Preprocessing.py 128 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624
  1. # -*- coding: utf-8 -*-
  2. from bs4 import BeautifulSoup, Comment
  3. import copy
  4. import sys
  5. import os
  6. import time
  7. import codecs
  8. from BiddingKG.dl.ratio.re_ratio import extract_ratio
  9. from BiddingKG.dl.table_head.predict import predict
  10. sys.setrecursionlimit(1000000)
  11. sys.path.append(os.path.abspath("../.."))
  12. sys.path.append(os.path.abspath(".."))
  13. from BiddingKG.dl.common.Utils import *
  14. from BiddingKG.dl.interface.Entitys import *
  15. from BiddingKG.dl.interface.predictor import getPredictor
  16. from BiddingKG.dl.common.nerUtils import *
  17. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  18. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  19. from BiddingKG.dl.relation_extraction.re_email import extract_email
  20. from BiddingKG.dl.bidway.re_bidway import extract_bidway,bidway_integrate
  21. from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint
  22. from BiddingKG.dl.entityLink.entityLink import *
  23. #
  24. def tableToText(soup):
  25. '''
  26. @param:
  27. soup:网页html的soup
  28. @return:处理完表格信息的网页text
  29. '''
  30. def getTrs(tbody):
  31. #获取所有的tr
  32. trs = []
  33. objs = tbody.find_all(recursive=False)
  34. for obj in objs:
  35. if obj.name=="tr":
  36. trs.append(obj)
  37. if obj.name=="tbody":
  38. for tr in obj.find_all("tr",recursive=False):
  39. trs.append(tr)
  40. return trs
  41. def fixSpan(tbody):
  42. # 处理colspan, rowspan信息补全问题
  43. #trs = tbody.findChildren('tr', recursive=False)
  44. trs = getTrs(tbody)
  45. ths_len = 0
  46. ths = list()
  47. trs_set = set()
  48. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  49. # 遍历每一个tr
  50. for indtr, tr in enumerate(trs):
  51. ths_tmp = tr.findChildren('th', recursive=False)
  52. #不补全含有表格的tr
  53. if len(tr.findChildren('table'))>0:
  54. continue
  55. if len(ths_tmp) > 0:
  56. ths_len = ths_len + len(ths_tmp)
  57. for th in ths_tmp:
  58. ths.append(th)
  59. trs_set.add(tr)
  60. # 遍历每行中的element
  61. tds = tr.findChildren(recursive=False)
  62. for indtd, td in enumerate(tds):
  63. # 若有colspan 则补全同一行下一个位置
  64. if 'colspan' in td.attrs:
  65. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  66. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  67. if col<100 and len(td.get_text())<1000:
  68. td['colspan'] = 1
  69. for i in range(1, col, 1):
  70. td.insert_after(copy.copy(td))
  71. for indtr, tr in enumerate(trs):
  72. ths_tmp = tr.findChildren('th', recursive=False)
  73. #不补全含有表格的tr
  74. if len(tr.findChildren('table'))>0:
  75. continue
  76. if len(ths_tmp) > 0:
  77. ths_len = ths_len + len(ths_tmp)
  78. for th in ths_tmp:
  79. ths.append(th)
  80. trs_set.add(tr)
  81. # 遍历每行中的element
  82. tds = tr.findChildren(recursive=False)
  83. for indtd, td in enumerate(tds):
  84. # 若有rowspan 则补全下一行同样位置
  85. if 'rowspan' in td.attrs:
  86. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  87. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  88. td['rowspan'] = 1
  89. for i in range(1, row, 1):
  90. # 获取下一行的所有td, 在对应的位置插入
  91. if indtr+i<len(trs):
  92. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  93. if len(tds1) >= (indtd) and len(tds1)>0:
  94. if indtd > 0:
  95. tds1[indtd - 1].insert_after(copy.copy(td))
  96. else:
  97. tds1[0].insert_before(copy.copy(td))
  98. elif indtd-2>0 and len(tds1) > 0 and len(tds1) == indtd - 1: # 修正某些表格最后一列没补全
  99. tds1[indtd-2].insert_after(copy.copy(td))
  100. def getTable(tbody):
  101. #trs = tbody.findChildren('tr', recursive=False)
  102. trs = getTrs(tbody)
  103. inner_table = []
  104. for tr in trs:
  105. tr_line = []
  106. tds = tr.findChildren(['td','th'], recursive=False)
  107. if len(tds)==0:
  108. tr_line.append([re.sub('\xa0','',segment(tr,final=False)),0]) # 2021/12/21 修复部分表格没有td 造成数据丢失
  109. for td in tds:
  110. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  111. #tr_line.append([td.get_text(),0])
  112. inner_table.append(tr_line)
  113. return inner_table
  114. #处理表格不对齐的问题
  115. def fixTable(inner_table,fix_value="~~"):
  116. maxWidth = 0
  117. for item in inner_table:
  118. if len(item)>maxWidth:
  119. maxWidth = len(item)
  120. for i in range(len(inner_table)):
  121. if len(inner_table[i])<maxWidth:
  122. for j in range(maxWidth-len(inner_table[i])):
  123. inner_table[i].append([fix_value,0])
  124. return inner_table
  125. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  126. height = len(inner_table)
  127. width = len(inner_table[0])
  128. for i in range(height):
  129. point = ""
  130. for j in range(width):
  131. if inner_table[i][j][0]==point and point!="":
  132. inner_table[i][j][0] = pad_row
  133. else:
  134. if inner_table[i][j][0] not in [pad_row,pad_col]:
  135. point = inner_table[i][j][0]
  136. for j in range(width):
  137. point = ""
  138. for i in range(height):
  139. if inner_table[i][j][0]==point and point!="":
  140. inner_table[i][j][0] = pad_col
  141. else:
  142. if inner_table[i][j][0] not in [pad_row,pad_col]:
  143. point = inner_table[i][j][0]
  144. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  145. height = len(inner_table)
  146. width = len(inner_table[0])
  147. for i in range(height):
  148. for j in range(width):
  149. if inner_table[i][j][0]==pad_row:
  150. inner_table[i][j][0] = inner_table[i][j-1][0]
  151. inner_table[i][j][1] = inner_table[i][j-1][1]
  152. if inner_table[i][j][0]==pad_col:
  153. inner_table[i][j][0] = inner_table[i-1][j][0]
  154. inner_table[i][j][1] = inner_table[i-1][j][1]
  155. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  156. '''
  157. @summary: 修复表头识别,将明显错误的进行修正
  158. '''
  159. def repairNeeded(line):
  160. first_1 = -1
  161. last_1 = -1
  162. first_0 = -1
  163. last_0 = -1
  164. count_1 = 0
  165. count_0 = 0
  166. for i in range(len(line)):
  167. if line[i][0]==fix_value:
  168. continue
  169. if line[i][1]==1:
  170. if first_1==-1:
  171. first_1 = i
  172. last_1 = i
  173. count_1 += 1
  174. if line[i][1]==0:
  175. if first_0 == -1:
  176. first_0 = i
  177. last_0 = i
  178. count_0 += 1
  179. if first_1 ==-1 or last_0 == -1:
  180. return False
  181. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  182. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  183. return True
  184. return False
  185. def getsimilarity(line,line1):
  186. same_count = 0
  187. for item,item1 in zip(line,line1):
  188. if item[1]==item1[1]:
  189. same_count += 1
  190. return same_count/len(line)
  191. def selfrepair(inner_table,index,dye_set,key_set):
  192. '''
  193. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  194. '''
  195. #print("B",inner_table[index])
  196. min_presure = 3
  197. list_dye = []
  198. first = None
  199. count = 0
  200. temp_set = set()
  201. _index = 0
  202. for item in inner_table[index]:
  203. if first is None:
  204. first = item[1]
  205. if item[0] not in temp_set:
  206. count += 1
  207. temp_set.add(item[0])
  208. else:
  209. if first == item[1]:
  210. if item[0] not in temp_set:
  211. temp_set.add(item[0])
  212. count += 1
  213. else:
  214. list_dye.append([first,count,_index])
  215. first = item[1]
  216. temp_set.add(item[0])
  217. count = 1
  218. _index += 1
  219. list_dye.append([first,count,_index])
  220. if len(list_dye)>1:
  221. begin = 0
  222. end = 0
  223. for i in range(len(list_dye)):
  224. end = list_dye[i][2]
  225. dye_flag = False
  226. #首尾要求压力减一
  227. if i==0:
  228. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  229. dye_flag = True
  230. dye_type = list_dye[i+1][0]
  231. elif i==len(list_dye)-1:
  232. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  233. dye_flag = True
  234. dye_type = list_dye[i-1][0]
  235. else:
  236. if list_dye[i][1]>1:
  237. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  238. dye_flag = True
  239. dye_type = list_dye[i+1][0]
  240. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  241. dye_flag = True
  242. dye_type = list_dye[i-1][0]
  243. else:
  244. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  245. dye_flag = True
  246. dye_type = list_dye[i+1][0]
  247. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  248. dye_flag = True
  249. dye_type = list_dye[i-1][0]
  250. if dye_flag:
  251. for h in range(begin,end):
  252. inner_table[index][h][1] = dye_type
  253. dye_set.add((inner_table[index][h][0],dye_type))
  254. key_set.add(inner_table[index][h][0])
  255. begin = end
  256. #print("E",inner_table[index])
  257. def otherrepair(inner_table,index,dye_set,key_set):
  258. list_provide_repair = []
  259. if index==0 and len(inner_table)>1:
  260. list_provide_repair.append(index+1)
  261. elif index==len(inner_table)-1:
  262. list_provide_repair.append(index-1)
  263. else:
  264. list_provide_repair.append(index+1)
  265. list_provide_repair.append(index-1)
  266. for provide_index in list_provide_repair:
  267. if not repairNeeded(inner_table[provide_index]):
  268. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  269. if same_prob>=0.8:
  270. for i in range(len(inner_table[provide_index])):
  271. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  272. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  273. key_set.add(inner_table[index][i][0])
  274. inner_table[index][i][1] = inner_table[provide_index][i][1]
  275. elif same_prob<=0.2:
  276. for i in range(len(inner_table[provide_index])):
  277. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  278. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  279. key_set.add(inner_table[index][i][0])
  280. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  281. len_dye_set = len(dye_set)
  282. height = len(inner_table)
  283. for i in range(height):
  284. if repairNeeded(inner_table[i]):
  285. selfrepair(inner_table,i,dye_set,key_set)
  286. #otherrepair(inner_table,i,dye_set,key_set)
  287. for h in range(len(inner_table)):
  288. for w in range(len(inner_table[0])):
  289. if inner_table[h][w][0] in key_set:
  290. for item in dye_set:
  291. if inner_table[h][w][0]==item[0]:
  292. inner_table[h][w][1] = item[1]
  293. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  294. if len(dye_set)!=len(key_set):
  295. for i in range(height):
  296. if repairNeeded(inner_table[i]):
  297. selfrepair(inner_table,i,dye_set,key_set)
  298. #otherrepair(inner_table,i,dye_set,key_set)
  299. return
  300. if len(dye_set)==len_dye_set:
  301. '''
  302. for i in range(height):
  303. if repairNeeded(inner_table[i]):
  304. otherrepair(inner_table,i,dye_set,key_set)
  305. '''
  306. return
  307. repairTable(inner_table, dye_set, key_set)
  308. def sliceTable(inner_table,fix_value="~~"):
  309. #进行分块
  310. height = len(inner_table)
  311. width = len(inner_table[0])
  312. head_list = []
  313. head_list.append(0)
  314. last_head = None
  315. last_is_same_value = False
  316. for h in range(height):
  317. is_all_key = True#是否是全表头行
  318. is_all_value = True#是否是全属性值
  319. is_same_with_lastHead = True#和上一行的结构是否相同
  320. is_same_value=True#一行的item都一样
  321. #is_same_first_item = True#与上一行的第一项是否相同
  322. same_value = inner_table[h][0][0]
  323. for w in range(width):
  324. if last_head is not None:
  325. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  326. is_all_key = False
  327. if inner_table[h][w][0]==1:
  328. is_all_value = False
  329. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  330. is_same_with_lastHead = False
  331. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  332. is_same_value = False
  333. else:
  334. if re.search("\d+",same_value) is not None:
  335. is_same_value = False
  336. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  337. is_same_first_item = False
  338. last_head = h
  339. if last_is_same_value:
  340. last_is_same_value = is_same_value
  341. continue
  342. if is_same_value:
  343. head_list.append(h)
  344. last_is_same_value = is_same_value
  345. continue
  346. if not is_all_key:
  347. if not is_same_with_lastHead:
  348. head_list.append(h)
  349. head_list.append(height)
  350. return head_list
  351. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  352. set_item = set()
  353. height = len(inner_table)
  354. width = len(inner_table[0])
  355. for i in range(height):
  356. for j in range(width):
  357. item = inner_table[i][j][0]
  358. set_item.add(item)
  359. list_item = list(set_item)
  360. x = []
  361. for item in list_item:
  362. x.append(getPredictor("form").encode(item))
  363. predict_y = getPredictor("form").predict(np.array(x),type="item")
  364. _dict = dict()
  365. for item,values in zip(list_item,list(predict_y)):
  366. _dict[item] = values[1]
  367. # print("##",item,values)
  368. #print(_dict)
  369. for i in range(height):
  370. for j in range(width):
  371. item = inner_table[i][j][0]
  372. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  373. # print("=====")
  374. # for item in inner_table:
  375. # print(item)
  376. # print("======")
  377. repairTable(inner_table)
  378. head_list = sliceTable(inner_table)
  379. return inner_table,head_list
  380. def set_head_model(inner_table):
  381. for i in range(len(inner_table)):
  382. for j in range(len(inner_table[i])):
  383. inner_table[i][j] = inner_table[i][j][0]
  384. # 模型预测表头
  385. predict_list = predict(inner_table)
  386. with open(r"C:\Users\Administrator\Desktop\table_head_test.txt", "a") as f:
  387. for i in range(len(predict_list)):
  388. f.write(str(i) + " " + str(inner_table[i]) + "\n")
  389. f.write(str(i) + " " + str(predict_list[i]) + "\n")
  390. f.write("\n")
  391. # print("table_list", inner_table)
  392. # print("predict_list", predict_list)
  393. for i in range(len(inner_table)):
  394. for j in range(len(inner_table[i])):
  395. inner_table[i][j] = [inner_table[i][j], int(predict_list[i][j])]
  396. head_list = sliceTable(inner_table)
  397. return inner_table, head_list
  398. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  399. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  400. predict_y = getPredictor("form").getModel("context").predict(data_x)
  401. for _position,_y in zip(data_position,predict_y):
  402. _w = _position[0]
  403. _h = _position[1]
  404. if _y[1]>prob_min:
  405. inner_table[_h][_w][1] = 1
  406. else:
  407. inner_table[_h][_w][1] = 0
  408. _item = inner_table[_h][_w][0]
  409. if re.search(pat_head,_item) is not None and len(_item)<8:
  410. inner_table[_h][_w][1] = 1
  411. # print("=====")
  412. # for item in inner_table:
  413. # print(item)
  414. # print("======")
  415. height = len(inner_table)
  416. width = len(inner_table[0])
  417. for i in range(height):
  418. for j in range(width):
  419. if re.search("[::]$", inner_table[i][j][0]) and len(inner_table[i][j][0])<8:
  420. inner_table[i][j][1] = 1
  421. repairTable(inner_table)
  422. head_list = sliceTable(inner_table)
  423. # print("inner_table:",inner_table)
  424. return inner_table,head_list
  425. #设置表头
  426. def setHead_inline(inner_table,prob_min=0.64):
  427. pad_row = "@@"
  428. pad_col = "##"
  429. removePadding(inner_table, pad_row, pad_col)
  430. pad_pattern = re.compile(pad_row+"|"+pad_col)
  431. height = len(inner_table)
  432. width = len(inner_table[0])
  433. head_list = []
  434. head_list.append(0)
  435. #行表头
  436. is_head_last = False
  437. for i in range(height):
  438. is_head = False
  439. is_long_value = False
  440. #判断是否是全padding值
  441. is_same_value = True
  442. same_value = inner_table[i][0][0]
  443. for j in range(width):
  444. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  445. is_same_value = False
  446. break
  447. #predict is head or not with model
  448. temp_item = ""
  449. for j in range(width):
  450. temp_item += inner_table[i][j][0]+"|"
  451. temp_item = re.sub(pad_pattern,"",temp_item)
  452. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  453. if form_prob is not None:
  454. if form_prob[0][1]>prob_min:
  455. is_head = True
  456. else:
  457. is_head = False
  458. #print(temp_item,form_prob)
  459. if len(inner_table[i][0][0])>40:
  460. is_long_value = True
  461. if is_head or is_long_value or is_same_value:
  462. #不把连续表头分开
  463. if not is_head_last:
  464. head_list.append(i)
  465. if is_long_value or is_same_value:
  466. head_list.append(i+1)
  467. if is_head:
  468. for j in range(width):
  469. inner_table[i][j][1] = 1
  470. is_head_last = is_head
  471. head_list.append(height)
  472. #列表头
  473. for i in range(len(head_list)-1):
  474. head_begin = head_list[i]
  475. head_end = head_list[i+1]
  476. #最后一列不设置为列表头
  477. for i in range(width-1):
  478. is_head = False
  479. #predict is head or not with model
  480. temp_item = ""
  481. for j in range(head_begin,head_end):
  482. temp_item += inner_table[j][i][0]+"|"
  483. temp_item = re.sub(pad_pattern,"",temp_item)
  484. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  485. if form_prob is not None:
  486. if form_prob[0][1]>prob_min:
  487. is_head = True
  488. else:
  489. is_head = False
  490. if is_head:
  491. for j in range(head_begin,head_end):
  492. inner_table[j][i][1] = 2
  493. addPadding(inner_table, pad_row, pad_col)
  494. return inner_table,head_list
  495. #设置表头
  496. def setHead_withRule(inner_table,pattern,pat_value,count):
  497. height = len(inner_table)
  498. width = len(inner_table[0])
  499. head_list = []
  500. head_list.append(0)
  501. #行表头
  502. is_head_last = False
  503. for i in range(height):
  504. set_match = set()
  505. is_head = False
  506. is_long_value = False
  507. is_same_value = True
  508. same_value = inner_table[i][0][0]
  509. for j in range(width):
  510. if inner_table[i][j][0]!=same_value:
  511. is_same_value = False
  512. break
  513. for j in range(width):
  514. if re.search(pat_value,inner_table[i][j][0]) is not None:
  515. is_head = False
  516. break
  517. str_find = re.findall(pattern,inner_table[i][j][0])
  518. if len(str_find)>0:
  519. set_match.add(inner_table[i][j][0])
  520. if len(set_match)>=count:
  521. is_head = True
  522. if len(inner_table[i][0][0])>40:
  523. is_long_value = True
  524. if is_head or is_long_value or is_same_value:
  525. if not is_head_last:
  526. head_list.append(i)
  527. if is_head:
  528. for j in range(width):
  529. inner_table[i][j][1] = 1
  530. is_head_last = is_head
  531. head_list.append(height)
  532. #列表头
  533. for i in range(len(head_list)-1):
  534. head_begin = head_list[i]
  535. head_end = head_list[i+1]
  536. #最后一列不设置为列表头
  537. for i in range(width-1):
  538. set_match = set()
  539. is_head = False
  540. for j in range(head_begin,head_end):
  541. if re.search(pat_value,inner_table[j][i][0]) is not None:
  542. is_head = False
  543. break
  544. str_find = re.findall(pattern,inner_table[j][i][0])
  545. if len(str_find)>0:
  546. set_match.add(inner_table[j][i][0])
  547. if len(set_match)>=count:
  548. is_head = True
  549. if is_head:
  550. for j in range(head_begin,head_end):
  551. inner_table[j][i][1] = 2
  552. return inner_table,head_list
  553. #取得表格的处理方向
  554. def getDirect(inner_table,begin,end):
  555. '''
  556. column_head = set()
  557. row_head = set()
  558. widths = len(inner_table[0])
  559. for height in range(begin,end):
  560. for width in range(widths):
  561. if inner_table[height][width][1] ==1:
  562. row_head.add(height)
  563. if inner_table[height][width][1] ==2:
  564. column_head.add(width)
  565. company_pattern = re.compile("公司")
  566. if 0 in column_head and begin not in row_head:
  567. return "column"
  568. if 0 in column_head and begin in row_head:
  569. for height in range(begin,end):
  570. count = 0
  571. count_flag = True
  572. for width_index in range(width):
  573. if inner_table[height][width_index][1]==0:
  574. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  575. count += 1
  576. else:
  577. count_flag = False
  578. if count_flag and count>=2:
  579. return "column"
  580. return "row"
  581. '''
  582. count_row_keys = 0
  583. count_column_keys = 0
  584. width = len(inner_table[0])
  585. if begin<end:
  586. for w in range(len(inner_table[begin])):
  587. if inner_table[begin][w][1]!=0:
  588. count_row_keys += 1
  589. for h in range(begin,end):
  590. if inner_table[h][0][1]!=0:
  591. count_column_keys += 1
  592. company_pattern = re.compile("有限(责任)?公司")
  593. for height in range(begin,end):
  594. count_set = set()
  595. count_flag = True
  596. for width_index in range(width):
  597. if inner_table[height][width_index][1]==0:
  598. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  599. count_set.add(inner_table[height][width_index][0])
  600. else:
  601. count_flag = False
  602. if count_flag and len(count_set)>=2:
  603. return "column"
  604. # if count_column_keys>count_row_keys: #2022/2/15 此项不够严谨,造成很多错误,故取消
  605. # return "column"
  606. return "row"
  607. #根据表格处理方向生成句子,
  608. def getTableText(inner_table,head_list,key_direct=False):
  609. # packPattern = "(标包|[标包][号段名])"
  610. packPattern = "(标包|标的|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  611. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标|推荐意见)" # 2020/11/23 大网站规则,添加序号为排序
  612. entityPattern = "((候选|([中投]标|报价))(单位|公司|人|供应商))"
  613. moneyPattern = "([中投]标|报价)(金额|价)"
  614. height = len(inner_table)
  615. width = len(inner_table[0])
  616. text = ""
  617. for head_i in range(len(head_list)-1):
  618. head_begin = head_list[head_i]
  619. head_end = head_list[head_i+1]
  620. direct = getDirect(inner_table, head_begin, head_end)
  621. #若只有一行,则直接按行读取
  622. if head_end-head_begin==1:
  623. text_line = ""
  624. for i in range(head_begin,head_end):
  625. for w in range(len(inner_table[i])):
  626. if inner_table[i][w][1]==1:
  627. _punctuation = ":"
  628. else:
  629. _punctuation = "," #2021/12/15 统一为中文标点,避免 206893924 国际F座1108,1,009,197.49元
  630. if w>0:
  631. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  632. text_line += inner_table[i][w][0]+_punctuation
  633. else:
  634. text_line += inner_table[i][w][0]+_punctuation
  635. text_line = text_line+"。" if text_line!="" else text_line
  636. text += text_line
  637. else:
  638. #构建一个共现矩阵
  639. table_occurence = []
  640. for i in range(head_begin,head_end):
  641. line_oc = []
  642. for j in range(width):
  643. cell = inner_table[i][j]
  644. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0})
  645. table_occurence.append(line_oc)
  646. occu_height = len(table_occurence)
  647. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  648. #为每个属性值寻找表头
  649. for i in range(occu_height):
  650. for j in range(occu_width):
  651. cell = table_occurence[i][j]
  652. #是属性值
  653. if cell["type"]==0 and cell["text"]!="":
  654. left_head = ""
  655. top_head = ""
  656. find_flag = False
  657. temp_head = ""
  658. for loop_i in range(1,i+1):
  659. if not key_direct:
  660. key_values = [1,2]
  661. else:
  662. key_values = [1]
  663. if table_occurence[i-loop_i][j]["type"] in key_values:
  664. if find_flag:
  665. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  666. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  667. else:
  668. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  669. find_flag = True
  670. temp_head = table_occurence[i-loop_i][j]["text"]
  671. table_occurence[i-loop_i][j]["occu_count"] += 1
  672. else:
  673. #找到表头后遇到属性值就返回
  674. if find_flag:
  675. break
  676. cell["top_head"] += top_head
  677. find_flag = False
  678. temp_head = ""
  679. for loop_j in range(1,j+1):
  680. if not key_direct:
  681. key_values = [1,2]
  682. else:
  683. key_values = [2]
  684. if table_occurence[i][j-loop_j]["type"] in key_values:
  685. if find_flag:
  686. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  687. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  688. else:
  689. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  690. find_flag = True
  691. temp_head = table_occurence[i][j-loop_j]["text"]
  692. table_occurence[i][j-loop_j]["occu_count"] += 1
  693. else:
  694. if find_flag:
  695. break
  696. cell["left_head"] += left_head
  697. if direct=="row":
  698. for i in range(occu_height):
  699. pack_text = ""
  700. rank_text = ""
  701. entity_text = ""
  702. text_line = ""
  703. money_text = ""
  704. #在同一句话中重复的可以去掉
  705. text_set = set()
  706. for j in range(width):
  707. cell = table_occurence[i][j]
  708. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  709. cell = table_occurence[i][j]
  710. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  711. if re.search("单报标限总]价|金额|成交报?价|报价", head):
  712. head = cell["left_head"] + head
  713. else:
  714. head += cell["left_head"]
  715. if str(head+cell["text"]) in text_set:
  716. continue
  717. if re.search(packPattern,head) is not None:
  718. pack_text += head+cell["text"]+","
  719. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  720. #排名替换为同一种表达
  721. rank_text += head+cell["text"]+","
  722. #print(rank_text)
  723. elif re.search(entityPattern,head) is not None:
  724. entity_text += head+cell["text"]+","
  725. #print(entity_text)
  726. else:
  727. if re.search(moneyPattern,head) is not None and entity_text!="":
  728. money_text += head+cell["text"]+","
  729. else:
  730. text_line += head+cell["text"]+","
  731. text_set.add(str(head+cell["text"]))
  732. text += pack_text+rank_text+entity_text+money_text+text_line
  733. text = text[:-1]+"。" if len(text)>0 else text
  734. else:
  735. for j in range(occu_width):
  736. pack_text = ""
  737. rank_text = ""
  738. entity_text = ""
  739. text_line = ""
  740. text_set = set()
  741. for i in range(occu_height):
  742. cell = table_occurence[i][j]
  743. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  744. cell = table_occurence[i][j]
  745. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  746. if re.search("单报标限总]价|金额|成交报?价|报价", head):
  747. head = cell["top_head"] + head
  748. else:
  749. head += cell["top_head"]
  750. if str(head+cell["text"]) in text_set:
  751. continue
  752. if re.search(packPattern,head) is not None:
  753. pack_text += head+cell["text"]+","
  754. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  755. #排名替换为同一种表达
  756. rank_text += head+cell["text"]+","
  757. #print(rank_text)
  758. elif re.search(entityPattern,head) is not None and \
  759. re.search('业绩|资格|条件',head)==None and re.search('业绩',cell["text"])==None : #2021/10/19 解决包含业绩的行调到前面问题
  760. entity_text += head+cell["text"]+","
  761. #print(entity_text)
  762. else:
  763. text_line += head+cell["text"]+","
  764. text_set.add(str(head+cell["text"]))
  765. text += pack_text+rank_text+entity_text+text_line
  766. text = text[:-1]+"。" if len(text)>0 else text
  767. # if direct=="row":
  768. # for i in range(head_begin,head_end):
  769. # pack_text = ""
  770. # rank_text = ""
  771. # entity_text = ""
  772. # text_line = ""
  773. # #在同一句话中重复的可以去掉
  774. # text_set = set()
  775. # for j in range(width):
  776. # cell = inner_table[i][j]
  777. # #是属性值
  778. # if cell[1]==0 and cell[0]!="":
  779. # head = ""
  780. #
  781. # find_flag = False
  782. # temp_head = ""
  783. # for loop_i in range(0,i+1-head_begin):
  784. # if not key_direct:
  785. # key_values = [1,2]
  786. # else:
  787. # key_values = [1]
  788. # if inner_table[i-loop_i][j][1] in key_values:
  789. # if find_flag:
  790. # if inner_table[i-loop_i][j][0]!=temp_head:
  791. # head = inner_table[i-loop_i][j][0]+":"+head
  792. # else:
  793. # head = inner_table[i-loop_i][j][0]+":"+head
  794. # find_flag = True
  795. # temp_head = inner_table[i-loop_i][j][0]
  796. # else:
  797. # #找到表头后遇到属性值就返回
  798. # if find_flag:
  799. # break
  800. #
  801. # find_flag = False
  802. # temp_head = ""
  803. #
  804. #
  805. #
  806. # for loop_j in range(1,j+1):
  807. # if not key_direct:
  808. # key_values = [1,2]
  809. # else:
  810. # key_values = [2]
  811. # if inner_table[i][j-loop_j][1] in key_values:
  812. # if find_flag:
  813. # if inner_table[i][j-loop_j][0]!=temp_head:
  814. # head = inner_table[i][j-loop_j][0]+":"+head
  815. # else:
  816. # head = inner_table[i][j-loop_j][0]+":"+head
  817. # find_flag = True
  818. # temp_head = inner_table[i][j-loop_j][0]
  819. # else:
  820. # if find_flag:
  821. # break
  822. #
  823. # if str(head+inner_table[i][j][0]) in text_set:
  824. # continue
  825. # if re.search(packPattern,head) is not None:
  826. # pack_text += head+inner_table[i][j][0]+","
  827. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  828. # #排名替换为同一种表达
  829. # rank_text += head+inner_table[i][j][0]+","
  830. # #print(rank_text)
  831. # elif re.search(entityPattern,head) is not None:
  832. # entity_text += head+inner_table[i][j][0]+","
  833. # #print(entity_text)
  834. # else:
  835. # text_line += head+inner_table[i][j][0]+","
  836. # text_set.add(str(head+inner_table[i][j][0]))
  837. # text += pack_text+rank_text+entity_text+text_line
  838. # text = text[:-1]+"。" if len(text)>0 else text
  839. # else:
  840. # for j in range(width):
  841. #
  842. # rank_text = ""
  843. # entity_text = ""
  844. # text_line = ""
  845. # text_set = set()
  846. # for i in range(head_begin,head_end):
  847. # cell = inner_table[i][j]
  848. # #是属性值
  849. # if cell[1]==0 and cell[0]!="":
  850. # find_flag = False
  851. # head = ""
  852. # temp_head = ""
  853. #
  854. # for loop_j in range(1,j+1):
  855. # if not key_direct:
  856. # key_values = [1,2]
  857. # else:
  858. # key_values = [2]
  859. # if inner_table[i][j-loop_j][1] in key_values:
  860. # if find_flag:
  861. # if inner_table[i][j-loop_j][0]!=temp_head:
  862. # head = inner_table[i][j-loop_j][0]+":"+head
  863. # else:
  864. # head = inner_table[i][j-loop_j][0]+":"+head
  865. # find_flag = True
  866. # temp_head = inner_table[i][j-loop_j][0]
  867. # else:
  868. # if find_flag:
  869. # break
  870. # find_flag = False
  871. # temp_head = ""
  872. # for loop_i in range(0,i+1-head_begin):
  873. # if not key_direct:
  874. # key_values = [1,2]
  875. # else:
  876. # key_values = [1]
  877. # if inner_table[i-loop_i][j][1] in key_values:
  878. # if find_flag:
  879. # if inner_table[i-loop_i][j][0]!=temp_head:
  880. # head = inner_table[i-loop_i][j][0]+":"+head
  881. # else:
  882. # head = inner_table[i-loop_i][j][0]+":"+head
  883. # find_flag = True
  884. # temp_head = inner_table[i-loop_i][j][0]
  885. # else:
  886. # if find_flag:
  887. # break
  888. # if str(head+inner_table[i][j][0]) in text_set:
  889. # continue
  890. # if re.search(rankPattern,head) is not None:
  891. # rank_text += head+inner_table[i][j][0]+","
  892. # #print(rank_text)
  893. # elif re.search(entityPattern,head) is not None:
  894. # entity_text += head+inner_table[i][j][0]+","
  895. # #print(entity_text)
  896. # else:
  897. # text_line += head+inner_table[i][j][0]+","
  898. # text_set.add(str(head+inner_table[i][j][0]))
  899. # text += rank_text+entity_text+text_line
  900. # text = text[:-1]+"。" if len(text)>0 else text
  901. return text
  902. def removeFix(inner_table,fix_value="~~"):
  903. height = len(inner_table)
  904. width = len(inner_table[0])
  905. for h in range(height):
  906. for w in range(width):
  907. if inner_table[h][w][0]==fix_value:
  908. inner_table[h][w][0] = ""
  909. def trunTable(tbody):
  910. fixSpan(tbody)
  911. inner_table = getTable(tbody)
  912. inner_table = fixTable(inner_table)
  913. if len(inner_table)>0 and len(inner_table[0])>0:
  914. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  915. #inner_table,head_list = setHead_inline(inner_table)
  916. # inner_table, head_list = setHead_initem(inner_table,pat_head)
  917. inner_table, head_list = set_head_model(inner_table)
  918. # inner_table,head_list = setHead_incontext(inner_table,pat_head)
  919. # print(inner_table)
  920. # for begin in range(len(head_list[:-1])):
  921. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  922. # print(item)
  923. # print("====")
  924. removeFix(inner_table)
  925. # print("----")
  926. # print(head_list)
  927. # for item in inner_table:
  928. # print(item)
  929. tbody.string = getTableText(inner_table,head_list)
  930. #print(tbody.string)
  931. tbody.name = "turntable"
  932. return inner_table
  933. return None
  934. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标|(需求|服务|项目|施工|采购|招租|出租|转让|出让|业主|询价|委托|权属|招标|竞得|抽取|承建)(人|方|单位)(名称)?|(供应商|供货商|服务商)(名称)?)$')
  935. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  936. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  937. list_innerTable = []
  938. # 2022/2/9 删除干扰标签
  939. for tag in soup.find_all('option'): #例子: 216661412
  940. if 'selected' not in tag.attrs:
  941. tag.extract()
  942. for ul in soup.find_all('ul'): #例子 156439663 多个不同channel 类别的标题
  943. if ul.find_all('li') == ul.findChildren(recursive=False) and len(set(re.findall(
  944. '招标公告|中标结果公示|中标候选人公示|招标答疑|开标评标|合同履?约?公示|开标评标|资格评审',
  945. ul.get_text(), re.S)))>3:
  946. ul.extract()
  947. tbodies = soup.find_all('table')
  948. # 遍历表格中的每个tbody
  949. #逆序处理嵌套表格
  950. for tbody_index in range(1,len(tbodies)+1):
  951. tbody = tbodies[len(tbodies)-tbody_index]
  952. inner_table = trunTable(tbody)
  953. list_innerTable.append(inner_table)
  954. tbodies = soup.find_all('tbody')
  955. # 遍历表格中的每个tbody
  956. #逆序处理嵌套表格
  957. for tbody_index in range(1,len(tbodies)+1):
  958. tbody = tbodies[len(tbodies)-tbody_index]
  959. inner_table = trunTable(tbody)
  960. list_innerTable.append(inner_table)
  961. return soup
  962. # return list_innerTable
  963. re_num = re.compile("[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十]")
  964. num_dict = {
  965. "一": 1, "二": 2,
  966. "三": 3, "四": 4,
  967. "五": 5, "六": 6,
  968. "七": 7, "八": 8,
  969. "九": 9, "十": 10}
  970. # 一百以内的中文大写转换为数字
  971. def change2num(text):
  972. result_num = -1
  973. # text = text[:6]
  974. match = re_num.search(text)
  975. if match:
  976. _num = match.group()
  977. if num_dict.get(_num):
  978. return num_dict.get(_num)
  979. else:
  980. tenths = 1
  981. the_unit = 0
  982. num_split = _num.split("十")
  983. if num_dict.get(num_split[0]):
  984. tenths = num_dict.get(num_split[0])
  985. if num_dict.get(num_split[1]):
  986. the_unit = num_dict.get(num_split[1])
  987. result_num = tenths * 10 + the_unit
  988. elif re.search("\d{1,2}",text):
  989. _num = re.search("\d{1,2}",text).group()
  990. result_num = int(_num)
  991. return result_num
  992. #大纲分段处理
  993. def get_preprocessed_outline(soup):
  994. pattern_0 = re.compile("^(?:[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十])[、.\.]")
  995. pattern_1 = re.compile("^[\((]?(?:[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十])[\))]")
  996. pattern_2 = re.compile("^\d{1,2}[、.\.](?=[^\d]{1,2}|$)")
  997. pattern_3 = re.compile("^[\((]?\d{1,2}[\))]")
  998. pattern_list = [pattern_0, pattern_1, pattern_2, pattern_3]
  999. body = soup.find("body")
  1000. body_child = body.find_all(recursive=False)
  1001. deal_part = body
  1002. # print(body_child[0]['id'])
  1003. if 'id' in body_child[0].attrs:
  1004. if len(body_child) <= 2 and body_child[0]['id'] == 'pcontent':
  1005. deal_part = body_child[0]
  1006. if len(deal_part.find_all(recursive=False))>2:
  1007. deal_part = deal_part.parent
  1008. skip_tag = ['turntable', 'tbody', 'th', 'tr', 'td', 'table','<thead>','<tfoot>']
  1009. for part in deal_part.find_all(recursive=False):
  1010. # 查找解析文本的主干部分
  1011. is_main_text = False
  1012. through_text_num = 0
  1013. while (not is_main_text and part.find_all(recursive=False)):
  1014. while len(part.find_all(recursive=False)) == 1 and part.get_text(strip=True) == \
  1015. part.find_all(recursive=False)[0].get_text(strip=True):
  1016. part = part.find_all(recursive=False)[0]
  1017. max_len = len(part.get_text(strip=True))
  1018. is_main_text = True
  1019. for t_part in part.find_all(recursive=False):
  1020. if t_part.name not in skip_tag and t_part.get_text(strip=True)!="":
  1021. through_text_num += 1
  1022. if t_part.get_text(strip=True)!="" and len(t_part.get_text(strip=True))/max_len>=0.65:
  1023. if t_part.name not in skip_tag:
  1024. is_main_text = False
  1025. part = t_part
  1026. break
  1027. else:
  1028. while len(t_part.find_all(recursive=False)) == 1 and t_part.get_text(strip=True) == \
  1029. t_part.find_all(recursive=False)[0].get_text(strip=True):
  1030. t_part = t_part.find_all(recursive=False)[0]
  1031. if through_text_num>2:
  1032. is_table = True
  1033. for _t_part in t_part.find_all(recursive=False):
  1034. if _t_part.name not in skip_tag:
  1035. is_table = False
  1036. break
  1037. if not is_table:
  1038. is_main_text = False
  1039. part = t_part
  1040. break
  1041. else:
  1042. is_main_text = False
  1043. part = t_part
  1044. break
  1045. is_find = False
  1046. for _pattern in pattern_list:
  1047. last_index = 0
  1048. handle_list = []
  1049. for _part in part.find_all(recursive=False):
  1050. if _part.name not in skip_tag and _part.get_text(strip=True) != "":
  1051. # print('text:', _part.get_text(strip=True))
  1052. re_match = re.search(_pattern, _part.get_text(strip=True))
  1053. if re_match:
  1054. outline_index = change2num(re_match.group())
  1055. if last_index < outline_index:
  1056. # _part.insert_before("##split##")
  1057. handle_list.append(_part)
  1058. last_index = outline_index
  1059. if len(handle_list)>1:
  1060. is_find = True
  1061. for _part in handle_list:
  1062. _part.insert_before("##split##")
  1063. if is_find:
  1064. break
  1065. # print(soup)
  1066. return soup
  1067. #数据清洗
  1068. def segment(soup,final=True):
  1069. # print("==")
  1070. # print(soup)
  1071. # print("====")
  1072. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  1073. subspaceList = ["td",'a',"span","p"]
  1074. if soup.name in subspaceList:
  1075. #判断有值叶子节点数
  1076. _count = 0
  1077. for child in soup.find_all(recursive=True):
  1078. if child.get_text().strip()!="" and len(child.find_all())==0:
  1079. _count += 1
  1080. if _count<=1:
  1081. text = soup.get_text()
  1082. # 2020/11/24 大网站规则添加
  1083. if 'title' in soup.attrs:
  1084. if '...' in soup.get_text() and soup.get_text().strip()[:-3] in soup.attrs['title']:
  1085. text = soup.attrs['title']
  1086. _list = []
  1087. for x in re.split("\s+",text):
  1088. if x.strip()!="":
  1089. _list.append(len(x))
  1090. if len(_list)>0:
  1091. _minLength = min(_list)
  1092. if _minLength>2:
  1093. _substr = ","
  1094. else:
  1095. _substr = ""
  1096. else:
  1097. _substr = ""
  1098. text = text.replace("\r\n",",").replace("\n",",")
  1099. text = re.sub("\s+",_substr,text)
  1100. # text = re.sub("\s+","##space##",text)
  1101. return text
  1102. segList = ["title"]
  1103. commaList = ["div","br","td","p"]
  1104. #commaList = []
  1105. spaceList = ["span"]
  1106. tbodies = soup.find_all('tbody')
  1107. if len(tbodies) == 0:
  1108. tbodies = soup.find_all('table')
  1109. # 递归遍历所有节点,插入符号
  1110. for child in soup.find_all(recursive=True):
  1111. if child.name in segList:
  1112. child.insert_after("。")
  1113. if child.name in commaList:
  1114. child.insert_after(",")
  1115. if child.name == 'div' and 'class' in child.attrs:
  1116. # 添加附件"attachment"标识
  1117. if "richTextFetch" in child['class']:
  1118. child.insert_before("##attachment##")
  1119. # print(child.parent)
  1120. # if child.name in subspaceList:
  1121. # child.insert_before("#subs"+str(child.name)+"#")
  1122. # child.insert_after("#sube"+str(child.name)+"#")
  1123. # if child.name in spaceList:
  1124. # child.insert_after(" ")
  1125. text = str(soup.get_text())
  1126. #替换英文冒号为中文冒号
  1127. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1128. #替换为中文逗号
  1129. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1130. #替换为中文分号
  1131. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1132. # 感叹号替换为中文句号
  1133. text = re.sub("(?<=[\u4e00-\u9fa5])[!!]|[!!](?=[\u4e00-\u9fa5])","。",text)
  1134. #替换格式未识别的问号为" " ,update:2021/7/20
  1135. text = re.sub("[?\?]{2,}"," ",text)
  1136. #替换"""为"“",否则导入deepdive出错
  1137. # text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1138. text = text.replace('"',"“").replace("\r","").replace("\n","") #2022/1/4修复 非分段\n 替换为逗号造成 公司拆分 span \n南航\n上海\n分公司
  1139. # print('==1',text)
  1140. # text = re.sub("\s{4,}",",",text)
  1141. # 解决公告中的" "空格替换问题
  1142. if re.search("\s{4,}",text):
  1143. _text = ""
  1144. for _sent in re.split("。+",text):
  1145. for _sent2 in re.split(',+',_sent):
  1146. for _sent3 in re.split(":+",_sent2):
  1147. for _t in re.split("\s{4,}",_sent3):
  1148. if len(_t)<3:
  1149. _text += _t
  1150. else:
  1151. _text += ","+_t
  1152. _text += ":"
  1153. _text = _text[:-1]
  1154. _text += ","
  1155. _text = _text[:-1]
  1156. _text += "。"
  1157. _text = _text[:-1]
  1158. text = _text
  1159. # print('==2',text)
  1160. #替换标点
  1161. #替换连续的标点
  1162. if final:
  1163. text = re.sub("##space##"," ",text)
  1164. punc_pattern = "(?P<del>[。,;::,\s]+)"
  1165. list_punc = re.findall(punc_pattern,text)
  1166. list_punc.sort(key=lambda x:len(x),reverse=True)
  1167. for punc_del in list_punc:
  1168. if len(punc_del)>1:
  1169. if len(punc_del.strip())>0:
  1170. if ":" in punc_del.strip():
  1171. text = re.sub(punc_del,":",text)
  1172. else:
  1173. text = re.sub(punc_del,punc_del.strip()[0],text) #2021/12/09 修正由于某些标签后插入符号把原来符号替换
  1174. else:
  1175. text = re.sub(punc_del,"",text)
  1176. #将连续的中文句号替换为一个
  1177. text_split = text.split("。")
  1178. text_split = [x for x in text_split if len(x)>0]
  1179. text = "。".join(text_split)
  1180. # #删除标签中的所有空格
  1181. # for subs in subspaceList:
  1182. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  1183. # while(True):
  1184. # oneMatch = re.search(re.compile(patten),text)
  1185. # if oneMatch is not None:
  1186. # _match = oneMatch.group(1)
  1187. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  1188. # else:
  1189. # break
  1190. # text过大报错
  1191. LOOP_LEN = 10000
  1192. LOOP_BEGIN = 0
  1193. _text = ""
  1194. if len(text)<10000000:
  1195. while(LOOP_BEGIN<len(text)):
  1196. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  1197. LOOP_BEGIN += LOOP_LEN
  1198. text = _text
  1199. # 附件标识前修改为句号,避免正文和附件内容混合在一起
  1200. text = re.sub("[^。](?=##attachment##)","。",text)
  1201. return text
  1202. '''
  1203. #数据清洗
  1204. def segment(soup):
  1205. segList = ["title"]
  1206. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1207. spaceList = ["span"]
  1208. tbodies = soup.find_all('tbody')
  1209. if len(tbodies) == 0:
  1210. tbodies = soup.find_all('table')
  1211. # 递归遍历所有节点,插入符号
  1212. for child in soup.find_all(recursive=True):
  1213. if child.name == 'br':
  1214. child.insert_before(',')
  1215. child_text = re.sub('\s', '', child.get_text())
  1216. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1217. continue
  1218. if child.name in segList:
  1219. child.insert_after("。")
  1220. if child.name in commaList:
  1221. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1222. child.insert_after(",")
  1223. elif len(child_text) >=50:
  1224. child.insert_after("。")
  1225. #if child.name in spaceList:
  1226. #child.insert_after(" ")
  1227. text = str(soup.get_text())
  1228. text = re.sub("\s{5,}",",",text)
  1229. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1230. #替换"""为"“",否则导入deepdive出错
  1231. text = text.replace('"',"“")
  1232. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1233. #删除所有空格
  1234. text = re.sub("\s+","#nbsp#",text)
  1235. text_list = text.split('#nbsp#')
  1236. new_text = ''
  1237. for i in range(len(text_list)-1):
  1238. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1239. new_text += text_list[i]
  1240. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1241. new_text += text_list[i] + '。'
  1242. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1243. new_text += text_list[i] + ';'
  1244. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1245. new_text += text_list[i] + ' '
  1246. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1247. new_text += text_list[i]
  1248. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1249. new_text += text_list[i] + ','
  1250. else:
  1251. new_text += text_list[i]
  1252. new_text += text_list[-1]
  1253. text = new_text
  1254. #替换英文冒号为中文冒号
  1255. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1256. #替换为中文逗号
  1257. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1258. #替换为中文分号
  1259. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1260. #替换标点
  1261. while(True):
  1262. #替换连续的标点
  1263. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1264. if punc is not None:
  1265. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1266. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1267. if punc is not None:
  1268. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1269. else:
  1270. #替换标点之后的空格
  1271. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1272. if punc is not None:
  1273. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1274. else:
  1275. break
  1276. #将连续的中文句号替换为一个
  1277. text_split = text.split("。")
  1278. text_split = [x for x in text_split if len(x)>0]
  1279. text = "。".join(text_split)
  1280. #替换中文括号为英文括号
  1281. text = re.sub("(","(",text)
  1282. text = re.sub(")",")",text)
  1283. return text
  1284. '''
  1285. #连续实体合并(弃用)
  1286. def union_ner(list_ner):
  1287. result_list = []
  1288. union_index = []
  1289. union_index_set = set()
  1290. for i in range(len(list_ner)-1):
  1291. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1292. if list_ner[i][1]-list_ner[i+1][0]==1:
  1293. union_index_set.add(i)
  1294. union_index_set.add(i+1)
  1295. union_index.append((i,i+1))
  1296. for i in range(len(list_ner)):
  1297. if i not in union_index_set:
  1298. result_list.append(list_ner[i])
  1299. for item in union_index:
  1300. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1301. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1302. return result_list
  1303. # def get_preprocessed(articles,useselffool=False):
  1304. # '''
  1305. # @summary:预处理步骤,NLP处理、实体识别
  1306. # @param:
  1307. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1308. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1309. # '''
  1310. # list_articles = []
  1311. # list_sentences = []
  1312. # list_entitys = []
  1313. # cost_time = dict()
  1314. # for article in articles:
  1315. # list_sentences_temp = []
  1316. # list_entitys_temp = []
  1317. # doc_id = article[0]
  1318. # sourceContent = article[1]
  1319. # _send_doc_id = article[3]
  1320. # _title = article[4]
  1321. # #表格处理
  1322. # key_preprocess = "tableToText"
  1323. # start_time = time.time()
  1324. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1325. #
  1326. # # log(article_processed)
  1327. #
  1328. # if key_preprocess not in cost_time:
  1329. # cost_time[key_preprocess] = 0
  1330. # cost_time[key_preprocess] += time.time()-start_time
  1331. #
  1332. # #article_processed = article[1]
  1333. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1334. # #nlp处理
  1335. # if article_processed is not None and len(article_processed)!=0:
  1336. # split_patten = "。"
  1337. # sentences = []
  1338. # _begin = 0
  1339. # for _iter in re.finditer(split_patten,article_processed):
  1340. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1341. # _begin = _iter.span()[1]
  1342. # sentences.append(article_processed[_begin:])
  1343. #
  1344. # lemmas = []
  1345. # doc_offsets = []
  1346. # dep_types = []
  1347. # dep_tokens = []
  1348. #
  1349. # time1 = time.time()
  1350. #
  1351. # '''
  1352. # tokens_all = fool.cut(sentences)
  1353. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1354. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1355. # ner_entitys_all = fool.ner(sentences)
  1356. # '''
  1357. # #限流执行
  1358. # key_nerToken = "nerToken"
  1359. # start_time = time.time()
  1360. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1361. # if key_nerToken not in cost_time:
  1362. # cost_time[key_nerToken] = 0
  1363. # cost_time[key_nerToken] += time.time()-start_time
  1364. #
  1365. #
  1366. # for sentence_index in range(len(sentences)):
  1367. #
  1368. #
  1369. #
  1370. # list_sentence_entitys = []
  1371. # sentence_text = sentences[sentence_index]
  1372. # tokens = tokens_all[sentence_index]
  1373. #
  1374. # list_tokenbegin = []
  1375. # begin = 0
  1376. # for i in range(0,len(tokens)):
  1377. # list_tokenbegin.append(begin)
  1378. # begin += len(str(tokens[i]))
  1379. # list_tokenbegin.append(begin+1)
  1380. # #pos_tag = pos_all[sentence_index]
  1381. # pos_tag = ""
  1382. #
  1383. # ner_entitys = ner_entitys_all[sentence_index]
  1384. #
  1385. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1386. #
  1387. # #识别package
  1388. #
  1389. #
  1390. # #识别实体
  1391. # for ner_entity in ner_entitys:
  1392. # begin_index_temp = ner_entity[0]
  1393. # end_index_temp = ner_entity[1]
  1394. # entity_type = ner_entity[2]
  1395. # entity_text = ner_entity[3]
  1396. #
  1397. # for j in range(len(list_tokenbegin)):
  1398. # if list_tokenbegin[j]==begin_index_temp:
  1399. # begin_index = j
  1400. # break
  1401. # elif list_tokenbegin[j]>begin_index_temp:
  1402. # begin_index = j-1
  1403. # break
  1404. # begin_index_temp += len(str(entity_text))
  1405. # for j in range(begin_index,len(list_tokenbegin)):
  1406. # if list_tokenbegin[j]>=begin_index_temp:
  1407. # end_index = j-1
  1408. # break
  1409. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1410. #
  1411. # #去掉标点符号
  1412. # entity_text = re.sub("[,,。:]","",entity_text)
  1413. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1414. #
  1415. #
  1416. # #使用正则识别金额
  1417. # entity_type = "money"
  1418. #
  1419. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1420. #
  1421. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1422. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1423. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1424. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1425. #
  1426. # set_begin = set()
  1427. # for pattern_key in list_money_pattern.keys():
  1428. # pattern = re.compile(list_money_pattern[pattern_key])
  1429. # all_match = re.findall(pattern, sentence_text)
  1430. # index = 0
  1431. # for i in range(len(all_match)):
  1432. # if len(all_match[i][0])>0:
  1433. # # print("===",all_match[i])
  1434. # #print(all_match[i][0])
  1435. # unit = ""
  1436. # entity_text = all_match[i][3]
  1437. # if pattern_key in ["key_word","front_m"]:
  1438. # unit = all_match[i][1]
  1439. # else:
  1440. # unit = all_match[i][4]
  1441. # if entity_text.find("元")>=0:
  1442. # unit = ""
  1443. #
  1444. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1445. #
  1446. # begin_index_temp = index
  1447. # for j in range(len(list_tokenbegin)):
  1448. # if list_tokenbegin[j]==index:
  1449. # begin_index = j
  1450. # break
  1451. # elif list_tokenbegin[j]>index:
  1452. # begin_index = j-1
  1453. # break
  1454. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1455. # end_index_temp = index
  1456. # #index += len(str(all_match[i][0]))
  1457. # for j in range(begin_index,len(list_tokenbegin)):
  1458. # if list_tokenbegin[j]>=index:
  1459. # end_index = j-1
  1460. # break
  1461. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1462. #
  1463. #
  1464. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1465. # if len(unit)>0:
  1466. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1467. # else:
  1468. # entity_text = str(getUnifyMoney(entity_text))
  1469. #
  1470. # _exists = False
  1471. # for item in list_sentence_entitys:
  1472. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1473. # _exists = True
  1474. # if not _exists:
  1475. # if float(entity_text)>10:
  1476. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1477. #
  1478. # else:
  1479. # index += 1
  1480. #
  1481. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1482. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1483. # list_sentences.append(list_sentences_temp)
  1484. # list_entitys.append(list_entitys_temp)
  1485. # return list_articles,list_sentences,list_entitys,cost_time
  1486. def get_preprocessed(articles, useselffool=False):
  1487. '''
  1488. @summary:预处理步骤,NLP处理、实体识别
  1489. @param:
  1490. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1491. @return:list of articles,list of each article of sentences,list of each article of entitys
  1492. '''
  1493. cost_time = dict()
  1494. list_articles = get_preprocessed_article(articles,cost_time)
  1495. list_sentences,list_outlines = get_preprocessed_sentences(list_articles,True,cost_time)
  1496. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1497. calibrateEnterprise(list_articles,list_sentences,list_entitys)
  1498. return list_articles,list_sentences,list_entitys,list_outlines,cost_time
  1499. def special_treatment(sourceContent, web_source_no):
  1500. if web_source_no == 'DX000202-1':
  1501. ser = re.search('中标供应商及中标金额:【((\w{5,20}-[\d,.]+,)+)】', sourceContent)
  1502. if ser:
  1503. new = ""
  1504. l = ser.group(1).split(',')
  1505. for i in range(len(l)):
  1506. it = l[i]
  1507. if '-' in it:
  1508. role, money = it.split('-')
  1509. new += '标段%d, 中标供应商: ' % (i + 1) + role + ',中标金额:' + money + '。'
  1510. sourceContent = sourceContent.replace(ser.group(0), new, 1)
  1511. elif web_source_no == '00753-14':
  1512. pcontent = sourceContent.find("div", id="pcontent")
  1513. pcontent = pcontent.find_all(recursive=False)[0]
  1514. first_table = None
  1515. for idx in range(len(pcontent.find_all(recursive=False))):
  1516. t_part = pcontent.find_all(recursive=False)[idx]
  1517. if t_part.name != "table":
  1518. break
  1519. if idx == 0:
  1520. first_table = t_part
  1521. else:
  1522. for _tr in t_part.find("tbody").find_all(recursive=False):
  1523. first_table.find("tbody").append(_tr)
  1524. t_part.clear()
  1525. elif web_source_no == 'DX008357-11':
  1526. pcontent = sourceContent.find("div", id="pcontent")
  1527. pcontent = pcontent.find_all(recursive=False)[0]
  1528. error_table = []
  1529. is_error_table = False
  1530. for part in pcontent.find_all(recursive=False):
  1531. if is_error_table:
  1532. if part.name == "table":
  1533. error_table.append(part)
  1534. else:
  1535. break
  1536. if part.name == "div" and part.get_text(strip=True) == "中标候选单位:":
  1537. is_error_table = True
  1538. first_table = None
  1539. for idx in range(len(error_table)):
  1540. t_part = error_table[idx]
  1541. # if t_part.name != "table":
  1542. # break
  1543. if idx == 0:
  1544. for _tr in t_part.find("tbody").find_all(recursive=False):
  1545. if _tr.get_text(strip=True) == "":
  1546. _tr.decompose()
  1547. first_table = t_part
  1548. else:
  1549. for _tr in t_part.find("tbody").find_all(recursive=False):
  1550. if _tr.get_text(strip=True) != "":
  1551. first_table.find("tbody").append(_tr)
  1552. t_part.clear()
  1553. elif web_source_no == '18021-2':
  1554. pcontent = sourceContent.find("div", id="pcontent")
  1555. td = pcontent.find_all("td")
  1556. for _td in td:
  1557. if str(_td.string).strip() == "报价金额":
  1558. _td.string = "单价"
  1559. elif web_source_no == '13740-2':
  1560. # “xxx成为成交供应商”
  1561. re_match = re.search("[^,。]+成为[^,。]*成交供应商", sourceContent)
  1562. if re_match:
  1563. sourceContent = sourceContent.replace(re_match.group(), "成交人:" + re_match.group(), sourceContent)
  1564. elif web_source_no == '03786-10':
  1565. ser1 = re.search('中标价:([\d,.]+)', sourceContent)
  1566. ser2 = re.search('合同金额[((]万元[))]:([\d,.]+)', sourceContent)
  1567. if ser1 and ser2:
  1568. m1 = ser1.group(1).replace(',', '')
  1569. m2 = ser2.group(1).replace(',', '')
  1570. if float(m1) < 100000 and (m1.split('.')[0] == m2.split('.')[0] or m2 == '0'):
  1571. new = '中标价(万元):' + m1
  1572. sourceContent = sourceContent.replace(ser1.group(0), new, 1)
  1573. elif web_source_no=='00076-4':
  1574. ser = re.search('主要标的数量:([0-9一]+)\w{,3},主要标的单价:([\d,.]+)元?,合同金额:(.00),', sourceContent)
  1575. if ser:
  1576. num = ser.group(1).replace('一', '1')
  1577. try:
  1578. num = 1 if num == '0' else num
  1579. unit_price = ser.group(2).replace(',', '')
  1580. total_price = str(int(num) * float(unit_price))
  1581. new = '合同金额:' + total_price
  1582. sourceContent = sourceContent.replace('合同金额:.00', new, 1)
  1583. except Exception as e:
  1584. log('preprocessing.py special_treatment exception')
  1585. elif web_source_no=='DX000105-2':
  1586. if re.search("成交公示", sourceContent) and re.search(',投标人:', sourceContent) and re.search(',成交人:', sourceContent)==None:
  1587. sourceContent = sourceContent.replace(',投标人:', ',成交人:')
  1588. elif web_source_no in ['04080-3', '04080-4']:
  1589. ser = re.search('合同金额:([0-9,]+.[0-9]{3,})(.{,4})', sourceContent)
  1590. if ser and '万' not in ser.group(2):
  1591. sourceContent = sourceContent.replace('合同金额:', '合同金额(万元):')
  1592. elif web_source_no=='03761-3':
  1593. ser = re.search('中标价,([0-9]+)[.0-9]*%', sourceContent)
  1594. if ser and int(ser.group(1))>100:
  1595. sourceContent = sourceContent.replace(ser.group(0), ser.group(0)[:-1]+'元')
  1596. elif web_source_no=='00695-7':
  1597. ser = re.search('支付金额:', sourceContent)
  1598. if ser:
  1599. sourceContent = sourceContent.replace('支付金额:', '合同金额:')
  1600. return sourceContent
  1601. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1602. '''
  1603. :param articles: 待处理的article source html
  1604. :param useselffool: 是否使用selffool
  1605. :return: list_articles
  1606. '''
  1607. list_articles = []
  1608. for article in articles:
  1609. doc_id = article[0]
  1610. sourceContent = article[1]
  1611. sourceContent = re.sub("<html>|</html>|<body>|</body>","",sourceContent)
  1612. sourceContent = sourceContent.replace('<br/>', '<br>')
  1613. sourceContent = re.sub("<br>(\s{0,}<br>)+","<br>",sourceContent)
  1614. for br_match in re.findall("[^>]+?<br>",sourceContent):
  1615. _new = re.sub("<br>","",br_match)
  1616. # <br>标签替换为<p>标签
  1617. if not re.search("^\s+$",_new):
  1618. _new = '<p>'+_new + '</p>'
  1619. # print(br_match,_new)
  1620. sourceContent = sourceContent.replace(br_match,_new,1)
  1621. _send_doc_id = article[3]
  1622. _title = article[4]
  1623. page_time = article[5]
  1624. web_source_no = article[6]
  1625. '''特别数据源对 html 做特别修改'''
  1626. if web_source_no in ['DX000202-1']:
  1627. sourceContent = special_treatment(sourceContent, web_source_no)
  1628. #表格处理
  1629. key_preprocess = "tableToText"
  1630. start_time = time.time()
  1631. # article_processed = tableToText(BeautifulSoup(sourceContent,"lxml"))
  1632. article_processed = BeautifulSoup(sourceContent,"lxml")
  1633. '''特别数据源对 BeautifulSoup(html) 做特别修改'''
  1634. if web_source_no in ["00753-14","DX008357-11","18021-2"]:
  1635. article_processed = special_treatment(article_processed, web_source_no)
  1636. for _soup in article_processed.descendants:
  1637. # 识别无标签文本,添加<p>标签
  1638. if not _soup.name and not _soup.parent.string and _soup.string.strip()!="":
  1639. # print(_soup.parent.string,_soup.string.strip())
  1640. _soup.wrap(article_processed.new_tag("p"))
  1641. # print(article_processed)
  1642. article_processed = get_preprocessed_outline(article_processed)
  1643. article_processed = tableToText(article_processed)
  1644. # print(article_processed)
  1645. article_processed = segment(article_processed)
  1646. article_processed = article_processed.replace('.','.') # 2021/12/01 修正OCR识别PDF小数点错误问题
  1647. article_processed = article_processed.replace('报价限价', '招标限价') #2021/12/17 由于报价限价预测为中投标金额所以修改
  1648. article_processed = article_processed.replace('成交工程价款', '成交工程价') # 2021/12/21 修正为中标价
  1649. '''特别数据源对 预处理后文本 做特别修改'''
  1650. if web_source_no in ['03786-10', '00076-4', 'DX000105-2', '04080-3', '04080-4', '03761-3', '00695-7',"13740-2"]:
  1651. article_processed = special_treatment(article_processed, web_source_no)
  1652. # 提取bidway
  1653. list_bidway = extract_bidway(article_processed, _title)
  1654. if list_bidway:
  1655. bidway = list_bidway[0].get("body")
  1656. # bidway名称统一规范
  1657. bidway = bidway_integrate(bidway)
  1658. else:
  1659. bidway = ""
  1660. # 修正被","逗号分隔的时间
  1661. repair_time = re.compile("[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d|"
  1662. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[:时点],?[0-6]\d分?|"
  1663. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[时点]|"
  1664. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]|"
  1665. "[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d"
  1666. )
  1667. for _time in set(re.findall(repair_time,article_processed)):
  1668. if re.search(",",_time):
  1669. _time2 = re.sub(",", "", _time)
  1670. item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time2)
  1671. if item:
  1672. _time2 = _time2.replace(item.group(),item.group() + " ")
  1673. article_processed = article_processed.replace(_time, _time2)
  1674. else:
  1675. item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time)
  1676. if item:
  1677. _time2 = _time.replace(item.group(),item.group() + " ")
  1678. article_processed = article_processed.replace(_time, _time2)
  1679. # print('re_rtime',re.findall(repair_time,article_processed))
  1680. # log(article_processed)
  1681. if key_preprocess not in cost_time:
  1682. cost_time[key_preprocess] = 0
  1683. cost_time[key_preprocess] += round(time.time()-start_time,2)
  1684. #article_processed = article[1]
  1685. _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title,
  1686. bidway=bidway)
  1687. _article.fingerprint = getFingerprint(_title+sourceContent)
  1688. _article.page_time = page_time
  1689. list_articles.append(_article)
  1690. return list_articles
  1691. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1692. '''
  1693. :param list_articles: 经过预处理的article text
  1694. :return: list_sentences
  1695. '''
  1696. list_sentences = []
  1697. list_outlines = []
  1698. for article in list_articles:
  1699. list_sentences_temp = []
  1700. list_entitys_temp = []
  1701. doc_id = article.id
  1702. _send_doc_id = article.doc_id
  1703. _title = article.title
  1704. #表格处理
  1705. key_preprocess = "tableToText"
  1706. start_time = time.time()
  1707. article_processed = article.content
  1708. attachment_begin_index = -1
  1709. if key_preprocess not in cost_time:
  1710. cost_time[key_preprocess] = 0
  1711. cost_time[key_preprocess] += time.time()-start_time
  1712. #nlp处理
  1713. if article_processed is not None and len(article_processed)!=0:
  1714. split_patten = "。"
  1715. sentences = []
  1716. _begin = 0
  1717. sentences_set = set()
  1718. for _iter in re.finditer(split_patten,article_processed):
  1719. _sen = article_processed[_begin:_iter.span()[1]]
  1720. if len(_sen)>0 and _sen not in sentences_set:
  1721. # 标识在附件里的句子
  1722. if re.search("##attachment##",_sen):
  1723. attachment_begin_index = len(sentences)
  1724. # _sen = re.sub("##attachment##","",_sen)
  1725. sentences.append(_sen)
  1726. sentences_set.add(_sen)
  1727. _begin = _iter.span()[1]
  1728. _sen = article_processed[_begin:]
  1729. if re.search("##attachment##", _sen):
  1730. # _sen = re.sub("##attachment##", "", _sen)
  1731. attachment_begin_index = len(sentences)
  1732. if len(_sen)>0 and _sen not in sentences_set:
  1733. sentences.append(_sen)
  1734. sentences_set.add(_sen)
  1735. # 解析outline大纲分段
  1736. outline_list = []
  1737. if re.search("##split##",article.content):
  1738. temp_sentences = []
  1739. last_sentence_index = (-1,-1)
  1740. outline_index = 0
  1741. for sentence_index in range(len(sentences)):
  1742. sentence_text = sentences[sentence_index]
  1743. for _ in re.findall("##split##", sentence_text):
  1744. _match = re.search("##split##", sentence_text)
  1745. if last_sentence_index[0] > -1:
  1746. sentence_begin_index,wordOffset_begin = last_sentence_index
  1747. sentence_end_index = sentence_index
  1748. wordOffset_end = _match.start()
  1749. if sentence_begin_index<attachment_begin_index and sentence_end_index>=attachment_begin_index:
  1750. outline_list.append(Outline(doc_id,outline_index,'',sentence_begin_index,attachment_begin_index-1,wordOffset_begin,len(sentences[attachment_begin_index-1])))
  1751. else:
  1752. outline_list.append(Outline(doc_id,outline_index,'',sentence_begin_index,sentence_end_index,wordOffset_begin,wordOffset_end))
  1753. outline_index += 1
  1754. sentence_text = re.sub("##split##", "", sentence_text,count=1)
  1755. last_sentence_index = (sentence_index,_match.start())
  1756. temp_sentences.append(sentence_text)
  1757. if attachment_begin_index>-1 and last_sentence_index[0]<attachment_begin_index:
  1758. outline_list.append(Outline(doc_id,outline_index,'',last_sentence_index[0],attachment_begin_index-1,last_sentence_index[1],len(temp_sentences[attachment_begin_index-1])))
  1759. else:
  1760. outline_list.append(Outline(doc_id,outline_index,'',last_sentence_index[0],len(sentences)-1,last_sentence_index[1],len(temp_sentences[-1])))
  1761. sentences = temp_sentences
  1762. #解析outline的outline_text内容
  1763. for _outline in outline_list:
  1764. if _outline.sentence_begin_index==_outline.sentence_end_index:
  1765. _text = sentences[_outline.sentence_begin_index][_outline.wordOffset_begin:_outline.wordOffset_end]
  1766. else:
  1767. _text = ""
  1768. for idx in range(_outline.sentence_begin_index,_outline.sentence_end_index+1):
  1769. if idx==_outline.sentence_begin_index:
  1770. _text += sentences[idx][_outline.wordOffset_begin:]
  1771. elif idx==_outline.sentence_end_index:
  1772. _text += sentences[idx][:_outline.wordOffset_end]
  1773. else:
  1774. _text += sentences[idx]
  1775. _outline.outline_text = _text
  1776. _outline_summary = re.split("[::,]",_text,1)[0]
  1777. if len(_outline_summary)<20:
  1778. _outline.outline_summary = _outline_summary
  1779. # print(_outline.outline_index,_outline.outline_text)
  1780. article.content = "".join(sentences)
  1781. # sentences.append(article_processed[_begin:])
  1782. lemmas = []
  1783. doc_offsets = []
  1784. dep_types = []
  1785. dep_tokens = []
  1786. time1 = time.time()
  1787. '''
  1788. tokens_all = fool.cut(sentences)
  1789. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1790. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1791. ner_entitys_all = fool.ner(sentences)
  1792. '''
  1793. #限流执行
  1794. key_nerToken = "nerToken"
  1795. start_time = time.time()
  1796. tokens_all = getTokens(sentences,useselffool=useselffool)
  1797. if key_nerToken not in cost_time:
  1798. cost_time[key_nerToken] = 0
  1799. cost_time[key_nerToken] += round(time.time()-start_time,2)
  1800. in_attachment = False
  1801. for sentence_index in range(len(sentences)):
  1802. if sentence_index == attachment_begin_index:
  1803. in_attachment = True
  1804. sentence_text = sentences[sentence_index]
  1805. tokens = tokens_all[sentence_index]
  1806. #pos_tag = pos_all[sentence_index]
  1807. pos_tag = ""
  1808. ner_entitys = ""
  1809. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys,in_attachment=in_attachment))
  1810. if len(list_sentences_temp)==0:
  1811. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1812. list_sentences.append(list_sentences_temp)
  1813. list_outlines.append(outline_list)
  1814. return list_sentences,list_outlines
  1815. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1816. '''
  1817. :param list_sentences:分局情况
  1818. :param cost_time:
  1819. :return: list_entitys
  1820. '''
  1821. list_entitys = []
  1822. for list_sentence in list_sentences:
  1823. sentences = []
  1824. list_entitys_temp = []
  1825. for _sentence in list_sentence:
  1826. sentences.append(_sentence.sentence_text)
  1827. lemmas = []
  1828. doc_offsets = []
  1829. dep_types = []
  1830. dep_tokens = []
  1831. time1 = time.time()
  1832. '''
  1833. tokens_all = fool.cut(sentences)
  1834. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1835. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1836. ner_entitys_all = fool.ner(sentences)
  1837. '''
  1838. #限流执行
  1839. key_nerToken = "nerToken"
  1840. start_time = time.time()
  1841. found_yeji = 0 # 2021/8/6 增加判断是否正文包含评标结果 及类似业绩判断用于过滤后面的金额
  1842. # found_pingbiao = False
  1843. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1844. if key_nerToken not in cost_time:
  1845. cost_time[key_nerToken] = 0
  1846. cost_time[key_nerToken] += round(time.time()-start_time,2)
  1847. for sentence_index in range(len(list_sentence)):
  1848. list_sentence_entitys = []
  1849. sentence_text = list_sentence[sentence_index].sentence_text
  1850. tokens = list_sentence[sentence_index].tokens
  1851. doc_id = list_sentence[sentence_index].doc_id
  1852. in_attachment = list_sentence[sentence_index].in_attachment
  1853. list_tokenbegin = []
  1854. begin = 0
  1855. for i in range(0,len(tokens)):
  1856. list_tokenbegin.append(begin)
  1857. begin += len(str(tokens[i]))
  1858. list_tokenbegin.append(begin+1)
  1859. #pos_tag = pos_all[sentence_index]
  1860. pos_tag = ""
  1861. ner_entitys = ner_entitys_all[sentence_index]
  1862. '''正则识别角色实体 经营部|经销部|电脑部|服务部|复印部|印刷部|彩印部|装饰部|修理部|汽修部|修理店|零售店|设计店|服务店|家具店|专卖店|分店|文具行|商行|印刷厂|修理厂|维修中心|修配中心|养护中心|服务中心|会馆|文化馆|超市|门市|商场|家具城|印刷社|经销处'''
  1863. for it in re.finditer(
  1864. '(?P<text_key_word>(((单一来源|中标|中选|中价|成交)(供应商|供货商|服务商|候选人|单位|人))|(供应商|供货商|服务商|候选人))(名称)?[为::]+)(?P<text>([^,。、;《::]{5,20})(厂|中心|超市|门市|商场|工作室|文印室|城|部|店|站|馆|行|社|处))[,。]',
  1865. sentence_text):
  1866. for k, v in it.groupdict().items():
  1867. if k == 'text_key_word':
  1868. keyword = v
  1869. if k == 'text':
  1870. entity = v
  1871. b = it.start() + len(keyword)
  1872. e = it.end() - 1
  1873. if (b, e, 'location', entity) in ner_entitys:
  1874. ner_entitys.remove((b, e, 'location', entity))
  1875. ner_entitys.append((b, e, 'company', entity))
  1876. elif (b, e, 'org', entity) not in ner_entitys and (b, e, 'company', entity) not in ner_entitys:
  1877. ner_entitys.append((b, e, 'company', entity))
  1878. for it in re.finditer(
  1879. '(?P<text_key_word>((建设|招租|招标|采购)(单位|人)|业主)(名称)?[为::]+)(?P<text>\w{2,4}[省市县区镇]([^,。、;《]{2,20})(管理处|办公室|委员会|村委会|纪念馆|监狱|管教所|修养所|社区|农场|林场|羊场|猪场|石场|村|幼儿园))[,。]',
  1880. sentence_text):
  1881. for k, v in it.groupdict().items():
  1882. if k == 'text_key_word':
  1883. keyword = v
  1884. if k == 'text':
  1885. entity = v
  1886. b = it.start() + len(keyword)
  1887. e = it.end() - 1
  1888. if (b, e, 'location', entity) in ner_entitys:
  1889. ner_entitys.remove((b, e, 'location', entity))
  1890. ner_entitys.append((b, e, 'org', entity))
  1891. if (b, e, 'org', entity) not in ner_entitys and (b, e, 'company', entity) not in ner_entitys:
  1892. ner_entitys.append((b, e, 'org', entity))
  1893. #识别package
  1894. #识别实体
  1895. for ner_entity in ner_entitys:
  1896. begin_index_temp = ner_entity[0]
  1897. end_index_temp = ner_entity[1]
  1898. entity_type = ner_entity[2]
  1899. entity_text = ner_entity[3]
  1900. if entity_type in ["org","company"] and not isLegalEnterprise(entity_text):
  1901. continue
  1902. for j in range(len(list_tokenbegin)):
  1903. if list_tokenbegin[j]==begin_index_temp:
  1904. begin_index = j
  1905. break
  1906. elif list_tokenbegin[j]>begin_index_temp:
  1907. begin_index = j-1
  1908. break
  1909. begin_index_temp += len(str(entity_text))
  1910. for j in range(begin_index,len(list_tokenbegin)):
  1911. if list_tokenbegin[j]>=begin_index_temp:
  1912. end_index = j-1
  1913. break
  1914. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1915. #去掉标点符号
  1916. entity_text = re.sub("[,,。:!&@$\*]","",entity_text)
  1917. entity_text = entity_text.replace("(","(").replace(")",")") if isinstance(entity_text,str) else entity_text
  1918. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1],in_attachment=in_attachment))
  1919. # 标记文章末尾的"发布人”、“发布时间”实体
  1920. if sentence_index==len(list_sentence)-1:
  1921. if len(list_sentence_entitys[-2:])>2:
  1922. second2last = list_sentence_entitys[-2]
  1923. last = list_sentence_entitys[-1]
  1924. if (second2last.entity_type in ["company",'org'] and last.entity_type=="time") or (
  1925. second2last.entity_type=="time" and last.entity_type in ["company",'org']):
  1926. if last.wordOffset_begin - second2last.wordOffset_end < 6 and len(sentence_text) - last.wordOffset_end<6:
  1927. last.is_tail = True
  1928. second2last.is_tail = True
  1929. #使用正则识别金额
  1930. entity_type = "money"
  1931. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1932. # list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1933. # "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1934. # "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1935. # "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1936. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1937. "key_word": "((?P<text_key_word>(?:[¥¥]+,?|[单报标限总]价|金额|成交报?价|价格|预算|(监理|设计|勘察)(服务)?费|标的基本情况|CNY|成交结果|成交额|中标额)(?:[,,(\(]*\s*(人民币)?(?P<unit_key_word_before>[万亿]?元?(?P<filter_unit2>[台个只吨]*))\s*(/?费率)?(人民币)?[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元编号时间]{,8}?))(第[123一二三]名[::])?(\d+(\*\d+%)+=)?(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]{,1})(?:[(\(]?(?P<filter_>[%])*\s*(单位[::])?(?P<unit_key_word_behind>[万亿]?元?(?P<filter_unit1>[台只吨斤棵株页亩方条天]*))\s*[)\)]?))",
  1938. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万亿]?元)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]*)())",
  1939. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]*)(人民币)?[\((]?(?P<unit_behind_m>[万亿]?元(?P<filter_unit3>[台个只吨斤棵株页亩方条米]*))[\))]?)"}
  1940. # 2021/7/19 调整金额,单位提取正则,修复部分金额因为单位提取失败被过滤问题。
  1941. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1942. set_begin = set()
  1943. # for pattern_key in list_money_pattern.keys():
  1944. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1945. # # pattern = re.compile(list_money_pattern[pattern_key])
  1946. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1947. # all_match = re.findall(pattern, sentence_text)
  1948. # index = 0
  1949. # for i in range(len(all_match)):
  1950. # if len(all_match[i][0])>0:
  1951. # print("===",all_match[i])
  1952. # #print(all_match[i][0])
  1953. # unit = ""
  1954. # entity_text = all_match[i][3]
  1955. # if pattern_key in ["key_word","front_m"]:
  1956. # unit = all_match[i][1]
  1957. # if pattern_key=="key_word":
  1958. # if all_match[i][1]=="" and all_match[i][4]!="":
  1959. # unit = all_match[i][4]
  1960. # else:
  1961. # unit = all_match[i][4]
  1962. # if entity_text.find("元")>=0:
  1963. # unit = ""
  1964. #
  1965. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1966. # begin_index_temp = index
  1967. # for j in range(len(list_tokenbegin)):
  1968. # if list_tokenbegin[j]==index:
  1969. # begin_index = j
  1970. # break
  1971. # elif list_tokenbegin[j]>index:
  1972. # begin_index = j-1
  1973. # break
  1974. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1975. # end_index_temp = index
  1976. # #index += len(str(all_match[i][0]))
  1977. # for j in range(begin_index,len(list_tokenbegin)):
  1978. # if list_tokenbegin[j]>=index:
  1979. # end_index = j-1
  1980. # break
  1981. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1982. #
  1983. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1984. # if len(unit)>0:
  1985. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1986. # else:
  1987. # entity_text = str(getUnifyMoney(entity_text))
  1988. #
  1989. # _exists = False
  1990. # for item in list_sentence_entitys:
  1991. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1992. # _exists = True
  1993. # if not _exists:
  1994. # if float(entity_text)>1:
  1995. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1996. #
  1997. # else:
  1998. # index += 1
  1999. # if re.search('评标结果|候选人公示', sentence_text):
  2000. # found_pingbiao = True
  2001. if re.search('业绩', sentence_text):
  2002. found_yeji += 1
  2003. if found_yeji >= 2: # 过滤掉业绩后面的所有金额
  2004. all_match = []
  2005. else:
  2006. all_match = re.finditer(pattern_money, sentence_text)
  2007. index = 0
  2008. for _match in all_match:
  2009. if len(_match.group())>0:
  2010. # print("===",_match.group())
  2011. # # print(_match.groupdict())
  2012. notes = '' # 2021/7/20 新增备注金额大写或金额单位 if 金额大写 notes=大写 elif 单位 notes=单位
  2013. unit = ""
  2014. entity_text = ""
  2015. text_beforeMoney = ""
  2016. filter = ""
  2017. filter_unit = False
  2018. notSure = False
  2019. if re.search('业绩', sentence_text[:_match.span()[0]]): # 2021/7/21过滤掉业绩后面金额
  2020. # print('金额在业绩后面: ', _match.group(0))
  2021. found_yeji += 1
  2022. break
  2023. for k,v in _match.groupdict().items():
  2024. if v!="" and v is not None:
  2025. if k=='text_key_word':
  2026. notSure = True
  2027. if k.split("_")[0]=="money":
  2028. entity_text = v
  2029. if k.split("_")[0]=="unit":
  2030. unit = v
  2031. if k.split("_")[0]=="text":
  2032. text_beforeMoney = v
  2033. if k.split("_")[0]=="filter":
  2034. filter = v
  2035. if re.search("filter_unit",k) is not None:
  2036. filter_unit = True
  2037. if re.search('(^\d{2,},\d{4,}万?$)|(^\d{2,},\d{2}万?$)', entity_text.strip()): # 2021/7/19 修正OCR识别小数点为逗号
  2038. if re.search('[幢栋号楼层]', sentence_text[max(0, _match.span()[0]-2):_match.span()[0]]):
  2039. entity_text = re.sub('\d+,', '', entity_text)
  2040. else:
  2041. entity_text = entity_text.replace(',', '.')
  2042. # print(' 修正OCR识别小数点为逗号')
  2043. if entity_text.find("元")>=0:
  2044. unit = ""
  2045. if unit == "": #2021/7/21 有明显金额特征的补充单位,避免被过滤
  2046. if ('¥' in text_beforeMoney or '¥' in text_beforeMoney):
  2047. unit = '元'
  2048. # print('明显金额特征补充单位 元')
  2049. elif re.search('[单报标限]价|金额|价格|(监理|设计|勘察)(服务)?费[::为]+$', text_beforeMoney.strip()) and \
  2050. re.search('\d{5,}',entity_text) and re.search('^0|1[3|4|5|6|7|8|9]\d{9}',entity_text)==None:
  2051. unit = '元'
  2052. # print('明显金额特征补充单位 元')
  2053. elif re.search('(^\d{,3}(,?\d{3})+(\.\d{2,7},?)$)|(^\d{,3}(,\d{3})+,?$)',entity_text):
  2054. unit = '元'
  2055. # print('明显金额特征补充单位 元')
  2056. if unit.find("万") >= 0 and entity_text.find("万") >= 0: #2021/7/19修改为金额文本有万,不计算单位
  2057. # print('修正金额及单位都有万, 金额:',entity_text, '单位:',unit)
  2058. unit = "元"
  2059. if re.search('.*万元万元', entity_text): #2021/7/19 修正两个万元
  2060. # print(' 修正两个万元',entity_text)
  2061. entity_text = entity_text.replace('万元万元','万元')
  2062. else:
  2063. if filter_unit:
  2064. continue
  2065. if filter!="":
  2066. continue
  2067. index = _match.span()[0]+len(text_beforeMoney)
  2068. begin_index_temp = index
  2069. for j in range(len(list_tokenbegin)):
  2070. if list_tokenbegin[j]==index:
  2071. begin_index = j
  2072. break
  2073. elif list_tokenbegin[j]>index:
  2074. begin_index = j-1
  2075. break
  2076. index = _match.span()[1]
  2077. end_index_temp = index
  2078. #index += len(str(all_match[i][0]))
  2079. for j in range(begin_index,len(list_tokenbegin)):
  2080. if list_tokenbegin[j]>=index:
  2081. end_index = j-1
  2082. break
  2083. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  2084. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  2085. # print('转换前金额:', entity_text, '单位:', unit, '备注:',notes, 'text_beforeMoney:',text_beforeMoney)
  2086. if re.search('总投资|投资总额|总预算|总概算|投资规模', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/8/5过滤掉总投资金额
  2087. # print('总投资金额: ', _match.group(0))
  2088. notes = '总投资'
  2089. elif re.search('投资', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/11/18 投资金额不作为招标金额
  2090. notes = '投资'
  2091. elif re.search('工程造价', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/12/20 工程造价不作为招标金额
  2092. notes = '工程造价'
  2093. elif (re.search('保证金', sentence_text[max(0, _match.span()[0] - 5):_match.span()[1]])
  2094. or re.search('保证金的?(缴纳)?(金额|金\?|额|\?)?[\((]*(万?元|为?人民币|大写|调整|变更|已?修改|更改|更正)?[\))]*[::为]',
  2095. sentence_text[max(0, _match.span()[0] - 10):_match.span()[1]])
  2096. or re.search('保证金由[\d.,]+.{,3}(变更|修改|更改|更正|调整?)为',
  2097. sentence_text[max(0, _match.span()[0] - 15):_match.span()[1]])):
  2098. notes = '保证金'
  2099. # print('保证金信息:', sentence_text[max(0, _match.span()[0] - 15):_match.span()[1]])
  2100. elif re.search('成本(警戒|预警)(线|价|值)[^0-9元]{,10}',
  2101. sentence_text[max(0, _match.span()[0] - 10):_match.span()[0]]):
  2102. notes = '成本警戒线'
  2103. elif re.search('(监理|设计|勘察)(服务)?费(报价)?[约为:]', sentence_text[_match.span()[0]:_match.span()[1]]):
  2104. cost_re = re.search('(监理|设计|勘察)(服务)?费', sentence_text[_match.span()[0]:_match.span()[1]])
  2105. notes = cost_re.group(1)
  2106. elif re.search('单价|总金额', sentence_text[_match.span()[0]:_match.span()[1]]):
  2107. notes = '单价'
  2108. elif re.search('[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆]', entity_text) != None:
  2109. notes = '大写'
  2110. if entity_text[0] == "拾": # 2021/12/16 修正大写金额省略了数字转换错误问题
  2111. entity_text = "壹"+entity_text
  2112. # print("补充备注:notes = 大写")
  2113. if len(unit)>0:
  2114. if unit.find('万')>=0 and len(entity_text.split('.')[0])>=8: # 2021/7/19 修正万元金额过大的情况
  2115. # print('修正单位万元金额过大的情况 金额:', entity_text, '单位:', unit)
  2116. entity_text = str(getUnifyMoney(entity_text) * getMultipleFactor(unit[0])/10000)
  2117. unit = '元' # 修正金额后单位 重置为元
  2118. else:
  2119. # print('str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0])):')
  2120. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  2121. else:
  2122. if entity_text.find('万')>=0 and entity_text.split('.')[0].isdigit() and len(entity_text.split('.')[0])>=8:
  2123. entity_text = str(getUnifyMoney(entity_text)/10000)
  2124. # print('修正金额字段含万 过大的情况')
  2125. else:
  2126. entity_text = str(getUnifyMoney(entity_text))
  2127. if float(entity_text)>100000000000: # float(entity_text)<100 or 2022/3/4 取消最小金额限制
  2128. # print('过滤掉金额:float(entity_text)<100 or float(entity_text)>100000000000', entity_text, unit)
  2129. continue
  2130. if notSure and unit=="" and float(entity_text)>100*10000:
  2131. # print('过滤掉金额 notSure and unit=="" and float(entity_text)>100*10000:', entity_text, unit)
  2132. continue
  2133. _exists = False
  2134. for item in list_sentence_entitys:
  2135. if item.entity_id==entity_id and item.entity_type==entity_type:
  2136. _exists = True
  2137. if (begin_index >=item.begin_index and begin_index<=item.end_index) or (end_index>=item.begin_index and end_index<=item.end_index):
  2138. _exists = True
  2139. if not _exists:
  2140. if float(entity_text)>1:
  2141. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp,in_attachment=in_attachment))
  2142. list_sentence_entitys[-1].notes = notes # 2021/7/20 新增金额备注
  2143. list_sentence_entitys[-1].money_unit = unit # 2021/7/20 新增金额备注
  2144. # print('预处理中的 金额:%s, 单位:%s'%(entity_text,unit))
  2145. else:
  2146. index += 1
  2147. # "联系人"正则补充提取 2021/11/15 新增
  2148. list_person_text = [entity.entity_text for entity in list_sentence_entitys if entity.entity_type=='person']
  2149. error_text = ['交易','机构','教育','项目','公司','中标','开标','截标','监督','政府','国家','中国','技术','投标','传真','网址','电子邮',
  2150. '联系','联系电','联系地','采购代','邮政编','邮政','电话','手机','手机号','联系人','地址','地点','邮箱','邮编','联系方','招标','招标人','代理',
  2151. '代理人','采购','附件','注意','登录','报名','踏勘']
  2152. list_person_text = set(list_person_text + error_text)
  2153. re_person = re.compile("联系人[::]([\u4e00-\u9fa5]工)|"
  2154. "联系人[::]([\u4e00-\u9fa5]{2,3})(?=联系)|"
  2155. "联系人[::]([\u4e00-\u9fa5]{2,3})")
  2156. list_person = []
  2157. for match_result in re_person.finditer(sentence_text):
  2158. match_text = match_result.group()
  2159. entity_text = match_text[4:]
  2160. wordOffset_begin = match_result.start() + 4
  2161. wordOffset_end = match_result.end()
  2162. # print(text[wordOffset_begin:wordOffset_end])
  2163. # 排除一些不为人名的实体
  2164. if re.search("^[\u4e00-\u9fa5]{7,}([,。]|$)",sentence_text[wordOffset_begin:wordOffset_begin+20]):
  2165. continue
  2166. if entity_text not in list_person_text and entity_text[:2] not in list_person_text:
  2167. _person = dict()
  2168. _person['body'] = entity_text
  2169. _person['begin_index'] = wordOffset_begin
  2170. _person['end_index'] = wordOffset_end
  2171. list_person.append(_person)
  2172. entity_type = "person"
  2173. for person in list_person:
  2174. begin_index_temp = person['begin_index']
  2175. for j in range(len(list_tokenbegin)):
  2176. if list_tokenbegin[j] == begin_index_temp:
  2177. begin_index = j
  2178. break
  2179. elif list_tokenbegin[j] > begin_index_temp:
  2180. begin_index = j - 1
  2181. break
  2182. index = person['end_index']
  2183. end_index_temp = index
  2184. for j in range(begin_index, len(list_tokenbegin)):
  2185. if list_tokenbegin[j] >= index:
  2186. end_index = j - 1
  2187. break
  2188. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2189. entity_text = person['body']
  2190. list_sentence_entitys.append(
  2191. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2192. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2193. # 资金来源提取 2020/12/30 新增
  2194. list_moneySource = extract_moneySource(sentence_text)
  2195. entity_type = "moneysource"
  2196. for moneySource in list_moneySource:
  2197. begin_index_temp = moneySource['begin_index']
  2198. for j in range(len(list_tokenbegin)):
  2199. if list_tokenbegin[j] == begin_index_temp:
  2200. begin_index = j
  2201. break
  2202. elif list_tokenbegin[j] > begin_index_temp:
  2203. begin_index = j - 1
  2204. break
  2205. index = moneySource['end_index']
  2206. end_index_temp = index
  2207. for j in range(begin_index, len(list_tokenbegin)):
  2208. if list_tokenbegin[j] >= index:
  2209. end_index = j - 1
  2210. break
  2211. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2212. entity_text = moneySource['body']
  2213. list_sentence_entitys.append(
  2214. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2215. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2216. # 电子邮箱提取 2021/11/04 新增
  2217. list_email = extract_email(sentence_text)
  2218. entity_type = "email" # 电子邮箱
  2219. for email in list_email:
  2220. begin_index_temp = email['begin_index']
  2221. for j in range(len(list_tokenbegin)):
  2222. if list_tokenbegin[j] == begin_index_temp:
  2223. begin_index = j
  2224. break
  2225. elif list_tokenbegin[j] > begin_index_temp:
  2226. begin_index = j - 1
  2227. break
  2228. index = email['end_index']
  2229. end_index_temp = index
  2230. for j in range(begin_index, len(list_tokenbegin)):
  2231. if list_tokenbegin[j] >= index:
  2232. end_index = j - 1
  2233. break
  2234. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2235. entity_text = email['body']
  2236. list_sentence_entitys.append(
  2237. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2238. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2239. # 服务期限提取 2020/12/30 新增
  2240. list_servicetime = extract_servicetime(sentence_text)
  2241. entity_type = "serviceTime"
  2242. for servicetime in list_servicetime:
  2243. begin_index_temp = servicetime['begin_index']
  2244. for j in range(len(list_tokenbegin)):
  2245. if list_tokenbegin[j] == begin_index_temp:
  2246. begin_index = j
  2247. break
  2248. elif list_tokenbegin[j] > begin_index_temp:
  2249. begin_index = j - 1
  2250. break
  2251. index = servicetime['end_index']
  2252. end_index_temp = index
  2253. for j in range(begin_index, len(list_tokenbegin)):
  2254. if list_tokenbegin[j] >= index:
  2255. end_index = j - 1
  2256. break
  2257. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2258. entity_text = servicetime['body']
  2259. list_sentence_entitys.append(
  2260. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2261. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2262. # 招标方式提取 2020/12/30 新增
  2263. # list_bidway = extract_bidway(sentence_text, )
  2264. # entity_type = "bidway"
  2265. # for bidway in list_bidway:
  2266. # begin_index_temp = bidway['begin_index']
  2267. # end_index_temp = bidway['end_index']
  2268. # begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  2269. # end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  2270. # if begin_index is None or end_index is None:
  2271. # continue
  2272. # print(begin_index_temp,end_index_temp,begin_index,end_index)
  2273. # entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2274. # entity_text = bidway['body']
  2275. # list_sentence_entitys.append(
  2276. # Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2277. # begin_index_temp, end_index_temp))
  2278. # 2021/12/29 新增比率提取
  2279. list_ratio = extract_ratio(sentence_text)
  2280. entity_type = "ratio"
  2281. for ratio in list_ratio:
  2282. # print("ratio", ratio)
  2283. begin_index_temp = ratio['begin_index']
  2284. for j in range(len(list_tokenbegin)):
  2285. if list_tokenbegin[j] == begin_index_temp:
  2286. begin_index = j
  2287. break
  2288. elif list_tokenbegin[j] > begin_index_temp:
  2289. begin_index = j - 1
  2290. break
  2291. index = ratio['end_index']
  2292. end_index_temp = index
  2293. for j in range(begin_index, len(list_tokenbegin)):
  2294. if list_tokenbegin[j] >= index:
  2295. end_index = j - 1
  2296. break
  2297. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2298. entity_text = ratio['body']
  2299. list_sentence_entitys.append(
  2300. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2301. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2302. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  2303. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  2304. list_entitys.append(list_entitys_temp)
  2305. return list_entitys
  2306. def union_result(codeName,prem):
  2307. '''
  2308. @summary:模型的结果拼成字典
  2309. @param:
  2310. codeName:编号名称模型的结果字典
  2311. prem:拿到属性的角色的字典
  2312. @return:拼接起来的字典
  2313. '''
  2314. result = []
  2315. assert len(codeName)==len(prem)
  2316. for item_code,item_prem in zip(codeName,prem):
  2317. result.append(dict(item_code,**item_prem))
  2318. return result
  2319. def persistenceData(data):
  2320. '''
  2321. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  2322. '''
  2323. import psycopg2
  2324. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  2325. cursor = conn.cursor()
  2326. for item_index in range(len(data)):
  2327. item = data[item_index]
  2328. doc_id = item[0]
  2329. dic = item[1]
  2330. code = dic['code']
  2331. name = dic['name']
  2332. prem = dic['prem']
  2333. if len(code)==0:
  2334. code_insert = ""
  2335. else:
  2336. code_insert = ";".join(code)
  2337. prem_insert = ""
  2338. for item in prem:
  2339. for x in item:
  2340. if isinstance(x, list):
  2341. if len(x)>0:
  2342. for x1 in x:
  2343. prem_insert+="/".join(x1)+","
  2344. prem_insert+="$"
  2345. else:
  2346. prem_insert+=str(x)+"$"
  2347. prem_insert+=";"
  2348. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  2349. cursor.execute(sql)
  2350. conn.commit()
  2351. conn.close()
  2352. def persistenceData1(list_entitys,list_sentences):
  2353. '''
  2354. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  2355. '''
  2356. import psycopg2
  2357. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  2358. cursor = conn.cursor()
  2359. for list_entity in list_entitys:
  2360. for entity in list_entity:
  2361. if entity.values is not None:
  2362. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  2363. else:
  2364. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  2365. cursor.execute(sql)
  2366. for list_sentence in list_sentences:
  2367. for sentence in list_sentence:
  2368. str_tokens = "["
  2369. for item in sentence.tokens:
  2370. str_tokens += "'"
  2371. if item=="'":
  2372. str_tokens += "''"
  2373. else:
  2374. str_tokens += item
  2375. str_tokens += "',"
  2376. str_tokens = str_tokens[:-1]+"]"
  2377. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  2378. cursor.execute(sql)
  2379. conn.commit()
  2380. conn.close()
  2381. def _handle(item,result_queue):
  2382. dochtml = item["dochtml"]
  2383. docid = item["docid"]
  2384. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  2385. flag = False
  2386. if list_innerTable:
  2387. flag = True
  2388. for table in list_innerTable:
  2389. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  2390. def getPredictTable():
  2391. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  2392. import pandas as pd
  2393. import json
  2394. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  2395. df = pd.read_csv(filename)
  2396. df_data = {"json_table":[],"docid":[]}
  2397. _count = 0
  2398. _sum = len(df["docid"])
  2399. task_queue = Queue()
  2400. result_queue = Queue()
  2401. _index = 0
  2402. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  2403. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  2404. _index += 1
  2405. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  2406. mh.run()
  2407. while True:
  2408. try:
  2409. item = result_queue.get(block=True,timeout=1)
  2410. df_data["docid"].append(item["docid"])
  2411. df_data["json_table"].append(item["json_table"])
  2412. except Exception as e:
  2413. print(e)
  2414. break
  2415. df_1 = pd.DataFrame(df_data)
  2416. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  2417. if __name__=="__main__":
  2418. '''
  2419. import glob
  2420. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  2421. file_txt = str(file).replace("html","txt")
  2422. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  2423. f.write("\n================\n")
  2424. content = codecs.open(file,"r",encoding="utf8").read()
  2425. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  2426. '''
  2427. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  2428. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  2429. # getPredictTable()
  2430. with open('D:/138786703.html', 'r', encoding='utf-8') as f:
  2431. sourceContent = f.read()
  2432. # article_processed = segment(tableToText(BeautifulSoup(sourceContent, "lxml")))
  2433. # print(article_processed)
  2434. list_articles, list_sentences, list_entitys, _cost_time = get_preprocessed([['doc_id', sourceContent, "", "", '', '2021-02-01']], useselffool=True)
  2435. for entity in list_entitys[0]:
  2436. print(entity.entity_type, entity.entity_text)