punish_rule.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. #!/usr/bin/python3
  2. # -*- coding: utf-8 -*-
  3. # @Author : bidikeji
  4. # @Time : 2020/12/24 0024 15:23
  5. import re
  6. import os
  7. import time
  8. import tensorflow as tf
  9. from BiddingKG.dl.common.Utils import *
  10. from tensorflow.contrib.crf import crf_log_likelihood
  11. from tensorflow.contrib.layers.python.layers import initializers
  12. from keras.preprocessing.sequence import pad_sequences
  13. import BiddingKG.dl.interface.Preprocessing as Preprocessing
  14. from BiddingKG.dl.interface.Preprocessing import *
  15. def BiLSTM_CRF_tfmodel(sess,weights):
  16. BiRNN_Units = 140
  17. chunk_tags = {
  18. 'O': 0,
  19. 'PN_B': 1,
  20. 'PN_M': 2,
  21. 'PN_E': 3
  22. }
  23. def embedding_layer(input):
  24. embedding = tf.get_variable("embedding",initializer=np.array(weights,dtype=np.float32) if weights is not None else None,dtype=tf.float32)
  25. return tf.nn.embedding_lookup(params=embedding,ids=input)
  26. def BiLSTM_Layer(input,length):
  27. with tf.variable_scope("BiLSTM"):
  28. forward_cell = tf.contrib.rnn.BasicLSTMCell(BiRNN_Units//2,state_is_tuple=True)
  29. backward_cell = tf.contrib.rnn.BasicLSTMCell(BiRNN_Units//2,state_is_tuple=True)
  30. output, _ = tf.nn.bidirectional_dynamic_rnn(forward_cell,backward_cell,input,dtype=tf.float32,sequence_length=length)
  31. output = tf.concat(output,2)
  32. return output
  33. def CRF_layer(input,num_tags,BiRNN_Units,time_step):
  34. with tf.variable_scope("CRF"):
  35. with tf.variable_scope("hidden"):
  36. w_hidden = tf.get_variable(name='w_hidden',shape=(BiRNN_Units,BiRNN_Units//2),dtype=tf.float32,
  37. initializer=initializers.xavier_initializer(),regularizer=tf.contrib.layers.l2_regularizer(0.001))
  38. b_hidden = tf.get_variable(name='b_hidden',shape=(BiRNN_Units//2),dtype=tf.float32,initializer=tf.zeros_initializer())
  39. # print(input)
  40. input_reshape = tf.reshape(input,shape=(-1,BiRNN_Units))
  41. hidden = tf.tanh(tf.nn.xw_plus_b(input_reshape,w_hidden,b_hidden))
  42. with tf.variable_scope("output"):
  43. w_output = tf.get_variable(name='w_output',shape=(BiRNN_Units//2,num_tags),dtype=tf.float32,initializer=initializers.xavier_initializer(),regularizer=tf.contrib.layers.l2_regularizer(0.001))
  44. b_output = tf.get_variable(name='b_output',shape=(num_tags),dtype=tf.float32,initializer=tf.zeros_initializer())
  45. pred = tf.nn.xw_plus_b(hidden,w_output,b_output)
  46. logits_ = tf.reshape(pred,shape=(-1,time_step,num_tags),name='logits')
  47. return logits_
  48. def layer_loss(input,true_target,num_tags,length):
  49. with tf.variable_scope("crf_loss"):
  50. trans = tf.get_variable(name='transitons',shape=(num_tags,num_tags),dtype=tf.float32,initializer=initializers.xavier_initializer())
  51. log_likelihood,trans = crf_log_likelihood(inputs=input,tag_indices=true_target,transition_params=trans,sequence_lengths=length)
  52. return tf.reduce_mean(-log_likelihood),trans
  53. with sess.graph.as_default():
  54. char_input = tf.placeholder(name='char_input',shape=(None,None),dtype=tf.int32)
  55. target = tf.placeholder(name='target',shape=(None,None),dtype=tf.int32)
  56. length = tf.placeholder(name='length',shape=(None,),dtype=tf.int32)
  57. # keepprob = tf.placeholder(name='keepprob',dtype=tf.float32)
  58. _embedding = embedding_layer(char_input)
  59. _shape = tf.shape(char_input)
  60. batch_size = _shape[0]
  61. step_size = _shape[-1]
  62. bilstm = BiLSTM_Layer(_embedding,length)
  63. _logits = CRF_layer(bilstm,num_tags=len(chunk_tags),BiRNN_Units=BiRNN_Units,time_step=step_size)
  64. crf_loss,trans = layer_loss(_logits,true_target=target,num_tags=len(chunk_tags),length=length)
  65. global_step = tf.Variable(0,trainable=False)
  66. with tf.variable_scope("optimizer"):
  67. opt = tf.train.AdamOptimizer(0.002)
  68. grads_vars = opt.compute_gradients(crf_loss)
  69. capped_grads_vars = [[tf.clip_by_value(g,-5,5),v] for g,v in grads_vars]
  70. train_op = opt.apply_gradients(capped_grads_vars,global_step)
  71. return char_input,_logits,target,length,crf_loss,trans,train_op
  72. def decode(logits, trans, sequence_lengths, tag_num):
  73. viterbi_sequences = []
  74. for logit, length in zip(logits, sequence_lengths):
  75. score = logit[:length]
  76. viterbi_seq, viterbi_score = viterbi_decode(score, trans)
  77. viterbi_sequences.append(viterbi_seq)
  78. return viterbi_sequences
  79. class Punish_Extract():
  80. def __init__(self, model_file = os.path.dirname(__file__)+"/models/21-0.9990081295021194-0.3647936/model.ckpt"):
  81. print('model_file_path:',model_file)
  82. self.sess = tf.Session(graph=tf.Graph())
  83. self.code = ""
  84. self.punish_dicition = ""
  85. self.model_file = model_file #预测编号模型
  86. self.load_model()
  87. # 加载处罚编号预测模型
  88. def load_model(self):
  89. with self.sess.as_default() as sess:
  90. with sess.graph.as_default():
  91. vocab_model = getModel_word()
  92. vocab, w2v_matrix = getVocabAndMatrix(vocab_model, Embedding_size=60)
  93. self.char_input, self.logits, self.target, self.length, self.crf_loss, self.trans, self.train_op = BiLSTM_CRF_tfmodel(sess, w2v_matrix)
  94. sess.run(tf.global_variables_initializer())
  95. saver = tf.train.Saver()
  96. saver.restore(sess, self.model_file)
  97. # 处罚编号预测
  98. def predict_punishCode(self,list_sentences):
  99. re_ner = re.compile("12+?3")
  100. article_ner_list = []
  101. count = 0
  102. with self.sess.as_default():
  103. with self.sess.graph.as_default():
  104. for sentences in list_sentences:
  105. count += 1
  106. # print(count)
  107. sentence_len = [len(sentence.sentence_text) for sentence in sentences]
  108. maxlen = max(sentence_len)
  109. sentences_x = []
  110. for sentence in sentences:
  111. sentence = sentence.sentence_text
  112. sentence = list(sentence)
  113. sentence2id = [getIndexOfWord(word) for word in sentence]
  114. sentences_x.append(sentence2id)
  115. sentences_x = pad_sequences(sentences_x, maxlen=maxlen, padding="post", truncating="post")
  116. sentences_x = [np.array(x) for x in sentences_x]
  117. _logits, _trans = self.sess.run([self.logits, self.trans],
  118. feed_dict={self.char_input: np.array(sentences_x), self.length: sentence_len})
  119. viterbi_sequence = decode(logits=_logits, trans=_trans, sequence_lengths=sentence_len, tag_num=4)
  120. ner_list = []
  121. for _seq, sentence in zip(viterbi_sequence, sentences):
  122. sentence = sentence.sentence_text
  123. seq_id = ''.join([str(s) for s in _seq])
  124. if re_ner.search(seq_id):
  125. # print("sentence: ",sentence)
  126. for _ner in re_ner.finditer(seq_id):
  127. start = _ner.start()
  128. end = _ner.end()
  129. n = sentence[start:end]
  130. # print(n,'<==>',start,end)
  131. # ner_list.append((n, start, end))
  132. ner_list.append(n) # 改为只返回实体字符
  133. # article_ner_list.append(ner_list)
  134. article_ner_list.append(';'.join(set(ner_list)))
  135. return article_ner_list[0]
  136. # 处罚类型
  137. def get_punishType(self, x1, x2):
  138. '''通过文章标题及内容判断文章类别
  139. x1: 标题
  140. x2: 内容
  141. return 类别'''
  142. # x1 = x1.replace('(','(').replace(')', ')').replace(' ','')
  143. # x2 = x2.replace('(', '(').replace(')', ')').replace(' ', '')
  144. '''标题正则'''
  145. # 未知公告
  146. unknow = re.compile('采购方式|采购公告|磋商公告|谈判公告|交易公告$|征集|征求|招标公告|竞标公告|中标公告|'
  147. '成交公告|成交信息|流标公告|废标公告|城市管理考评|决算表|决算|预算|资格考试|招聘|选聘'
  148. '|聘请|拟录用|无违规违法|无此项信息|暂无工程投标违法|管理办法|指导意见|无投诉|投诉办法'
  149. '公共资源交易情况|绩效评价|考试成绩|付息公告|不动产|办证|印发|转发') #|结果公示 部分是
  150. # 投诉处理
  151. tscl = re.compile('投诉不予[处受]理|投诉不成立|终止投诉|投诉终止|不予受理|投诉事?项?的?处理')
  152. # 行政处罚
  153. xzcf = re.compile('行政处罚|行政处理|政处罚|行政裁决|防罚|公罚|医罚|环罚|政罚|文罚|局罚|旅罚|财罚|运罚')
  154. # 监督检查
  155. jdjc = re.compile('(监督检查的?问?题?(处理|整改|记分|结果|决定|处罚))|监督处罚|调查处理|监督处理')
  156. # 严重违法
  157. yzwf = re.compile('严重违法失信|黑名单|失信名单')
  158. # 不良行为
  159. blxw = re.compile('((不良|失信|不诚信|差错|不规范|违规|违约|处罚|违法)(行为|记录|信息))|((违约|违规|违法)(处理|操作|情况|问题))'
  160. '|通报批评|记分管理|迟到|早退|缺席|虚假材料|弄虚作假|履职不到位|诚信考核扣分|串通投标'
  161. '|审核不通过|码一致|地址一致|扣分处理|扣分通知|扣[0-9]+分|责令整改|信用信息认定书$'
  162. '|关于.{,30}的处罚|关于.{,10}的?考评通报|关于.{,30}扣分情况|不规范代理行为'
  163. '|(取消|暂停|限制).{,50}((专家|评标|评委|投标|竞价|被抽取|中标|供应商|候选人)资格)'
  164. '|(代理服?务?机构).{,10}(扣分)|(专家).{,30}(扣分|记分|处罚)|对.{,30}处理|冻结.{,30}账号')
  165. # 其他不良行为
  166. other = re.compile('质疑|代理机构进场交易情况|网上投诉办理|信用奖惩|信用奖罚|进场工作.{,5}考核'
  167. '|举报处理|结果无效|成交无效|行政复议')
  168. '''正文内容正则'''
  169. # 投诉处理
  170. tscl_c = re.compile('(投诉(人|单位)[1-9]?(名称)?[::])|(投诉事项[1-5一二三四五、]*部?分?(成立|予以受理))'
  171. '|((驳回|撤回|撤销|终止)[^,。]{,60}(投诉|质疑))')
  172. # 行政处罚
  173. xzcf_c = re.compile('((处理依据及结果|处理结果|处罚结果)).*行政处罚|如下行政处罚|行政处罚决定')
  174. # 诚信加分
  175. cxjf_c = re.compile('处罚结果.*诚信加分')
  176. # 严重违法失信
  177. yzwf_c = re.compile('工商部门严重违法失信起名单|严重违法失信的具体情形') #|严重违法失信的具体情形
  178. # 不良行为
  179. blxw_c = re.compile('(取消|暂停|限制).{,30}((专家|评标|评委|投标|采购|竞价|被抽取|中标|供应商)的?资格)'
  180. '|(处罚结果|处罚情况).*(扣[1-9]*分|记分|不良行为|不良记录|不良信用|不诚信|扣除信用'
  181. '|诚信档案|信用信息|取消.*资格|口头警告|处罚机关|责令改正|罚款|限制投标|暂扣|禁止'
  182. '|暂停|封禁|暂无|行政处罚)|处罚结果'
  183. '|处罚主题|禁止参与.{,10}政府采购活动|列入不良行为|处罚如下|如下处罚|违规处罚|处罚违规'
  184. '|责令改正|责令整改|处罚依据|进行以下处理|处理依据及结果|处理结果|处罚决定书|'
  185. '(不规范|不良|不诚信)行为记录')
  186. # 其他不良行为
  187. other_c = re.compile('质疑(人|单位)[1-9]?(名称)?:|公告期内受质疑')
  188. if re.search(unknow, x1):
  189. return re.search(unknow, x1).group(0), '未知类别'
  190. elif re.search(yzwf, x1):
  191. return re.search(yzwf, x1).group(0), '严重违法'
  192. elif re.search(yzwf_c, x2):
  193. return re.search(yzwf_c, x2).group(0), '严重违法'
  194. elif re.search(tscl, x1):
  195. return re.search(tscl, x1).group(0), '投诉处理'
  196. elif re.search(xzcf, x1):
  197. return re.search(xzcf, x1).group(0), '行政处罚'
  198. elif re.search(jdjc, x1):
  199. return re.search(jdjc, x1).group(0), '监督检查'
  200. elif re.search(blxw, x1):
  201. return re.search(blxw, x1).group(0), '不良行为'
  202. elif re.search(other, x1):
  203. return re.search(other, x1).group(0), '其他不良行为'
  204. elif re.search(tscl_c, x2):
  205. return re.search(tscl_c, x2).group(0), '投诉处理'
  206. elif re.search(xzcf_c, x2):
  207. return re.search(xzcf_c, x2).group(0), '行政处罚'
  208. elif re.search(cxjf_c, x2):
  209. return re.search(cxjf_c, x2).group(0), '诚信加分'
  210. elif re.search(blxw_c, x2):
  211. return re.search(blxw_c, x2).group(0), '不良行为'
  212. elif re.search(other_c, x2):
  213. return re.search(other_c, x2).group(0), '其他不良行为'
  214. return ' ', '未知类别'
  215. # 处罚决定
  216. def get_punishDecision(self, x, x2):
  217. '''通过正则匹配文章内容中的处理决定
  218. x:正文内容
  219. x2: 处罚类别
  220. return 处理决定字符串'''
  221. rule1 = re.compile(
  222. '(((如下|以下|处理|研究|本机关|我机关|本局|我局)决定)|((决定|处理|处理意见|行政处罚|处罚)(如下|如下))'
  223. '|((以下|如下)(决定|处理|处理意见|行政处罚|处罚))|处理依据及结果|处理结果|处罚结果|处罚情况|限制行为'
  224. '|整改意见)[::].{5,}')
  225. rule2 = re.compile(
  226. '(((如下|以下|处理|研究|本机关|我机关|本局|我局)决定)|((决定|处理|处罚|处理意见)(如下|如下))'
  227. '|((以下|如下)(决定|处理|处理意见|处罚))|处理依据及结果|处理结果|处罚结果|处罚情况|限制行为'
  228. '|处罚内容)[:,,].{10,}')
  229. rule3 = re.compile('考评结果:?.*')
  230. rule4 = re.compile('(依据|根据)《.*》.*')
  231. if x2 == '未知类别':
  232. return ' '
  233. elif re.search(rule1, x[-int(len(x)*0.4):]):
  234. return re.search(rule1, x[-int(len(x)*0.4):]).group(0)
  235. elif re.search(rule1, x[-int(len(x)*0.6):]):
  236. return re.search(rule1, x[-int(len(x)*0.6):]).group(0)
  237. elif re.search(rule2, x[-int(len(x)*0.7):]):
  238. return re.search(rule2, x[-int(len(x)*0.7):]).group(0)
  239. elif re.search(rule3, x[-int(len(x)*0.6):]):
  240. return re.search(rule3, x[-int(len(x)*0.6):]).group(0)
  241. elif re.search(rule4, x[-int(len(x)*0.4):]):
  242. return re.search(rule4, x[-int(len(x)*0.4):]).group(0)
  243. else:
  244. return ''
  245. # 投诉是否成立
  246. def get_punishWhether(self, x1, x2, x3):
  247. '''通过正则匹配处理决定判断投诉是否成立
  248. x1: 处理决定字符串
  249. x2: 正文内容
  250. x3: 处罚类别
  251. return 投诉是否成立'''
  252. p1 = re.compile('(投诉|投拆|质疑|举报)(事项|内容|事实)?[^不,。]{,10}(成立|属实|予以受理|予以支持)|责令|废标|(中标|成交)[^,。]{,10}无效'
  253. '|取消[^,。]{,60}资格|罚款|重新(组织|开展)?(招标|采购)|投诉成立|被投诉人存在违法违规行为'
  254. '|采购活动违法|(中标|评标|成交)结果无效')
  255. p2 = re.compile('投诉不予[处受]理|((投诉|投拆|质疑|举报)(事项|内容|事实)?[^,。]{,10}(不成立|情?况?不属实|不予支持|缺乏事实依据))'
  256. '|((驳回|撤回|撤销|终止)[^,。]*(投诉|质疑|诉求))|终止[^,。]{,20}(行政裁决|投诉处理|采购活动)|投诉终止|投诉无效'
  257. '|予以驳回|不予受理|继续开展采购|被投诉人不存在违法违规行为|中标结果有效|投诉[^,。]{,10}不成立'
  258. '|维持被投诉人|不支持[^,。]{,20}投诉|无确凿证据')
  259. if x3 != '投诉处理':
  260. return ''
  261. elif re.search(p1, x1):
  262. return '投诉成立'
  263. elif re.search(p2, x1):
  264. return '投诉无效'
  265. elif re.search(p1, x2):
  266. return '投诉成立'
  267. elif re.search(p2, x2):
  268. return '投诉无效'
  269. return ''
  270. # 执法机构、处罚时间
  271. def get_institution(self, title, sentences_l, entity_l):
  272. '''
  273. 通过判断实体前信息判断改实体是否为执法机构
  274. :param title: 文章标题
  275. :param sentences_l: 单篇公告句子列表
  276. :param entity_l: 单篇公告实体列表
  277. :return: 执法机构及处罚时间字符串,多个的用;号隔开
  278. '''
  279. institutions = []
  280. punishTimes = []
  281. institution_1 = re.compile("(?:处罚执行部门|认定部门|执法机关名称|执法单位|通报部门|处罚机关|处罚部门)[::]")
  282. punishTimes_1 = re.compile("(?:处罚日期|限制行为开始时间|曝光开始日期|处罚决定日期|处罚期限|处罚时间|处理日期|公告开始时间)[::]")
  283. # 通过实体前面关键词判断是否为执法机构或处罚时间
  284. for ner in entity_l:
  285. if ner.entity_type == 'org':
  286. left = sentences_l[ner.sentence_index].sentence_text[
  287. max(0, ner.wordOffset_begin - 15):ner.wordOffset_begin]
  288. if institution_1.search(left):
  289. institutions.append(ner)
  290. elif institutions != [] and ner.sentence_index == institutions[-1].sentence_index and \
  291. ner.wordOffset_begin - institutions[-1].wordOffset_end < 2 and \
  292. sentences_l[ner.sentence_index].sentence_text[
  293. ner.wordOffset_begin:institutions[-1].wordOffset_end] \
  294. in ['', '、', '和', '及']:
  295. institutions.append(ner)
  296. elif ner.entity_type == 'time':
  297. left = sentences_l[ner.sentence_index].sentence_text[
  298. max(0, ner.wordOffset_begin - 15):ner.wordOffset_begin]
  299. if punishTimes_1.search(left):
  300. punishTimes.append(ner)
  301. institution_title = re.compile("财政局|财政厅|监督管理局|公管局|公共资源局|委员会")
  302. institution_time = re.compile(
  303. "(^,?[\d一二三四五六七八九十]{4},?[/年-][\d一二三四五六七八九十]{1,2},?[/月-][\d一二三四五六七八九十]{1,2},?[/日-]?)")
  304. ins = ""
  305. ptime = ""
  306. # 如果前面步骤找不到处罚机构则在标题找实体,并正则检查是否有关键词
  307. if institutions == [] and len(title)>10:
  308. title_ners = getNers([title], useselffool=True)
  309. if title_ners[0]:
  310. for title_ner in title_ners[0]:
  311. if title_ner[2] == 'org' and institution_title.search(title_ner[3]):
  312. ins = title_ner[3]
  313. break
  314. if punishTimes == [] or institutions == []:
  315. # 如果前面步骤还没找到要素,则通过公司实体后面是否有日期关键词,有则作为处罚机构和处罚时间
  316. for ner in [ner for ner in entity_l if ner.entity_type == 'org'][-5:][::-1]:
  317. right = sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_end:ner.wordOffset_end + 16]
  318. if institution_time.search(right):
  319. if ins == '':
  320. ins = ner.entity_text
  321. if ptime == '':
  322. ptime = institution_time.search(right).group(1)
  323. break
  324. # 前面步骤都没找到则判断最后一个时间实体是否在文章末尾,是则作为处罚时间
  325. if ptime == '':
  326. n_time = [ner for ner in entity_l if ner.entity_type == 'time']
  327. if len(n_time) != 0:
  328. ner = n_time[-1]
  329. if ner.sentence_index == len(sentences_l) - 1:
  330. textLong = len(sentences_l[ner.sentence_index].sentence_text)
  331. if ner.wordOffset_end > textLong - 3 and len(ner.entity_text) > 3:
  332. ptime = ner.entity_text
  333. institutions = [ner.entity_text for ner in institutions]
  334. punishTimes = [ner.entity_text for ner in punishTimes]
  335. if institutions == [] and ins != "":
  336. institutions.append(ins)
  337. if punishTimes == [] and ptime != "":
  338. punishTimes.append(ptime)
  339. return ";".join(institutions), ";".join(punishTimes)
  340. # 投诉人、被投诉人、被处罚人
  341. def get_complainant(self, punishType, sentences_l, entity_l):
  342. '''
  343. 通过对公告类别、句子列表、实体列表正则寻找投诉人、被投诉人、处罚人
  344. :param punishType: 公告处罚类别
  345. :param sentences_l: 单篇公告句子列表
  346. :param entity_l: 单篇公告实体列表
  347. :return: 投诉人、被投诉人
  348. '''
  349. complainants = [] # 投诉人
  350. punishPeople = [] # 被投诉人、被处罚人
  351. size = 16
  352. # 投诉人、质疑人
  353. complainants_rule1 = re.compile(
  354. "(?:[^被]|^)(?:投[诉拆][人方]|质疑[人方]|质疑供应商|质疑单位|疑问[人方]|检举[人方]|举报[人方])[\d一二三四五六七八九十]?(\(.+?\))?(:?,?名称[\d一二三四五六七八九十]?)?(?:[::,]+.{0,3}$|$)")
  355. # 被处罚人,被投诉人
  356. punishPeople_rule1 = re.compile(
  357. "(被投[诉拆][人方]|被检举[人方]|被举报[人方]|被处罚人|被处罚单位|行政相对人|单位名称|不良行为单位或个人|被查单位|处罚主题|企业|主体|违规对象|违规单位|当事人)[\d一二三四五六七八九十]?(\(.+?\))?(:?,?名称[\d一二三四五六七八九十]?)?(?:[::,]+.{0,3}$|$)")
  358. punishPeople_rule2_1 = re.compile(",$")
  359. punishPeople_rule2_2 = re.compile("^[::]")
  360. punishPeople_rule3_1 = re.compile("(?:关于|对)[^,。]*$")
  361. punishPeople_rule3_2 = re.compile("^[^,。]*(?:通报|处罚|披露|处理|信用奖惩|不良行为|不良记录)")
  362. punish_l = [] # 处罚实体列表
  363. tmp = []
  364. for ner in [ner for ner in entity_l if ner.entity_type in ['org', 'company', 'person']]:
  365. if tmp == []:
  366. tmp.append(ner)
  367. elif ner.entity_type == tmp[-1].entity_type and ner.sentence_index == tmp[-1].sentence_index and \
  368. ner.wordOffset_begin - tmp[-1].wordOffset_end < 2 \
  369. and sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_begin:tmp[-1].wordOffset_end] in [
  370. '',
  371. '、',
  372. '和',
  373. '及']:
  374. tmp.append(ner)
  375. elif ner.entity_type in ['org', 'company'] and tmp[-1].entity_type in ['org', 'company'] and \
  376. ner.sentence_index == tmp[-1].sentence_index and ner.wordOffset_begin - tmp[-1].wordOffset_end < 2 \
  377. and sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_begin:tmp[-1].wordOffset_end] in [
  378. '',
  379. '、',
  380. '和',
  381. '及']:
  382. tmp.append(ner)
  383. else:
  384. punish_l.append(tmp)
  385. tmp = [ner]
  386. for ner_l in punish_l:
  387. begin_index = ner_l[0].wordOffset_begin
  388. end_index = ner_l[-1].wordOffset_end
  389. left = sentences_l[ner_l[0].sentence_index].sentence_text[max(0, begin_index - size):begin_index]
  390. right = sentences_l[ner_l[0].sentence_index].sentence_text[end_index:end_index + size]
  391. if complainants_rule1.search(left):
  392. complainants.append(ner_l)
  393. elif punishPeople_rule1.search(left):
  394. punishPeople.append(ner_l)
  395. elif punishPeople_rule2_1.search(left) and punishPeople_rule2_2.search(right):
  396. if punishType == '投诉处理':
  397. complainants.append(ner_l)
  398. else:
  399. punishPeople.append(ner_l)
  400. elif punishPeople_rule3_1.search(left) and punishPeople_rule3_2.search(right):
  401. punishPeople.append(ner_l)
  402. complainants = set([it.entity_text for l in complainants for it in l])
  403. punishPeople = set([it.entity_text for l in punishPeople for it in l])
  404. return ';'.join(complainants), ';'.join(punishPeople)
  405. def get_punish_extracts_backup(self, doc_id=' ', title=' ', text=' '):
  406. list_articles, list_sentences, list_entitys, _ = Preprocessing.get_preprocessed([[doc_id, text, "", "", ""]],
  407. useselffool=True)
  408. punish_code = punish.predict_punishCode(list_sentences)
  409. # print('处罚编号: ',punish_code)
  410. institutions, punishTimes = punish.get_institution(title, list_sentences[0], list_entitys[0])
  411. # print('执法机构:',institutions, '\n 处罚时间:', punishTimes)
  412. keyword, punishType = punish.get_punishType(title, text)
  413. # print('处罚类型:',punishType)
  414. punishDecision = punish.get_punishDecision(text, punishType)
  415. # print('处罚决定:',punishDecision)
  416. punishWhether= punish.get_punishWhether(punishDecision, text, punishType)
  417. # print('投诉是否成立:',punishWhether)
  418. complainants, punishPeople = punish.get_complainant(punishType, list_sentences[0], list_entitys[0])
  419. # print('投诉人:%s 被投诉人:%s'%(complainants, punishPeople))
  420. punish_dic = {'punish_code':punish_code,
  421. 'punishType':punishType,
  422. 'punishDecision':punishDecision,
  423. 'complainants':complainants,
  424. 'punishPeople':punishPeople,
  425. 'punishWhether':punishWhether,
  426. 'institutions':institutions,
  427. 'punishTimes':punishTimes}
  428. return punish_dic
  429. # return punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether,institutions, punishTimes
  430. def get_punish_extracts(self,list_articles,list_sentences, list_entitys):
  431. list_result = []
  432. for article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  433. title = article.title
  434. text=article.content
  435. keyword, punishType = self.get_punishType(title, text)
  436. # print('处罚类型:',punishType)
  437. punish_code = self.predict_punishCode(list_sentences)
  438. # print('处罚编号: ',punish_code)
  439. institutions, punishTimes = self.get_institution(title, list_sentence, list_entity)
  440. # print('执法机构:',institutions, '\n 处罚时间:', punishTimes)
  441. punishDecision = self.get_punishDecision(text, punishType)
  442. # print('处罚决定:',punishDecision)
  443. punishWhether= self.get_punishWhether(punishDecision, text, punishType)
  444. # print('投诉是否成立:',punishWhether)
  445. complainants, punishPeople = self.get_complainant(punishType, list_sentence, list_entity)
  446. # print('投诉人:%s 被投诉人:%s'%(complainants, punishPeople))
  447. punish_dic = {'punish_code':punish_code,
  448. 'punishType':punishType,
  449. 'punishDecision':punishDecision,
  450. 'complainants':complainants,
  451. 'punishPeople':punishPeople,
  452. 'punishWhether':punishWhether,
  453. 'institutions':institutions,
  454. 'punishTimes':punishTimes}
  455. _count = 0
  456. for k,v in punish_dic.items():
  457. if v!="":
  458. _count += 1
  459. if _count>=2 and punish_dic["punishType"]!="未知类别":
  460. list_result.append({"punish":punish_dic})
  461. else:
  462. list_result.append({"punish":{}})
  463. return list_result
  464. if __name__ == "__main__":
  465. punish = Punish_Extract(model_file = "models/21-0.9990081295021194-0.3647936/model.ckpt")
  466. import pandas as pd
  467. # with open('G:/失信数据/ALLDATA_re2-3.xlsx') as f:
  468. df = pd.read_excel('G:/失信数据/ALLDATA_re2-3.xlsx', index=0)[2:10]
  469. # i = 89
  470. # predict('2', df.loc[i, 'PAGE_TITLE'],df.loc[i, 'PAGE_CONTENT'])
  471. # i = 92
  472. # predict('2', df.loc[i, 'PAGE_TITLE'],df.loc[i, 'PAGE_CONTENT'])
  473. # t1 = time.time()
  474. # for i in df.index:
  475. # punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether, institutions, punishTimes = \
  476. # get_punish_extracts(i, df.loc[i, 'PAGE_TITLE'], df.loc[i, 'PAGE_CONTENT'])
  477. # df.loc[i, '投诉人'] = complainants
  478. # df.loc[i, '被投诉人'] = punishPeople
  479. # df.loc[i, '执法机构'] = institutions
  480. # df.loc[i, '处罚时间'] = punishTimes
  481. # df.loc[i, '处罚编号'] = punish_code
  482. # print('完成第%d篇'%i)
  483. # # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=[['PAGE_TITLE', 'PAGE_CONTENT',
  484. # # '关键词', '类别', '处理决定', '投诉是否成立',
  485. # # 'DETAILLINK', 'sentences', 'PAGE_TIME', 'complainant', 'punishPeople',
  486. # # 'institution', 'punishTime', 'ner_test']])
  487. # t2 = time.time()
  488. # # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=['PAGE_TITLE', 'PAGE_CONTENT',
  489. # # '关键词', '类别', '处理决定', '投诉是否成立',
  490. # # 'DETAILLINK', 'sentences', 'PAGE_TIME', 'complainant', '投诉人', 'punishPeople', '被投诉人',
  491. # # 'institution', '执法机构', 'punishTime', '处罚时间', 'ner_test', '处罚编号'])
  492. # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=['PAGE_TITLE', 'PAGE_CONTENT',
  493. # '关键词', '类别', '处理决定', '投诉是否成立', '投诉人', '被投诉人','执法机构', '处罚时间', '处罚编号',
  494. # 'DETAILLINK', 'sentences', 'PAGE_TIME'])
  495. # t3 = time.time()
  496. # print('处理耗时:%.4f, 保存耗时:%.4f'%(t2-t1, t3-t2))
  497. s = '编号:厦财企〔2020〕12号,各有关单位:341号。处罚编号:厦财企〔2020〕12号,文章编号:京财采投字(2018)第42号。公告编号:闽建筑招〔2018〕5号。处罚编号:松公管监[2020]2号,'
  498. # list_sentences = [s.split('。')]
  499. # punish_code= punish.predict_punishCode( list_sentences)
  500. # print(punish_code)
  501. # punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether, institutions, punishTimes = \
  502. # get_punish_extracts(text=s)
  503. punish_dic = punish.get_punish_extracts_backup(text=s)
  504. print(punish_dic)