123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- #coding=utf-8
- # evaluate为该方法的入口函数,必须用这个名字
- from odps.udf import annotate
- from odps.distcache import get_cache_archive
- from odps.distcache import get_cache_file
- from odps.udf import BaseUDTF
- import threading
- import logging
- logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- import time
- from multiprocessing import Process,Queue
- def log(msg):
- logging.info(msg)
- # 配置pandas依赖包
- def include_package_path(res_name):
- import os, sys
- archive_files = get_cache_archive(res_name)
- dir_names = sorted([os.path.dirname(os.path.normpath(f.name)) for f in archive_files
- if '.dist_info' not in f.name], key=lambda v: len(v))
- _path = dir_names[0].split(".zip/files")[0]+".zip/files"
- log("add path:%s"%(_path))
- sys.path.append(_path)
- return _path
- # 可能出现类似RuntimeError: xxx has been blocked by sandbox
- # 这是因为包含C的库,会被沙盘block,可设置set odps.isolation.session.enable = true
- def include_file(file_name):
- import os, sys
- so_file = get_cache_file(file_name)
- sys.path.append(os.path.dirname(os.path.abspath(so_file.name)))
- def include_so(file_name):
- import os, sys
- so_file = get_cache_file(file_name)
- with open(so_file.name, 'rb') as fp:
- content=fp.read()
- so = open(file_name, "wb")
- so.write(content)
- so.flush()
- so.close()
- #初始化业务数据包,由于上传限制,python版本以及archive解压包不统一等各种问题,需要手动导入
- def init_env(list_files,package_name):
- import os,sys
- if len(list_files)==1:
- so_file = get_cache_file(list_files[0])
- cmd_line = os.path.abspath(so_file.name)
- os.system("unzip -o %s -d %s"%(cmd_line,package_name))
- elif len(list_files)>1:
- cmd_line = "cat"
- for _file in list_files:
- so_file = get_cache_file(_file)
- cmd_line += " "+os.path.abspath(so_file.name)
- cmd_line += " > temp.zip"
- os.system(cmd_line)
- os.system("unzip -o temp.zip -d %s"%(package_name))
- # os.system("rm -rf %s/*.dist-info"%(package_name))
- # return os.listdir(os.path.abspath("local_package"))
- # os.system("echo export LD_LIBRARY_PATH=%s >> ~/.bashrc"%(os.path.abspath("local_package")))
- # os.system("source ~/.bashrc")
- sys.path.insert(0,os.path.abspath(package_name))
- # sys.path.append(os.path.join(os.path.abspath("local_package"),"interface_real"))
- def multiLoadEnv():
- def load_project():
- start_time = time.time()
- ## init_env(["BiddingKG.zip.env.baseline"],str(uuid.uuid4()))
- # init_env(["BiddingKG.zip.env.backup"],str(uuid.uuid4()))
- #改为zip引入
- log("=======")
- include_package_path("BiddingKG.baseline.zip")
- # include_package_path("BiddingKG.backup.zip")
- logging.info("init biddingkg.zip.env.line cost %d"%(time.time()-start_time))
- def load_vector():
- start_time = time.time()
- # init_env(["wiki_128_word_embedding_new.vector.env"],".")
- include_package_path("wiki.zip")
- logging.info("init wiki_128_word_embedding_new cost %d"%(time.time()-start_time))
- start_time = time.time()
- # init_env(["enterprise.zip.env"],".")
- # init_env(["LEGAL_ENTERPRISE.zip.env"],".")
- include_package_path("enterprise.zip")
- logging.info("init legal_enterprise.zip.env cost %d"%(time.time()-start_time))
- start_time = time.time()
- init_env(["so.env"],".")
- logging.info("init so.env cost %d"%(time.time()-start_time))
- def load_py():
- start_time = time.time()
- # self.out = init_env(["envs_py37.zip.env"],str(uuid.uuid4()))
- include_package_path("envs_py37.env.zip")
- # include_package_path("envs_py35.zip")
- logging.info("init envs_py cost %d"%(time.time()-start_time))
- load_project()
- load_vector()
- load_py()
- @annotate("string,bigint,string,string->string,bigint,string")
- class Extract(BaseUDTF):
- def f_queue_process(self,task_queue,result_queue):
- log("start import predict function")
- from BiddingKG.dl.interface.extract import predict as predict
- log("import done")
- while True:
- try:
- item = task_queue.get(True,timeout=10)
- result_json = predict(item.get("docid",""),item.get("content",""),item.get("title",""))
- result_queue.put(result_json)
- except:
- log("get data time out")
- pass
- def __init__(self):
- # self.out = init_env(["BiddingKG.z01","BiddingKG.z02"],"local_package")
- import uuid
- global uuid
- import logging
- import datetime
- import time
- global time
- logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- multiLoadEnv()
- # import BiddingKG.dl.common.nerUtils
- # log("time5"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
- # import BiddingKG.dl.interface.predictor as predictor
- # log("time6"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
- # import BiddingKG.dl.interface.Entitys as Entitys
- # log("time6.1"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
- # import BiddingKG.dl.interface.getAttributes as getAttributes
- # log("time6.2"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
- # import BiddingKG.dl.entityLink.entityLink as entityLink
- # log("time6.2"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
- # import BiddingKG.dl.interface.Preprocessing as Preprocessing
- # log("time6.3"+str(datetime.datetime.now().strftime('%y-%m-%d %H:%M:%S')))
- # log("start import predict function")
- # from BiddingKG.dl.interface.extract import predict as predict
- # log("import done")
- import json
- self.task_queue = Queue()
- self.result_queue = Queue()
- self.deal_process = Process(target=self.f_queue_process,args=(self.task_queue,self.result_queue))
- self.deal_process.start()
- import numpy as np
- global predictor,Entitys,getAttributes,entityLink,json,MyEncoder,Preprocessing,MyEncoder,np,predict
- class MyEncoder(json.JSONEncoder):
- def default(self, obj):
- if isinstance(obj, np.ndarray):
- return obj.tolist()
- elif isinstance(obj, bytes):
- return str(obj, encoding='utf-8')
- elif isinstance(obj, (np.float_, np.float16, np.float32,
- np.float64)):
- return float(obj)
- elif isinstance(obj,(np.int64)):
- return int(obj)
- return json.JSONEncoder.default(self, obj)
- def process(self,content,_doc_id,_title,page_time):
- # #直接处理
- # if content is not None and _doc_id not in [105677700,126694044,126795572,126951461,71708072,137850637]:
- # result_json = predict(str(_doc_id),content,str(_title))
- # self.forward(page_time,int(_doc_id),result_json)
- if content is not None and _doc_id not in [105677700,126694044,126795572,126951461,71708072,137850637]:
- #清除队列中的数据
- try:
- while(self.task_queue.qsize()>0):
- self.task_queue.get(timeout=5)
- except Exception as e:
- pass
- try:
- while(self.result_queue.qsize()>0):
- self.result_queue.get(timeout=5)
- except Exception as e:
- pass
- _item = {"docid":_doc_id,"content":content,"title":_title,"page_time":page_time}
- try:
- _timeout = 60*4
- if not self.deal_process.is_alive():
- log("deal process is down")
- self.task_queue = Queue()
- self.deal_process = Process(target=self.f_queue_process,args=(self.task_queue,self.result_queue))
- self.deal_process.start()
- _timeout += 60*4
- log("putting item to task_queue with docid:%s"%(str(_doc_id)))
- self.task_queue.put(_item)
- result_json = self.result_queue.get(timeout=_timeout)
- self.forward(page_time,int(_doc_id),result_json)
- except Exception as e:
- log("dealing docid %s failed by timeout"%(str(_doc_id)))
- self.deal_process.kill()
|