123456789101112131415161718192021222324 |
- import tensorflow as tf
- import keras as K
- def focal_loss(gamma=2., alpha=.5):
- # 3-0.5 precision-low recall-high
- # 3-0.37 precision-high recall-low
- # 3-0.25 precision-high recall-low
- # 2-0.5 precision-low recall-high
- # 2-0.25 precision-high recall-low
- def f_loss(y_true, y_pred):
- pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
- pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
- return - K.backend.sum(alpha * K.backend.pow(1. - pt_1, gamma)
- * K.backend.log(K.backend.epsilon()+pt_1))\
- - K.backend.sum((1-alpha) * K.backend.pow(pt_0, gamma)
- * K.backend.log(1. - pt_0 + K.backend.epsilon()))
- return f_loss
- def union_loss(gamma=2., alpha=.5):
- def _loss(y_true, y_pred):
- return focal_loss(gamma, alpha)
|