoad:
  23. self.getModel()
  24. def getModel(self):
  25. if self.model_role is None:
  26. self.model_role = models.load_model(self.model_role_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  27. return self.model_role
  28. def encode(self,tokens,begin_index,end_index,**kwargs):
  29. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  30. def predict(self,x):
  31. x = np.transpose(np.array(x),(1,0,2,3))
  32. with self.graph.as_default():
  33. return self.getModel().predict([x[0],x[1]])
  34. class Model_role_classify_word():
  35. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  36. if USE_PAI_EAS:
  37. lazyLoad = True
  38. #self.model_role_file = os.path.abspath("../role/log/ep071-loss0.107-val_loss0.122-f10.956.h5")
  39. # self.model_role_file = os.path.dirname(__file__)+"/../role/models/ep038-loss0.140-val_loss0.149-f10.947.h5"
  40. #self.model_role_file = os.path.abspath("../role/log/textcnn_ep017-loss0.088-val_loss0.125-f10.955.h5")
  41. self.model_role = None
  42. self.sess_role = tf.Session(graph=tf.Graph(),config=config)
  43. if not lazyLoad:
  44. self.getModel()
  45. def getModel(self):
  46. if self.model_role is None:
  47. with self.sess_role.as_default() as sess:
  48. with self.sess_role.graph.as_default():
  49. meta_graph_def = tf.saved_model.loader.load(sess=self.sess_role, tags=["serve"], export_dir=os.path.dirname(__file__)+"/role_savedmodel")
  50. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  51. signature_def = meta_graph_def.signature_def
  52. input0 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  53. input1 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  54. # input2 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  55. output = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  56. self.model_role = [[input0,input1],output] #,input2
  57. return self.model_role
  58. '''
  59. def load_weights(self):
  60. model = self.getModel()
  61. model.load_weights(self.model_role_file)
  62. '''
  63. def encode(self,tokens,begin_index,end_index,entity_text,**kwargs):
  64. _span = spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20,center_include=False,word_flag=True,text=entity_text) #size=12 center_include=True
  65. # print(_span)
  66. _encode_span = encodeInput(_span, word_len=20, word_flag=True,userFool=False) # word_len=20
  67. # print(_encode_span)
  68. return _encode_span
  69. def fix_digit_eng(self, text):
  70. '''
  71. 处理数字及英文编号等
  72. :param text:
  73. :return:
  74. '''
  75. text = re.sub('第[一二三1-3]([条项章]|中学|医院|附属)|第三方(服务机构)?', 'xxx', text)
  76. text = re.sub('第01(中标|成交)?候选人', '第一中标候选人', text)
  77. text = re.sub('(标[段的包项]|品目)[一二三1-3]', '标段', text)
  78. text = re.sub('第?[一二三1-3](标段?|[分子标]?包)', 'd标段', text)
  79. text = re.sub('[a-zA-Z][a-zA-Z0-9=&_—-]{3,}', 'abc', text)
  80. text = re.sub('[【(\[][0-9]{2,}[\])】]|\d+([::.-]\d+)+', 'd', text)
  81. text = re.sub('[一二三四五六七八九十]{2,}|[四五六七八九十]+', 'd', text)
  82. text = re.sub('\d{2,}(\.\d+)?|\d\.\d+|[04-9]', 'd', text)
  83. text = re.sub('序号:\d+|第?[一二三四五六七八九十\d]+次|[一二三四五六七八九十\d]+、|([^\w]|^)序:?\d+', ' d', text) # ,序:1,单位名称:
  84. text = re.sub('(中标|成交|中选|入围)(工程|项目)', '工程', text) # 修复易错分为中标人
  85. text = re.sub('约定|(盖章|签名):?', ' ', text) # 修复 233233636 错分为中标人 国有产权网上竞价有关约定 辽阳市公共资源交易中心 ,标 修复 273505905 乡镇签名:盖章: 次村产权交易服务中心 预测为中标
  86. text = re.sub('中介机构', '投标机构', text) # 251058999 错分为中标人 序号:2,中介机构名称:
  87. text = re.sub('(采购|招标)人名称、地址和联系方式:|采购方,指', '采购人:', text) # 275065998 修复 224703143 采购的中标人;采购方,指 预测为中标
  88. if re.search('(最终)?排名:', text) and re.search('(最终)?排名:第?[123一二三]', text)==None:
  89. text = re.sub('(最终)?排名:', ' ', text)
  90. # text = re.sub('(采购|招标|发布)机构', '发布人', text)
  91. return text.replace('(', '(').replace(')', ')').replace('單', '单').replace('稱','承').replace('標', '标').replace('採購', '采购').replace('機構', '机构')
  92. def encode_word(self, sentence_text, begin_index, end_index, size=20, **kwargs):
  93. '''
  94. 上下文数字化,使用字偏移
  95. :param sentence_text: 句子文本
  96. :param begin_index: 实体字开始位置
  97. :param end_index: 实体字结束位置
  98. :param size: 字偏移量
  99. :param kwargs:
  100. :return:
  101. '''
  102. _span = get_context(sentence_text, begin_index, end_index,size=size, center_include=False) # size=12 center_include=True
  103. # print(_span)
  104. _span = [self.fix_digit_eng(text) for text in _span]
  105. _encode_span = encodeInput(_span, word_len=30, word_flag=True, userFool=False) # word_len=20
  106. # print(_encode_span)
  107. return _encode_span
  108. def predict(self,x):
  109. x = np.transpose(np.array(x),(1,0,2))
  110. model_role = self.getModel()
  111. assert len(x)==len(model_role[0])
  112. feed_dict = {}
  113. for _x,_t in zip(x,model_role[0]):
  114. feed_dict[_t] = _x
  115. list_result = limitRun(self.sess_role,[model_role[1]],feed_dict)[0]
  116. return list_result
  117. #return self.sess_role.run(model_role[1],feed_dict=feed_dict)
  118. class Model_money_classify():
  119. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  120. if USE_PAI_EAS:
  121. lazyLoad = True
  122. self.model_money_file = os.path.dirname(__file__)+"/../money/models/model_money_word.h5"
  123. self.model_money = None
  124. self.sess_money = tf.Session(graph=tf.Graph(),config=config)
  125. if not lazyLoad:
  126. self.getModel()
  127. def getModel(self):
  128. if self.model_money is None:
  129. with self.sess_money.as_default() as sess:
  130. with sess.graph.as_default():
  131. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel")
  132. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel_bilstmonly")
  133. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  134. signature_def = meta_graph_def.signature_def
  135. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  136. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  137. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  138. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  139. self.model_money = [[input0,input1,input2],output]
  140. return self.model_money
  141. '''
  142. if self.model_money is None:
  143. self.model_money = models.load_model(self.model_money_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  144. return self.model_money
  145. '''
  146. '''
  147. def load_weights(self):
  148. model = self.getModel()
  149. model.load_weights(self.model_money_file)
  150. '''
  151. def encode(self,tokens,begin_index,end_index,**kwargs):
  152. _span = spanWindow(tokens=tokens, begin_index=begin_index, end_index=end_index, size=10, center_include=True, word_flag=True)
  153. # print(_span)
  154. return encodeInput(_span, word_len=30, word_flag=True,userFool=False)
  155. return embedding_word(_span,shape=(3,100,60))
  156. def predict(self,x):
  157. # print("shape",np.shape(x))
  158. x = np.transpose(np.array(x),(1,0,2))
  159. model_money = self.getModel()
  160. assert len(x)==len(model_money[0])
  161. feed_dict = {}
  162. for _x,_t in zip(x,model_money[0]):
  163. feed_dict[_t] = _x
  164. list_result = limitRun(self.sess_money,[model_money[1]],feed_dict)[0]
  165. #return self.sess_money.run(model_money[1],feed_dict=feed_dict)
  166. return list_result
  167. '''
  168. with self.graph.as_default():
  169. return self.getModel().predict([x[0],x[1],x[2]])
  170. '''
  171. from itertools import groupby
  172. from BiddingKG.dl.relation_extraction.model import get_words_matrix
  173. class Model_relation_extraction():
  174. def __init__(self,lazyLoad=getLazyLoad()):
  175. if USE_PAI_EAS:
  176. lazyLoad = True
  177. self.subject_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/subject_model"
  178. self.object_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/object_model"
  179. self.model_subject = None
  180. self.model_object = None
  181. self.sess_subject = tf.Session(graph=tf.Graph())
  182. self.sess_object = tf.Session(graph=tf.Graph())
  183. if not lazyLoad:
  184. self.getModel1()
  185. self.getModel2()
  186. self.entity_type_dict = {
  187. 'org': '<company/org>',
  188. 'company': '<company/org>',
  189. 'location': '<location>',
  190. 'phone': '<phone>',
  191. 'person': '<contact_person>'
  192. }
  193. self.id2predicate = {
  194. 0: "rel_person", # 公司——联系人
  195. 1: "rel_phone", # 联系人——电话
  196. 2: "rel_address" # 公司——地址
  197. }
  198. self.words_size = 128
  199. # subject_model
  200. def getModel1(self):
  201. if self.model_subject is None:
  202. with self.sess_subject.as_default() as sess:
  203. with sess.graph.as_default():
  204. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.subject_model_file)
  205. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  206. signature_def = meta_graph_def.signature_def
  207. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  208. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  209. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  210. self.model_subject = [[input0,input1],output]
  211. return self.model_subject
  212. # object_model
  213. def getModel2(self):
  214. if self.model_object is None:
  215. with self.sess_object.as_default() as sess:
  216. with sess.graph.as_default():
  217. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.object_model_file)
  218. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  219. signature_def = meta_graph_def.signature_def
  220. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  221. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  222. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  223. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  224. self.model_object = [[input0,input1,input2],output]
  225. return self.model_object
  226. def encode(self,entity_list,list_sentence):
  227. list_sentence = sorted(list_sentence, key=lambda x: x.sentence_index)
  228. entity_list = sorted(entity_list, key=lambda x: (x.sentence_index, x.begin_index))
  229. pre_data = []
  230. text_data = []
  231. last_sentence_index = -1
  232. for key, group in groupby(entity_list, key=lambda x: x.sentence_index):
  233. if key - last_sentence_index > 1:
  234. for i in range(last_sentence_index + 1, key):
  235. pre_data.extend(list_sentence[i].tokens)
  236. text_data.extend([0] * len(list_sentence[i].tokens))
  237. group = list(group)
  238. for i in range(len(group)):
  239. ent = group[i]
  240. _tokens = list_sentence[key].tokens
  241. if i == len(group) - 1:
  242. if i == 0:
  243. pre_data.extend(_tokens[:ent.begin_index])
  244. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  245. pre_data.append(self.entity_type_dict[ent.entity_type])
  246. text_data.append(ent)
  247. pre_data.extend(_tokens[ent.end_index + 1:])
  248. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  249. break
  250. else:
  251. pre_data.append(self.entity_type_dict[ent.entity_type])
  252. text_data.append(ent)
  253. pre_data.extend(_tokens[ent.end_index + 1:])
  254. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  255. break
  256. if i == 0:
  257. pre_data.extend(_tokens[:ent.begin_index])
  258. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  259. pre_data.append(self.entity_type_dict[ent.entity_type])
  260. text_data.append(ent)
  261. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  262. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  263. else:
  264. pre_data.append(self.entity_type_dict[ent.entity_type])
  265. text_data.append(ent)
  266. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  267. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  268. last_sentence_index = key
  269. return text_data, pre_data
  270. def check_data(self, words):
  271. # 检查数据是否包含可预测的subject和object
  272. # 没有需要预测的链接属性,直接return
  273. company_relation = 0
  274. person_relation = 0
  275. if '<company/org>' in words:
  276. company_relation += 1
  277. if '<contact_person>' in words:
  278. person_relation += 1
  279. if company_relation:
  280. company_relation += 1
  281. # 暂时不考虑地址location实体
  282. # if '<location>' in words and company_relation:
  283. # company_relation += 1
  284. if '<phone>' in words and company_relation:
  285. person_relation += 1
  286. if company_relation < 2 and person_relation < 2:
  287. return False
  288. return True
  289. def predict_by_api(self,text_in,words,sentence_vetor):
  290. status_code = 0
  291. # save([words,sentence_vetor.tolist()],"C:/Users/Administrator/Desktop/test_data.pk")
  292. try:
  293. requests_result = requests.post(API_URL + "/predict_relation", json={"sentence_vetor": sentence_vetor.tolist(), "words": words},
  294. verify=True)
  295. status_code = requests_result.status_code
  296. triple_index_list = json.loads(requests_result.text)['triple_list']
  297. # print("triple_list:",json.loads(requests_result.text)['triple_list'])
  298. print("cost_time:",json.loads(requests_result.text)['cost_time'])
  299. triple_list = [(text_in[triple[0]], triple[1], text_in[triple[2]]) for triple in triple_index_list]
  300. return triple_list,status_code
  301. except Exception as e:
  302. print(e)
  303. return [],status_code
  304. def predict(self,text_in, words, rate=0.5):
  305. _t2 = np.zeros((len(words), self.words_size))
  306. for i in range(len(words)):
  307. _t2[i] = np.array(get_words_matrix(words[i]))
  308. # a = time.time()
  309. # triple_list, status_code = self.predict_by_api(text_in, words,_t2)
  310. # print('time',time.time()-a)
  311. # print("status_code",status_code)
  312. # if status_code==200:
  313. # return triple_list
  314. # else:
  315. # 使用模型预测
  316. triple_list = []
  317. # print("tokens:",words)
  318. # _t2 = [self.words2id.get(c, 1) for c in words]
  319. _t2 = np.array([_t2])
  320. _t3 = [1 for _ in words]
  321. _t3 = np.array([_t3])
  322. # _k1 = self.model_subject.predict([_t2, _t3])
  323. _k1 = limitRun(self.sess_subject,[self.model_subject[1]],feed_dict={self.model_subject[0][0]:_t2,
  324. self.model_subject[0][1]:_t3})[0]
  325. _k1 = _k1[0, :, 0]
  326. _k1 = np.where(_k1 > rate)[0]
  327. # print('k1',_k1)
  328. _subjects = []
  329. for i in _k1:
  330. _subject = text_in[i]
  331. _subjects.append((_subject, i, i))
  332. if _subjects:
  333. _t2 = np.repeat(_t2, len(_subjects), 0)
  334. _t3 = np.repeat(_t3, len(_subjects), 0)
  335. _k1, _ = np.array([_s[1:] for _s in _subjects]).T.reshape((2, -1, 1))
  336. # _o1 = self.model_object.predict([_t2, _t3, _k1])
  337. _o1 = limitRun(self.sess_object, [self.model_object[1]], feed_dict={self.model_object[0][0]: _t2,
  338. self.model_object[0][1]: _t3,
  339. self.model_object[0][2]: _k1})[0]
  340. for i, _subject in enumerate(_subjects):
  341. _oo1 = np.where(_o1[i] > 0.5)
  342. # print('_oo1', _oo1)
  343. for _ooo1, _c1 in zip(*_oo1):
  344. _object = text_in[_ooo1]
  345. _predicate = self.id2predicate[_c1]
  346. triple_list.append((_subject[0], _predicate, _object))
  347. # print([(t[0].entity_text,t[1],t[2].entity_text) for t in triple_list])
  348. return triple_list
  349. else:
  350. return []
  351. class Model_person_classify():
  352. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  353. if USE_PAI_EAS:
  354. lazyLoad = True
  355. self.model_person_file = os.path.dirname(__file__)+"/../person/models/model_person.model.hdf5"
  356. self.model_person = None
  357. self.sess_person = tf.Session(graph=tf.Graph(),config=config)
  358. if not lazyLoad:
  359. self.getModel()
  360. def getModel(self):
  361. if self.model_person is None:
  362. with self.sess_person.as_default() as sess:
  363. with sess.graph.as_default():
  364. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new")
  365. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new_znj")
  366. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  367. signature_def = meta_graph_def.signature_def
  368. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  369. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  370. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  371. self.model_person = [[input0,input1],output]
  372. return self.model_person
  373. '''
  374. if self.model_person is None:
  375. self.model_person = models.load_model(self.model_person_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  376. return self.model_person
  377. '''
  378. '''
  379. def load_weights(self):
  380. model = self.getModel()
  381. model.load_weights(self.model_person_file)
  382. '''
  383. def encode(self,tokens,begin_index,end_index,**kwargs):
  384. # return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  385. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20),shape=(2,20,128))
  386. def predict(self,x):
  387. x = np.transpose(np.array(x),(1,0,2,3))
  388. model_person = self.getModel()
  389. assert len(x)==len(model_person[0])
  390. feed_dict = {}
  391. for _x,_t in zip(x,model_person[0]):
  392. feed_dict[_t] = _x
  393. list_result = limitRun(self.sess_person,[model_person[1]],feed_dict)[0]
  394. return list_result
  395. #return self.sess_person.run(model_person[1],feed_dict=feed_dict)
  396. '''
  397. with self.graph.as_default():
  398. return self.getModel().predict([x[0],x[1]])
  399. '''
  400. class Model_form_line():
  401. def __init__(self,lazyLoad=getLazyLoad()):
  402. self.model_file = os.path.dirname(__file__)+"/../form/model/model_form.model - 副本.hdf5"
  403. self.model_form = None
  404. self.graph = tf.get_default_graph()
  405. if not lazyLoad:
  406. self.getModel()
  407. def getModel(self):
  408. if self.model_form is None:
  409. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  410. return self.model_form
  411. def encode(self,data,shape=(100,60),expand=False,**kwargs):
  412. embedding = np.zeros(shape)
  413. word_model = getModel_word()
  414. for i in range(len(data)):
  415. if i>=shape[0]:
  416. break
  417. if data[i] in word_model.vocab:
  418. embedding[i] = word_model[data[i]]
  419. if expand:
  420. embedding = np.expand_dims(embedding,0)
  421. return embedding
  422. def predict(self,x):
  423. with self.graph.as_default():
  424. return self.getModel().predict(x)
  425. class Model_form_item():
  426. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  427. self.model_file = os.path.dirname(__file__)+"/../form/log/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  428. self.model_form = None
  429. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  430. if not lazyLoad:
  431. self.getModel()
  432. def getModel(self):
  433. if self.model_form is None:
  434. with self.sess_form.as_default() as sess:
  435. with sess.graph.as_default():
  436. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_savedmodel"%(os.path.dirname(__file__)))
  437. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  438. signature_def = meta_graph_def.signature_def
  439. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  440. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  441. self.model_form = [[inputs],output]
  442. return self.model_form
  443. '''
  444. if self.model_form is None:
  445. with self.graph.as_defalt():
  446. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  447. return self.model_form
  448. '''
  449. def encode(self,data,**kwargs):
  450. return encodeInput([data], word_len=50, word_flag=True,userFool=False)[0]
  451. return encodeInput_form(data)
  452. def predict(self,x):
  453. if USE_API:
  454. requests_result = requests.post(API_URL+"/predict_form_item",json={"inputs":x.tolist()}, verify=True)
  455. list_result = json.loads(requests_result.text)['result']
  456. else:
  457. model_form = self.getModel()
  458. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  459. return list_result
  460. # return self.sess_form.run(model_form[1],feed_dict={model_form[0][0]:x})
  461. '''
  462. with self.graph.as_default():
  463. return self.getModel().predict(x)
  464. '''
  465. class Model_form_context():
  466. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  467. self.model_form = None
  468. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  469. if not lazyLoad:
  470. self.getModel()
  471. def getModel(self):
  472. if self.model_form is None:
  473. with self.sess_form.as_default() as sess:
  474. with sess.graph.as_default():
  475. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_context_savedmodel"%(os.path.dirname(__file__)))
  476. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  477. signature_def = meta_graph_def.signature_def
  478. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  479. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  480. self.model_form = [[inputs],output]
  481. return self.model_form
  482. '''
  483. if self.model_form is None:
  484. with self.graph.as_defalt():
  485. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  486. return self.model_form
  487. '''
  488. def encode_table(self,inner_table,size=30):
  489. def encode_item(_table,i,j):
  490. _x = [_table[j-1][i-1],_table[j-1][i],_table[j-1][i+1],
  491. _table[j][i-1],_table[j][i],_table[j][i+1],
  492. _table[j+1][i-1],_table[j+1][i],_table[j+1][i+1]]
  493. e_x = [encodeInput_form(_temp[0],MAX_LEN=30) for _temp in _x]
  494. _label = _table[j][i][1]
  495. # print(_x)
  496. # print(_x[4],_label)
  497. return e_x,_label,_x
  498. def copytable(inner_table):
  499. table = []
  500. for line in inner_table:
  501. list_line = []
  502. for item in line:
  503. list_line.append([item[0][:size],item[1]])
  504. table.append(list_line)
  505. return table
  506. table = copytable(inner_table)
  507. padding = ["#"*30,0]
  508. width = len(table[0])
  509. height = len(table)
  510. table.insert(0,[padding for i in range(width)])
  511. table.append([padding for i in range(width)])
  512. for item in table:
  513. item.insert(0,padding.copy())
  514. item.append(padding.copy())
  515. data_x = []
  516. data_y = []
  517. data_text = []
  518. data_position = []
  519. for _i in range(1,width+1):
  520. for _j in range(1,height+1):
  521. _x,_y,_text = encode_item(table,_i,_j)
  522. data_x.append(_x)
  523. _label = [0,0]
  524. _label[_y] = 1
  525. data_y.append(_label)
  526. data_text.append(_text)
  527. data_position.append([_i-1,_j-1])
  528. # input = table[_j][_i][0]
  529. # item_y = [0,0]
  530. # item_y[table[_j][_i][1]] = 1
  531. # data_x.append(encodeInput([input], word_len=50, word_flag=True,userFool=False)[0])
  532. # data_y.append(item_y)
  533. return data_x,data_y,data_text,data_position
  534. def encode(self,inner_table,**kwargs):
  535. data_x,_,_,data_position = self.encode_table(inner_table)
  536. return data_x,data_position
  537. def predict(self,x):
  538. model_form = self.getModel()
  539. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  540. return list_result
  541. # class Model_form_item():
  542. # def __init__(self,lazyLoad=False):
  543. # self.model_file = os.path.dirname(__file__)+"/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  544. # self.model_form = None
  545. #
  546. # if not lazyLoad:
  547. # self.getModel()
  548. # self.graph = tf.get_default_graph()
  549. #
  550. # def getModel(self):
  551. # if self.model_form is None:
  552. # self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  553. # return self.model_form
  554. #
  555. # def encode(self,data,**kwargs):
  556. #
  557. # return encodeInput_form(data)
  558. #
  559. # def predict(self,x):
  560. # with self.graph.as_default():
  561. # return self.getModel().predict(x)