entityLink.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. '''
  2. Created on 2019年5月21日
  3. @author: User
  4. '''
  5. import re
  6. import os
  7. import time
  8. _time = time.time()
  9. from BiddingKG.dl.common.Utils import *
  10. from BiddingKG.dl.interface.Entitys import *
  11. import json
  12. def edit_distance(source,target):
  13. dp = [["" for i in range(len(source)+1)] for j in range(len(target)+1)]
  14. for i in range(len(dp)):
  15. for j in range(len(dp[i])):
  16. if i==0:
  17. dp[i][j] = j
  18. elif j==0:
  19. dp[i][j] = i
  20. else:
  21. if source[j-1]==target[i-1]:
  22. cost = 0
  23. else:
  24. cost = 2
  25. dp[i][j] = min([dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+cost])
  26. return dp[-1][-1]
  27. def jaccard_score(source,target):
  28. source_set = set([s for s in source])
  29. target_set = set([s for s in target])
  30. if len(source_set)==0 or len(target_set)==0:
  31. return 0
  32. return max(len(source_set&target_set)/len(source_set),len(source_set&target_set)/len(target_set))
  33. def link_entitys(list_entitys,on_value=0.8):
  34. for list_entity in list_entitys:
  35. range_entity = []
  36. for _entity in list_entity:
  37. if _entity.entity_type in ["org","company"]:
  38. range_entity.append(_entity)
  39. range_entity = range_entity[:1000]
  40. for first_i in range(len(range_entity)):
  41. _entity = range_entity[first_i]
  42. for second_i in range(first_i+1,len(range_entity)):
  43. _ent = range_entity[second_i]
  44. # 2021/5/21 update: 两个实体标签互斥(一个是招标人、一个是代理人)且entity_text不相等时,跳过
  45. if _entity.entity_text != _ent.entity_text and _entity.label != _ent.label and _entity.label in [0,1] and _ent.label in [0, 1]:
  46. continue
  47. _score = jaccard_score(_entity.entity_text, _ent.entity_text)
  48. if _entity.entity_text!=_ent.entity_text and _score>=on_value:
  49. _entity.linked_entitys.append(_ent)
  50. _ent.linked_entitys.append(_entity)
  51. #替换公司名称
  52. for _entity in range_entity:
  53. if re.search("公司",_entity.entity_text) is None:
  54. for _ent in _entity.linked_entitys:
  55. if re.search("公司$",_ent.entity_text) is not None:
  56. if len(_ent.entity_text)>len(_entity.entity_text):
  57. _entity.entity_text = _ent.entity_text
  58. def getEnterprisePath():
  59. filename = "LEGAL_ENTERPRISE.txt"
  60. filepath = os.path.dirname(__file__)+"/../"
  61. real_path = filename
  62. if os.path.exists(filepath+filename):
  63. real_path = filepath+filename
  64. return real_path
  65. DICT_ENTERPRISE = {}
  66. DICT_ENTERPRISE_DONE = False
  67. def getDict_enterprise():
  68. global DICT_ENTERPRISE,DICT_ENTERPRISE_DONE
  69. real_path = getEnterprisePath()
  70. with open(real_path,"r",encoding="UTF8") as f:
  71. for _e in f:
  72. if not _e:
  73. continue
  74. _e = _e.strip()
  75. if len(_e)>=4:
  76. key_enter = _e[:4]
  77. if key_enter not in DICT_ENTERPRISE:
  78. DICT_ENTERPRISE[key_enter] = set()
  79. DICT_ENTERPRISE[key_enter].add(_e[4:])
  80. # for _e in ["河南省柘源","建筑工程有限公司"]:
  81. # if not _e:
  82. # continue
  83. # _e = _e.strip()
  84. # if len(_e)>=4:
  85. # key_enter = _e[:4]
  86. # if key_enter not in DICT_ENTERPRISE:
  87. # DICT_ENTERPRISE[key_enter] = set()
  88. # DICT_ENTERPRISE[key_enter].add(_e[4:])
  89. DICT_ENTERPRISE_DONE = True
  90. return DICT_ENTERPRISE
  91. import threading
  92. import time
  93. load_enterprise_thread = threading.Thread(target=getDict_enterprise)
  94. load_enterprise_thread.start()
  95. MAX_ENTERPRISE_LEN = 30
  96. def match_enterprise_max_first(sentence):
  97. while True:
  98. if not DICT_ENTERPRISE_DONE:
  99. time.sleep(1)
  100. else:
  101. break
  102. list_match = []
  103. begin_index = 0
  104. if len(sentence)>4:
  105. while True:
  106. if begin_index+4<len(sentence):
  107. key_enter = sentence[begin_index:begin_index+4]
  108. if key_enter in DICT_ENTERPRISE:
  109. for _i in range(MAX_ENTERPRISE_LEN-4+1):
  110. enter_name = sentence[begin_index+4:begin_index+MAX_ENTERPRISE_LEN-_i]
  111. if enter_name in DICT_ENTERPRISE[key_enter]:
  112. match_item = {"entity_text":"%s%s"%(key_enter,enter_name),"begin_index":begin_index,"end_index":begin_index+len(key_enter)+len(enter_name)}
  113. list_match.append(match_item)
  114. begin_index += (len(key_enter)+len(enter_name))-1
  115. break
  116. begin_index += 1
  117. else:
  118. break
  119. return list_match
  120. def calibrateEnterprise(list_articles,list_sentences,list_entitys):
  121. for _article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  122. list_calibrate = []
  123. match_add = False
  124. match_replace = False
  125. range_entity = []
  126. for p_entity in list_entity:
  127. if p_entity.entity_type in ("org","company","location"):
  128. range_entity.append(p_entity)
  129. if len(range_entity)>1000:
  130. break
  131. for p_sentence in list_sentence:
  132. sentence = p_sentence.sentence_text
  133. list_match = match_enterprise_max_first(sentence)
  134. doc_id = p_sentence.doc_id
  135. sentence_index = p_sentence.sentence_index
  136. tokens = p_sentence.tokens
  137. list_match.sort(key=lambda x:x["begin_index"])
  138. for _match_index in range(len(list_match)):
  139. _match = list_match[_match_index]
  140. find_flag = False
  141. for p_entity in range_entity:
  142. if p_entity.sentence_index!=p_sentence.sentence_index:
  143. continue
  144. if p_entity.entity_type=="location" and p_entity.entity_text==_match["entity_text"]:
  145. find_flag = True
  146. p_entity.entity_type = "company"
  147. #有重叠
  148. #match部分被包含则不处理
  149. if _match["begin_index"]>=p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  150. find_flag = True
  151. #判断是否是多个公司
  152. for _match_j in range(_match_index,len(list_match)):
  153. if not list_match[_match_j]["end_index"]<=p_entity.wordOffset_end:
  154. _match_j -= 1
  155. break
  156. if _match_j>_match_index:
  157. match_replace = True
  158. match_add = True
  159. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  160. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  161. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  162. p_entity.entity_text = _match["entity_text"]
  163. p_entity.wordOffset_begin = _match["begin_index"]
  164. p_entity.wordOffset_end = _match["end_index"]
  165. p_entity.begin_index = begin_index
  166. p_entity.end_index = end_index
  167. for _match_h in range(_match_index+1,_match_j+1):
  168. entity_text = list_match[_match_h]["entity_text"]
  169. entity_type = "company"
  170. begin_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["begin_index"])
  171. end_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["end_index"])
  172. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  173. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,list_match[_match_h]["begin_index"],list_match[_match_h]["end_index"])
  174. list_entity.append(add_entity)
  175. range_entity.append(add_entity)
  176. list_calibrate.append({"type":"add","from":"","to":entity_text})
  177. _match_index = _match_j
  178. break
  179. continue
  180. elif _match["begin_index"]<=p_entity.wordOffset_begin and _match["end_index"]>p_entity.wordOffset_begin:
  181. find_flag = True
  182. if p_entity.entity_type in ("org","company"):
  183. if _match["begin_index"]<p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  184. _diff_text = sentence[p_entity.wordOffset_end:_match["end_index"]]
  185. if re.search("分",_diff_text) is not None:
  186. pass
  187. else:
  188. match_replace = True
  189. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  190. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  191. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  192. p_entity.entity_text = _match["entity_text"]
  193. p_entity.wordOffset_begin = _match["begin_index"]
  194. p_entity.wordOffset_end = _match["end_index"]
  195. p_entity.begin_index = begin_index
  196. p_entity.end_index = end_index
  197. elif _match["end_index"]>=p_entity.wordOffset_end:
  198. match_replace = True
  199. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  200. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  201. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  202. p_entity.entity_text = _match["entity_text"]
  203. p_entity.wordOffset_begin = _match["begin_index"]
  204. p_entity.wordOffset_end = _match["end_index"]
  205. p_entity.begin_index = begin_index
  206. p_entity.end_index = end_index
  207. elif _match["begin_index"]<p_entity.wordOffset_end and _match["end_index"]>p_entity.wordOffset_end:
  208. find_flag = True
  209. if p_entity.entity_type in ("org","company"):
  210. match_replace = True
  211. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  212. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  213. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  214. p_entity.entity_text = _match["entity_text"]
  215. p_entity.wordOffset_begin = _match["begin_index"]
  216. p_entity.wordOffset_end = _match["end_index"]
  217. p_entity.begin_index = begin_index
  218. p_entity.end_index = end_index
  219. if not find_flag:
  220. match_add = True
  221. entity_text = _match["entity_text"]
  222. entity_type = "company"
  223. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  224. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  225. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  226. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,_match["begin_index"],_match["end_index"])
  227. list_entity.append(add_entity)
  228. range_entity.append(add_entity)
  229. list_calibrate.append({"type":"add","from":"","to":entity_text})
  230. #去重
  231. set_calibrate = set()
  232. list_match_enterprise = []
  233. for _calibrate in list_calibrate:
  234. _from = _calibrate.get("from","")
  235. _to = _calibrate.get("to","")
  236. _key = _from+_to
  237. if _key not in set_calibrate:
  238. list_match_enterprise.append(_calibrate)
  239. set_calibrate.add(_key)
  240. match_enterprise_type = 0
  241. if match_add:
  242. match_enterprise_type += 1
  243. if match_replace:
  244. match_enterprise_type += 2
  245. _article.match_enterprise = list_match_enterprise
  246. _article.match_enterprise_type = match_enterprise_type
  247. if __name__=="__main__":
  248. # edit_distance("GUMBO","GAMBOL")
  249. print(jaccard_score("周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目竞争性谈判公告","周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目-成交公告"))
  250. sentences = "广州比地数据科技有限公司比地数据科技有限公司1111111123沈阳南光工贸有限公司"
  251. print(match_enterprise_max_first(sentences))
  252. print("takes %d s"%(time.time()-_time))