12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- import sys
- import os
- sys.path.append(os.path.abspath("../.."))
- from keras import layers, models
- import tensorflow as tf
- from BiddingKG.dl.table_head.models.my_average_pooling import MyAveragePooling1D
- from BiddingKG.dl.table_head.models.self_attention import SeqSelfAttention
- def get_model(input_shape, output_shape):
- # Input
- input_1 = layers.Input(shape=input_shape[1:], dtype="float32")
- input_2 = layers.Input(shape=input_shape[1:], dtype="float32")
- input_3 = layers.Input(shape=input_shape[1:], dtype="float32")
- input_4 = layers.Input(shape=input_shape[1:], dtype="float32")
- input_5 = layers.Input(shape=input_shape[1:], dtype="float32")
- input_6 = layers.Input(shape=input_shape[1:], dtype="float32")
- # Bi-LSTM
- bi_lstm_1 = layers.Bidirectional(layers.LSTM(16, return_sequences=True))(input_1)
- bi_lstm_2 = layers.Bidirectional(layers.LSTM(16, return_sequences=True))(input_2)
- bi_lstm_3 = layers.Bidirectional(layers.LSTM(16, return_sequences=True))(input_3)
- bi_lstm_4 = layers.Bidirectional(layers.LSTM(16, return_sequences=True))(input_4)
- bi_lstm_5 = layers.Bidirectional(layers.LSTM(16, return_sequences=True))(input_5)
- bi_lstm_6 = layers.Bidirectional(layers.LSTM(16, return_sequences=True))(input_6)
- # Self-Attention
- self_attention_1 = SeqSelfAttention(attention_activation='sigmoid')(bi_lstm_1)
- self_attention_2 = SeqSelfAttention(attention_activation='sigmoid')(bi_lstm_2)
- self_attention_3 = SeqSelfAttention(attention_activation='sigmoid')(bi_lstm_3)
- self_attention_4 = SeqSelfAttention(attention_activation='sigmoid')(bi_lstm_4)
- self_attention_5 = SeqSelfAttention(attention_activation='sigmoid')(bi_lstm_5)
- self_attention_6 = SeqSelfAttention(attention_activation='sigmoid')(bi_lstm_6)
- # Concat
- concat_1 = layers.concatenate([self_attention_1, self_attention_2, self_attention_3])
- concat_2 = layers.concatenate([self_attention_4, self_attention_5, self_attention_6])
- # Dense + Sigmoid
- dense_1 = layers.Dense(output_shape[0], activation="sigmoid")(concat_1)
- dense_2 = layers.Dense(output_shape[0], activation="sigmoid")(concat_2)
- # mask mean pooling
- pool_1 = MyAveragePooling1D(axis=1)(dense_1)
- pool_2 = MyAveragePooling1D(axis=1)(dense_2)
- # Concat
- concat = layers.concatenate([pool_1, pool_2])
- # Dense
- output = layers.Dense(10)(concat)
- output = layers.Dense(1, activation="sigmoid", name='output')(output)
- model = models.Model(inputs=[input_1, input_2, input_3, input_4, input_5, input_6],
- outputs=output)
- model.summary()
- return model
|