evaluates.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. #coding=utf-8
  2. # evaluate为该方法的入口函数,必须用这个名字
  3. from odps.udf import annotate
  4. from odps.distcache import get_cache_archive
  5. from odps.distcache import get_cache_file
  6. from odps.udf import BaseUDTF
  7. import threading
  8. import logging
  9. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  10. import time
  11. def log(msg):
  12. logging.info(msg)
  13. # 配置pandas依赖包
  14. def include_package_path(res_name):
  15. import os, sys
  16. archive_files = get_cache_archive(res_name)
  17. dir_names = sorted([os.path.dirname(os.path.normpath(f.name)) for f in archive_files
  18. if '.dist_info' not in f.name], key=lambda v: len(v))
  19. _path = dir_names[0].split(".zip/files")[0]+".zip/files"
  20. log("add path:%s"%(_path))
  21. sys.path.append(_path)
  22. return _path
  23. # 可能出现类似RuntimeError: xxx has been blocked by sandbox
  24. # 这是因为包含C的库,会被沙盘block,可设置set odps.isolation.session.enable = true
  25. def include_file(file_name):
  26. import os, sys
  27. so_file = get_cache_file(file_name)
  28. sys.path.append(os.path.dirname(os.path.abspath(so_file.name)))
  29. def include_so(file_name):
  30. import os, sys
  31. so_file = get_cache_file(file_name)
  32. with open(so_file.name, 'rb') as fp:
  33. content=fp.read()
  34. so = open(file_name, "wb")
  35. so.write(content)
  36. so.flush()
  37. so.close()
  38. #初始化业务数据包,由于上传限制,python版本以及archive解压包不统一等各种问题,需要手动导入
  39. def init_env(list_files,package_name):
  40. import os,sys
  41. if len(list_files)==1:
  42. so_file = get_cache_file(list_files[0])
  43. cmd_line = os.path.abspath(so_file.name)
  44. os.system("unzip -o %s -d %s"%(cmd_line,package_name))
  45. elif len(list_files)>1:
  46. cmd_line = "cat"
  47. for _file in list_files:
  48. so_file = get_cache_file(_file)
  49. cmd_line += " "+os.path.abspath(so_file.name)
  50. cmd_line += " > temp.zip"
  51. os.system(cmd_line)
  52. os.system("unzip -o temp.zip -d %s"%(package_name))
  53. # os.system("rm -rf %s/*.dist-info"%(package_name))
  54. # return os.listdir(os.path.abspath("local_package"))
  55. # os.system("echo export LD_LIBRARY_PATH=%s >> ~/.bashrc"%(os.path.abspath("local_package")))
  56. # os.system("source ~/.bashrc")
  57. sys.path.insert(0,os.path.abspath(package_name))
  58. # sys.path.append(os.path.join(os.path.abspath("local_package"),"interface_real"))
  59. def multiLoadEnv():
  60. def load_project():
  61. start_time = time.time()
  62. ## init_env(["BiddingKG.zip.env.baseline"],str(uuid.uuid4()))
  63. # init_env(["BiddingKG.zip.env.backup"],str(uuid.uuid4()))
  64. #改为zip引入
  65. log("=======")
  66. include_package_path("BiddingKG.baseline.zip")
  67. logging.info("init biddingkg.zip.env.line cost %d"%(time.time()-start_time))
  68. def load_vector():
  69. start_time = time.time()
  70. init_env(["wiki_128_word_embedding_new.vector.env"],".")
  71. logging.info("init wiki_128_word_embedding_new cost %d"%(time.time()-start_time))
  72. start_time = time.time()
  73. init_env(["enterprise.zip.env"],".")
  74. # init_env(["LEGAL_ENTERPRISE.zip.env"],".")
  75. logging.info("init legal_enterprise.zip.env cost %d"%(time.time()-start_time))
  76. start_time = time.time()
  77. init_env(["so.env"],".")
  78. logging.info("init so.env cost %d"%(time.time()-start_time))
  79. def load_py():
  80. start_time = time.time()
  81. # self.out = init_env(["envs_py37.zip.env"],str(uuid.uuid4()))
  82. include_package_path("envs_py37.env.zip")
  83. logging.info("init envs_py37 cost %d"%(time.time()-start_time))
  84. load_project()
  85. load_vector()
  86. load_py()
  87. @annotate("string,bigint,string,string->string,bigint,string")
  88. class Extract(BaseUDTF):
  89. def __init__(self):
  90. # self.out = init_env(["BiddingKG.z01","BiddingKG.z02"],"local_package")
  91. import uuid
  92. global uuid
  93. import logging
  94. import datetime
  95. import time
  96. global time
  97. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  98. multiLoadEnv()
  99. import BiddingKG.dl.common.nerUtils
  100. log("time5"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
  101. import BiddingKG.dl.interface.predictor as predictor
  102. log("time6"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
  103. import BiddingKG.dl.interface.Entitys as Entitys
  104. log("time6.1"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
  105. import BiddingKG.dl.interface.getAttributes as getAttributes
  106. log("time6.2"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
  107. import BiddingKG.dl.entityLink.entityLink as entityLink
  108. log("time6.2"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
  109. import BiddingKG.dl.interface.Preprocessing as Preprocessing
  110. log("time6.3"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
  111. log("=======")
  112. time.sleep(5)
  113. from BiddingKG.dl.interface.extract import predict as predict
  114. log("=======import done")
  115. import json
  116. import numpy as np
  117. global predictor,Entitys,getAttributes,entityLink,json,MyEncoder,Preprocessing,MyEncoder,np,predict
  118. class MyEncoder(json.JSONEncoder):
  119. def default(self, obj):
  120. if isinstance(obj, np.ndarray):
  121. return obj.tolist()
  122. elif isinstance(obj, bytes):
  123. return str(obj, encoding='utf-8')
  124. elif isinstance(obj, (np.float_, np.float16, np.float32,
  125. np.float64)):
  126. return float(obj)
  127. elif isinstance(obj,(np.int64)):
  128. return int(obj)
  129. return json.JSONEncoder.default(self, obj)
  130. def process(self,content,_doc_id,_title,page_time):
  131. if content is not None and _doc_id not in [105677700,126694044,126795572,126951461,71708072,137850637]:
  132. result_json = predict(str(_doc_id),content,str(_title))
  133. self.forward(page_time,int(_doc_id),result_json)