entityLink.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. '''
  2. Created on 2019年5月21日
  3. @author: User
  4. '''
  5. import re
  6. import os
  7. import time
  8. _time = time.time()
  9. from BiddingKG.dl.common.Utils import *
  10. from BiddingKG.dl.interface.Entitys import *
  11. import json
  12. def edit_distance(source,target):
  13. dp = [["" for i in range(len(source)+1)] for j in range(len(target)+1)]
  14. for i in range(len(dp)):
  15. for j in range(len(dp[i])):
  16. if i==0:
  17. dp[i][j] = j
  18. elif j==0:
  19. dp[i][j] = i
  20. else:
  21. if source[j-1]==target[i-1]:
  22. cost = 0
  23. else:
  24. cost = 2
  25. dp[i][j] = min([dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+cost])
  26. return dp[-1][-1]
  27. def jaccard_score(source,target):
  28. source_set = set([s for s in source])
  29. target_set = set([s for s in target])
  30. if len(source_set)==0 or len(target_set)==0:
  31. return 0
  32. return max(len(source_set&target_set)/len(source_set),len(source_set&target_set)/len(target_set))
  33. def link_entitys(list_entitys,on_value=0.8):
  34. for list_entity in list_entitys:
  35. range_entity = []
  36. for _entity in list_entity:
  37. if _entity.entity_type in ["org","company"]:
  38. range_entity.append(_entity)
  39. range_entity = range_entity[:1000]
  40. for first_i in range(len(range_entity)):
  41. _entity = range_entity[first_i]
  42. for second_i in range(first_i+1,len(range_entity)):
  43. _ent = range_entity[second_i]
  44. # 2021/5/21 update: 两个实体标签互斥(一个是招标人、一个是代理人)且entity_text不相等时,跳过
  45. if _entity.entity_text != _ent.entity_text and _entity.label != _ent.label and _entity.label in [0,1] and _ent.label in [0, 1]:
  46. continue
  47. _score = jaccard_score(_entity.entity_text, _ent.entity_text)
  48. if _entity.entity_text!=_ent.entity_text and _score>=on_value:
  49. _entity.linked_entitys.append(_ent)
  50. _ent.linked_entitys.append(_entity)
  51. #替换公司名称
  52. for _entity in range_entity:
  53. if re.search("公司",_entity.entity_text) is None:
  54. for _ent in _entity.linked_entitys:
  55. if re.search("公司$",_ent.entity_text) is not None:
  56. if len(_ent.entity_text)>len(_entity.entity_text):
  57. _entity.entity_text = _ent.entity_text
  58. # 2021/12/21 替换通过字典识别到的取长度最大的相似实体
  59. for _entity in range_entity:
  60. used_linked_entitys = []
  61. if not _entity.linked_entitys:
  62. continue
  63. _entity.linked_entitys.sort(key=lambda x: len(x.entity_text), reverse=True)
  64. for _ent in _entity.linked_entitys:
  65. if _ent in used_linked_entitys:
  66. break
  67. # print("_entity, _ent", _entity.entity_text, _ent.if_dict_match, _ent.entity_text)
  68. if _ent.if_dict_match == 1:
  69. if len(_ent.entity_text) > len(_entity.entity_text):
  70. # print("字典替换", _entity.entity_text, "->", _ent.entity_text)
  71. _entity.origin_entity_text = _entity.entity_text
  72. _entity.entity_text = _ent.entity_text
  73. used_linked_entitys.append(_ent)
  74. # print(_entity.origin_entity_text, _entity.entity_text)
  75. def getEnterprisePath():
  76. filename = "../LEGAL_ENTERPRISE.txt"
  77. real_path = getFileFromSysPath(filename)
  78. if real_path is None:
  79. real_path = filename
  80. return real_path
  81. DICT_ENTERPRISE = {}
  82. DICT_ENTERPRISE_DONE = False
  83. def getDict_enterprise():
  84. global DICT_ENTERPRISE,DICT_ENTERPRISE_DONE
  85. real_path = getEnterprisePath()
  86. with open(real_path,"r",encoding="UTF8") as f:
  87. for _e in f:
  88. if not _e:
  89. continue
  90. _e = _e.strip()
  91. if len(_e)>=4:
  92. key_enter = _e[:4]
  93. if key_enter not in DICT_ENTERPRISE:
  94. DICT_ENTERPRISE[key_enter] = set()
  95. DICT_ENTERPRISE[key_enter].add(_e[4:])
  96. # for _e in ["河南省柘源","建筑工程有限公司"]:
  97. # if not _e:
  98. # continue
  99. # _e = _e.strip()
  100. # if len(_e)>=4:
  101. # key_enter = _e[:4]
  102. # if key_enter not in DICT_ENTERPRISE:
  103. # DICT_ENTERPRISE[key_enter] = set()
  104. # DICT_ENTERPRISE[key_enter].add(_e[4:])
  105. DICT_ENTERPRISE_DONE = True
  106. return DICT_ENTERPRISE
  107. import threading
  108. import time
  109. load_enterprise_thread = threading.Thread(target=getDict_enterprise)
  110. load_enterprise_thread.start()
  111. MAX_ENTERPRISE_LEN = 30
  112. def match_enterprise_max_first(sentence):
  113. while True:
  114. if not DICT_ENTERPRISE_DONE:
  115. time.sleep(1)
  116. else:
  117. break
  118. list_match = []
  119. begin_index = 0
  120. if len(sentence)>4:
  121. while True:
  122. if begin_index+4<len(sentence):
  123. key_enter = sentence[begin_index:begin_index+4]
  124. if key_enter in DICT_ENTERPRISE:
  125. for _i in range(MAX_ENTERPRISE_LEN-4+1):
  126. enter_name = sentence[begin_index+4:begin_index+MAX_ENTERPRISE_LEN-_i]
  127. if enter_name in DICT_ENTERPRISE[key_enter]:
  128. match_item = {"entity_text":"%s%s"%(key_enter,enter_name),"begin_index":begin_index,"end_index":begin_index+len(key_enter)+len(enter_name)}
  129. list_match.append(match_item)
  130. begin_index += (len(key_enter)+len(enter_name))-1
  131. break
  132. begin_index += 1
  133. else:
  134. break
  135. return list_match
  136. def calibrateEnterprise(list_articles,list_sentences,list_entitys):
  137. for _article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  138. list_calibrate = []
  139. match_add = False
  140. match_replace = False
  141. range_entity = []
  142. for p_entity in list_entity:
  143. if p_entity.entity_type in ("org","company","location"):
  144. range_entity.append(p_entity)
  145. if len(range_entity)>1000:
  146. break
  147. for p_sentence in list_sentence:
  148. sentence = p_sentence.sentence_text
  149. list_match = match_enterprise_max_first(sentence)
  150. # print("list_match", list_match)
  151. doc_id = p_sentence.doc_id
  152. sentence_index = p_sentence.sentence_index
  153. tokens = p_sentence.tokens
  154. list_match.sort(key=lambda x:x["begin_index"])
  155. for _match_index in range(len(list_match)):
  156. _match = list_match[_match_index]
  157. find_flag = False
  158. for p_entity in range_entity:
  159. if p_entity.sentence_index!=p_sentence.sentence_index:
  160. continue
  161. if p_entity.entity_type=="location" and p_entity.entity_text==_match["entity_text"]:
  162. find_flag = True
  163. p_entity.entity_type = "company"
  164. p_entity.if_dict_match = 1
  165. if p_entity.entity_type not in ["location","org","company"]:
  166. continue
  167. if _match["entity_text"] == p_entity.entity_text:
  168. p_entity.if_dict_match = 1
  169. #有重叠
  170. #match部分被包含则不处理
  171. if _match["begin_index"]>=p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  172. find_flag = True
  173. #判断是否是多个公司
  174. for _match_j in range(_match_index,len(list_match)):
  175. if not list_match[_match_j]["end_index"]<=p_entity.wordOffset_end:
  176. _match_j -= 1
  177. break
  178. if _match_j>_match_index:
  179. match_replace = True
  180. match_add = True
  181. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  182. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  183. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  184. p_entity.entity_text = _match["entity_text"]
  185. p_entity.wordOffset_begin = _match["begin_index"]
  186. p_entity.wordOffset_end = _match["end_index"]
  187. p_entity.begin_index = begin_index
  188. p_entity.end_index = end_index
  189. # 该公司实体是字典识别的
  190. p_entity.if_dict_match = 1
  191. for _match_h in range(_match_index+1,_match_j+1):
  192. entity_text = list_match[_match_h]["entity_text"]
  193. entity_type = "company"
  194. begin_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["begin_index"])
  195. end_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["end_index"])
  196. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  197. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,list_match[_match_h]["begin_index"],list_match[_match_h]["end_index"])
  198. add_entity.if_dict_match = 1
  199. list_entity.append(add_entity)
  200. range_entity.append(add_entity)
  201. list_calibrate.append({"type":"add","from":"","to":entity_text})
  202. _match_index = _match_j
  203. break
  204. continue
  205. elif _match["begin_index"]<=p_entity.wordOffset_begin and _match["end_index"]>p_entity.wordOffset_begin:
  206. find_flag = True
  207. if _match["begin_index"]<p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  208. if p_entity.entity_type in ("org","company"):
  209. _diff_text = sentence[p_entity.wordOffset_end:_match["end_index"]]
  210. if re.search("分",_diff_text) is not None:
  211. pass
  212. else:
  213. match_replace = True
  214. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  215. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  216. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  217. p_entity.entity_text = _match["entity_text"]
  218. p_entity.wordOffset_begin = _match["begin_index"]
  219. p_entity.wordOffset_end = _match["end_index"]
  220. p_entity.begin_index = begin_index
  221. p_entity.end_index = end_index
  222. p_entity.if_dict_match = 1
  223. elif _match["end_index"]>=p_entity.wordOffset_end:
  224. match_replace = True
  225. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  226. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  227. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  228. p_entity.entity_text = _match["entity_text"]
  229. p_entity.wordOffset_begin = _match["begin_index"]
  230. p_entity.wordOffset_end = _match["end_index"]
  231. p_entity.begin_index = begin_index
  232. p_entity.end_index = end_index
  233. p_entity.entity_type = "company"
  234. p_entity.if_dict_match = 1
  235. elif _match["begin_index"]<p_entity.wordOffset_end and _match["end_index"]>p_entity.wordOffset_end:
  236. find_flag = True
  237. if p_entity.entity_type in ("org","company"):
  238. match_replace = True
  239. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  240. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  241. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  242. p_entity.entity_text = _match["entity_text"]
  243. p_entity.wordOffset_begin = _match["begin_index"]
  244. p_entity.wordOffset_end = _match["end_index"]
  245. p_entity.begin_index = begin_index
  246. p_entity.end_index = end_index
  247. p_entity.if_dict_match = 1
  248. if not find_flag:
  249. match_add = True
  250. entity_text = _match["entity_text"]
  251. entity_type = "company"
  252. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  253. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  254. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  255. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,_match["begin_index"],_match["end_index"])
  256. list_entity.append(add_entity)
  257. range_entity.append(add_entity)
  258. list_calibrate.append({"type":"add","from":"","to":entity_text})
  259. #去重
  260. set_calibrate = set()
  261. list_match_enterprise = []
  262. for _calibrate in list_calibrate:
  263. _from = _calibrate.get("from","")
  264. _to = _calibrate.get("to","")
  265. _key = _from+_to
  266. if _key not in set_calibrate:
  267. list_match_enterprise.append(_calibrate)
  268. set_calibrate.add(_key)
  269. match_enterprise_type = 0
  270. if match_add:
  271. match_enterprise_type += 1
  272. if match_replace:
  273. match_enterprise_type += 2
  274. _article.match_enterprise = list_match_enterprise
  275. _article.match_enterprise_type = match_enterprise_type
  276. def isLegalEnterprise(name):
  277. is_legal = True
  278. if re.search("^[省市区县]",name) is not None or re.search("^.{,3}(分(公司|行|支)|街道|中心|办事处|经营部)$",name) or re.search("标段|标包|名称",name) is not None:
  279. is_legal = False
  280. return is_legal
  281. def fix_LEGAL_ENTERPRISE():
  282. unlegal_enterprise = []
  283. _path = getEnterprisePath()
  284. _sum = 0
  285. set_enter = set()
  286. paths = [_path,"enterprise_name.txt"]
  287. for _p in paths:
  288. with open(_p,"r",encoding="utf8") as f:
  289. while True:
  290. line = f.readline()
  291. if not line:
  292. break
  293. line = line.strip()
  294. if isLegalEnterprise(line):
  295. set_enter.add(line)
  296. with open("enter.txt","w",encoding="utf8") as fwrite:
  297. for line in list(set_enter):
  298. fwrite.write(line.replace("(","(").replace(")",")"))
  299. fwrite.write("\n")
  300. # if re.search("标段|地址|标包|名称",line) is not None:#\(|\)||
  301. # _count += 1
  302. # print("=",line)
  303. # print("%d/%d"%(_count,_sum))
  304. if __name__=="__main__":
  305. # edit_distance("GUMBO","GAMBOL")
  306. # print(jaccard_score("周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目竞争性谈判公告","周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目-成交公告"))
  307. #
  308. # sentences = "广州比地数据科技有限公司比地数据科技有限公司1111111123沈阳南光工贸有限公司"
  309. # print(match_enterprise_max_first(sentences))
  310. #
  311. # print("takes %d s"%(time.time()-_time))
  312. fix_LEGAL_ENTERPRISE()