Preprocessing.py 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import *
  13. from BiddingKG.dl.foolnltk import selffool
  14. #
  15. def tableToText(soup):
  16. '''
  17. @param:
  18. soup:网页html的soup
  19. @return:处理完表格信息的网页text
  20. '''
  21. def getTrs(tbody):
  22. #获取所有的tr
  23. trs = []
  24. objs = tbody.find_all(recursive=False)
  25. for obj in objs:
  26. if obj.name=="tr":
  27. trs.append(obj)
  28. if obj.name=="tbody":
  29. for tr in obj.find_all("tr",recursive=False):
  30. trs.append(tr)
  31. return trs
  32. def fixSpan(tbody):
  33. # 处理colspan, rowspan信息补全问题
  34. #trs = tbody.findChildren('tr', recursive=False)
  35. trs = getTrs(tbody)
  36. ths_len = 0
  37. ths = list()
  38. trs_set = set()
  39. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  40. # 遍历每一个tr
  41. for indtr, tr in enumerate(trs):
  42. ths_tmp = tr.findChildren('th', recursive=False)
  43. #不补全含有表格的tr
  44. if len(tr.findChildren('table'))>0:
  45. continue
  46. if len(ths_tmp) > 0:
  47. ths_len = ths_len + len(ths_tmp)
  48. for th in ths_tmp:
  49. ths.append(th)
  50. trs_set.add(tr)
  51. # 遍历每行中的element
  52. tds = tr.findChildren(recursive=False)
  53. for indtd, td in enumerate(tds):
  54. # 若有colspan 则补全同一行下一个位置
  55. if 'colspan' in td.attrs:
  56. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  57. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  58. if col<100 and len(td.get_text())<1000:
  59. td['colspan'] = 1
  60. for i in range(1, col, 1):
  61. td.insert_after(copy.copy(td))
  62. for indtr, tr in enumerate(trs):
  63. ths_tmp = tr.findChildren('th', recursive=False)
  64. #不补全含有表格的tr
  65. if len(tr.findChildren('table'))>0:
  66. continue
  67. if len(ths_tmp) > 0:
  68. ths_len = ths_len + len(ths_tmp)
  69. for th in ths_tmp:
  70. ths.append(th)
  71. trs_set.add(tr)
  72. # 遍历每行中的element
  73. tds = tr.findChildren(recursive=False)
  74. for indtd, td in enumerate(tds):
  75. # 若有rowspan 则补全下一行同样位置
  76. if 'rowspan' in td.attrs:
  77. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  78. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  79. td['rowspan'] = 1
  80. for i in range(1, row, 1):
  81. # 获取下一行的所有td, 在对应的位置插入
  82. if indtr+i<len(trs):
  83. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  84. if len(tds1) >= (indtd) and len(tds1)>0:
  85. if indtd > 0:
  86. tds1[indtd - 1].insert_after(copy.copy(td))
  87. else:
  88. tds1[0].insert_before(copy.copy(td))
  89. def getTable(tbody):
  90. #trs = tbody.findChildren('tr', recursive=False)
  91. trs = getTrs(tbody)
  92. inner_table = []
  93. for tr in trs:
  94. tr_line = []
  95. tds = tr.findChildren(['td','th'], recursive=False)
  96. for td in tds:
  97. tr_line.append([re.sub('\xa0','',segment(td)),0])
  98. #tr_line.append([td.get_text(),0])
  99. inner_table.append(tr_line)
  100. return inner_table
  101. #处理表格不对齐的问题
  102. def fixTable(inner_table,fix_value="~~"):
  103. maxWidth = 0
  104. for item in inner_table:
  105. if len(item)>maxWidth:
  106. maxWidth = len(item)
  107. for i in range(len(inner_table)):
  108. if len(inner_table[i])<maxWidth:
  109. for j in range(maxWidth-len(inner_table[i])):
  110. inner_table[i].append([fix_value,0])
  111. return inner_table
  112. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  113. height = len(inner_table)
  114. width = len(inner_table[0])
  115. for i in range(height):
  116. point = ""
  117. for j in range(width):
  118. if inner_table[i][j][0]==point and point!="":
  119. inner_table[i][j][0] = pad_row
  120. else:
  121. if inner_table[i][j][0] not in [pad_row,pad_col]:
  122. point = inner_table[i][j][0]
  123. for j in range(width):
  124. point = ""
  125. for i in range(height):
  126. if inner_table[i][j][0]==point and point!="":
  127. inner_table[i][j][0] = pad_col
  128. else:
  129. if inner_table[i][j][0] not in [pad_row,pad_col]:
  130. point = inner_table[i][j][0]
  131. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  132. height = len(inner_table)
  133. width = len(inner_table[0])
  134. for i in range(height):
  135. for j in range(width):
  136. if inner_table[i][j][0]==pad_row:
  137. inner_table[i][j][0] = inner_table[i][j-1][0]
  138. inner_table[i][j][1] = inner_table[i][j-1][1]
  139. if inner_table[i][j][0]==pad_col:
  140. inner_table[i][j][0] = inner_table[i-1][j][0]
  141. inner_table[i][j][1] = inner_table[i-1][j][1]
  142. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  143. def repairTable(inner_table,dye_set = set(),key_set = set()):
  144. '''
  145. @summary: 修复表头识别,将明显错误的进行修正
  146. '''
  147. def repairNeeded(line):
  148. first_1 = -1
  149. last_1 = -1
  150. first_0 = -1
  151. last_0 = -1
  152. count_1 = 0
  153. count_0 = 0
  154. for i in range(len(line)):
  155. if line[i][0]==fix_value:
  156. continue
  157. if line[i][1]==1:
  158. if first_1==-1:
  159. first_1 = i
  160. last_1 = i
  161. count_1 += 1
  162. if line[i][1]==0:
  163. if first_0 == -1:
  164. first_0 = i
  165. last_0 = i
  166. count_0 += 1
  167. if first_1 ==-1 or last_0 == -1:
  168. return False
  169. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  170. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  171. return True
  172. return False
  173. def getsimilarity(line,line1):
  174. same_count = 0
  175. for item,item1 in zip(line,line1):
  176. if item[1]==item1[1]:
  177. same_count += 1
  178. return same_count/len(line)
  179. def selfrepair(inner_table,index,dye_set,key_set):
  180. '''
  181. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  182. '''
  183. #print("B",inner_table[index])
  184. min_presure = 3
  185. list_dye = []
  186. first = None
  187. count = 0
  188. temp_set = set()
  189. _index = 0
  190. for item in inner_table[index]:
  191. if first is None:
  192. first = item[1]
  193. if item[0] not in temp_set:
  194. count += 1
  195. temp_set.add(item[0])
  196. else:
  197. if first == item[1]:
  198. if item[0] not in temp_set:
  199. temp_set.add(item[0])
  200. count += 1
  201. else:
  202. list_dye.append([first,count,_index])
  203. first = item[1]
  204. temp_set.add(item[0])
  205. count = 1
  206. _index += 1
  207. list_dye.append([first,count,_index])
  208. if len(list_dye)>1:
  209. begin = 0
  210. end = 0
  211. for i in range(len(list_dye)):
  212. end = list_dye[i][2]
  213. dye_flag = False
  214. #首尾要求压力减一
  215. if i==0:
  216. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  217. dye_flag = True
  218. dye_type = list_dye[i+1][0]
  219. elif i==len(list_dye)-1:
  220. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  221. dye_flag = True
  222. dye_type = list_dye[i-1][0]
  223. else:
  224. if list_dye[i][1]>1:
  225. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  226. dye_flag = True
  227. dye_type = list_dye[i+1][0]
  228. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  229. dye_flag = True
  230. dye_type = list_dye[i-1][0]
  231. else:
  232. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  233. dye_flag = True
  234. dye_type = list_dye[i+1][0]
  235. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  236. dye_flag = True
  237. dye_type = list_dye[i-1][0]
  238. if dye_flag:
  239. for h in range(begin,end):
  240. inner_table[index][h][1] = dye_type
  241. dye_set.add((inner_table[index][h][0],dye_type))
  242. key_set.add(inner_table[index][h][0])
  243. begin = end
  244. #print("E",inner_table[index])
  245. def otherrepair(inner_table,index,dye_set,key_set):
  246. list_provide_repair = []
  247. if index==0 and len(inner_table)>1:
  248. list_provide_repair.append(index+1)
  249. elif index==len(inner_table)-1:
  250. list_provide_repair.append(index-1)
  251. else:
  252. list_provide_repair.append(index+1)
  253. list_provide_repair.append(index-1)
  254. for provide_index in list_provide_repair:
  255. if not repairNeeded(inner_table[provide_index]):
  256. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  257. if same_prob>=0.8:
  258. for i in range(len(inner_table[provide_index])):
  259. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  260. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  261. key_set.add(inner_table[index][i][0])
  262. inner_table[index][i][1] = inner_table[provide_index][i][1]
  263. elif same_prob<=0.2:
  264. for i in range(len(inner_table[provide_index])):
  265. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  266. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  267. key_set.add(inner_table[index][i][0])
  268. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  269. len_dye_set = len(dye_set)
  270. height = len(inner_table)
  271. for i in range(height):
  272. if repairNeeded(inner_table[i]):
  273. selfrepair(inner_table,i,dye_set,key_set)
  274. #otherrepair(inner_table,i,dye_set,key_set)
  275. for h in range(len(inner_table)):
  276. for w in range(len(inner_table[0])):
  277. if inner_table[h][w][0] in key_set:
  278. for item in dye_set:
  279. if inner_table[h][w][0]==item[0]:
  280. inner_table[h][w][1] = item[1]
  281. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  282. if len(dye_set)!=len(key_set):
  283. for i in range(height):
  284. if repairNeeded(inner_table[i]):
  285. selfrepair(inner_table,i,dye_set,key_set)
  286. #otherrepair(inner_table,i,dye_set,key_set)
  287. return
  288. if len(dye_set)==len_dye_set:
  289. '''
  290. for i in range(height):
  291. if repairNeeded(inner_table[i]):
  292. otherrepair(inner_table,i,dye_set,key_set)
  293. '''
  294. return
  295. repairTable(inner_table, dye_set, key_set)
  296. set_item = set()
  297. height = len(inner_table)
  298. width = len(inner_table[0])
  299. for i in range(height):
  300. for j in range(width):
  301. item = inner_table[i][j][0]
  302. set_item.add(item)
  303. list_item = list(set_item)
  304. x = []
  305. for item in list_item:
  306. x.append(getPredictor("form").encode(item))
  307. predict_y = getPredictor("form").predict(np.array(x),type="item")
  308. _dict = dict()
  309. for item,values in zip(list_item,list(predict_y)):
  310. _dict[item] = values[1]
  311. # print("##",item,values)
  312. #print(_dict)
  313. for i in range(height):
  314. for j in range(width):
  315. item = inner_table[i][j][0]
  316. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  317. repairTable(inner_table)
  318. #进行分块
  319. head_list = []
  320. head_list.append(0)
  321. last_head = None
  322. for h in range(height):
  323. is_all_key = True#是否是全表头行
  324. is_all_value = True#是否是全属性值
  325. is_same_with_lastHead = True#和上一行的结构是否相同
  326. is_same_value=True#一行的item都一样
  327. #is_same_first_item = True#与上一行的第一项是否相同
  328. same_value = inner_table[h][0][0]
  329. for w in range(width):
  330. if last_head is not None:
  331. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  332. is_all_key = False
  333. if inner_table[h][w][0]==1:
  334. is_all_value = False
  335. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  336. is_same_with_lastHead = False
  337. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  338. is_same_value = False
  339. else:
  340. if re.search("\d+",same_value) is not None:
  341. is_same_value = False
  342. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  343. is_same_first_item = False
  344. last_head = h
  345. if is_same_value:
  346. head_list.append(h)
  347. head_list.append(h+1)
  348. continue
  349. if not is_all_key:
  350. if not is_same_with_lastHead:
  351. head_list.append(h)
  352. head_list.append(height)
  353. return inner_table,head_list
  354. #设置表头
  355. def setHead_inline(inner_table,prob_min=0.64):
  356. pad_row = "@@"
  357. pad_col = "##"
  358. removePadding(inner_table, pad_row, pad_col)
  359. pad_pattern = re.compile(pad_row+"|"+pad_col)
  360. height = len(inner_table)
  361. width = len(inner_table[0])
  362. head_list = []
  363. head_list.append(0)
  364. #行表头
  365. is_head_last = False
  366. for i in range(height):
  367. is_head = False
  368. is_long_value = False
  369. #判断是否是全padding值
  370. is_same_value = True
  371. same_value = inner_table[i][0][0]
  372. for j in range(width):
  373. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  374. is_same_value = False
  375. break
  376. #predict is head or not with model
  377. temp_item = ""
  378. for j in range(width):
  379. temp_item += inner_table[i][j][0]+"|"
  380. temp_item = re.sub(pad_pattern,"",temp_item)
  381. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  382. if form_prob is not None:
  383. if form_prob[0][1]>prob_min:
  384. is_head = True
  385. else:
  386. is_head = False
  387. #print(temp_item,form_prob)
  388. if len(inner_table[i][0][0])>40:
  389. is_long_value = True
  390. if is_head or is_long_value or is_same_value:
  391. #不把连续表头分开
  392. if not is_head_last:
  393. head_list.append(i)
  394. if is_long_value or is_same_value:
  395. head_list.append(i+1)
  396. if is_head:
  397. for j in range(width):
  398. inner_table[i][j][1] = 1
  399. is_head_last = is_head
  400. head_list.append(height)
  401. #列表头
  402. for i in range(len(head_list)-1):
  403. head_begin = head_list[i]
  404. head_end = head_list[i+1]
  405. #最后一列不设置为列表头
  406. for i in range(width-1):
  407. is_head = False
  408. #predict is head or not with model
  409. temp_item = ""
  410. for j in range(head_begin,head_end):
  411. temp_item += inner_table[j][i][0]+"|"
  412. temp_item = re.sub(pad_pattern,"",temp_item)
  413. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  414. if form_prob is not None:
  415. if form_prob[0][1]>prob_min:
  416. is_head = True
  417. else:
  418. is_head = False
  419. if is_head:
  420. for j in range(head_begin,head_end):
  421. inner_table[j][i][1] = 2
  422. addPadding(inner_table, pad_row, pad_col)
  423. return inner_table,head_list
  424. #设置表头
  425. def setHead_withRule(inner_table,pattern,pat_value,count):
  426. height = len(inner_table)
  427. width = len(inner_table[0])
  428. head_list = []
  429. head_list.append(0)
  430. #行表头
  431. is_head_last = False
  432. for i in range(height):
  433. set_match = set()
  434. is_head = False
  435. is_long_value = False
  436. is_same_value = True
  437. same_value = inner_table[i][0][0]
  438. for j in range(width):
  439. if inner_table[i][j][0]!=same_value:
  440. is_same_value = False
  441. break
  442. for j in range(width):
  443. if re.search(pat_value,inner_table[i][j][0]) is not None:
  444. is_head = False
  445. break
  446. str_find = re.findall(pattern,inner_table[i][j][0])
  447. if len(str_find)>0:
  448. set_match.add(inner_table[i][j][0])
  449. if len(set_match)>=count:
  450. is_head = True
  451. if len(inner_table[i][0][0])>40:
  452. is_long_value = True
  453. if is_head or is_long_value or is_same_value:
  454. if not is_head_last:
  455. head_list.append(i)
  456. if is_head:
  457. for j in range(width):
  458. inner_table[i][j][1] = 1
  459. is_head_last = is_head
  460. head_list.append(height)
  461. #列表头
  462. for i in range(len(head_list)-1):
  463. head_begin = head_list[i]
  464. head_end = head_list[i+1]
  465. #最后一列不设置为列表头
  466. for i in range(width-1):
  467. set_match = set()
  468. is_head = False
  469. for j in range(head_begin,head_end):
  470. if re.search(pat_value,inner_table[j][i][0]) is not None:
  471. is_head = False
  472. break
  473. str_find = re.findall(pattern,inner_table[j][i][0])
  474. if len(str_find)>0:
  475. set_match.add(inner_table[j][i][0])
  476. if len(set_match)>=count:
  477. is_head = True
  478. if is_head:
  479. for j in range(head_begin,head_end):
  480. inner_table[j][i][1] = 2
  481. return inner_table,head_list
  482. #取得表格的处理方向
  483. def getDirect(inner_table,begin,end):
  484. '''
  485. column_head = set()
  486. row_head = set()
  487. widths = len(inner_table[0])
  488. for height in range(begin,end):
  489. for width in range(widths):
  490. if inner_table[height][width][1] ==1:
  491. row_head.add(height)
  492. if inner_table[height][width][1] ==2:
  493. column_head.add(width)
  494. company_pattern = re.compile("公司")
  495. if 0 in column_head and begin not in row_head:
  496. return "column"
  497. if 0 in column_head and begin in row_head:
  498. for height in range(begin,end):
  499. count = 0
  500. count_flag = True
  501. for width_index in range(width):
  502. if inner_table[height][width_index][1]==0:
  503. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  504. count += 1
  505. else:
  506. count_flag = False
  507. if count_flag and count>=2:
  508. return "column"
  509. return "row"
  510. '''
  511. count_row_keys = 0
  512. count_column_keys = 0
  513. width = len(inner_table[0])
  514. if begin<end:
  515. for w in range(len(inner_table[begin])):
  516. if inner_table[begin][w][1]!=0:
  517. count_row_keys += 1
  518. for h in range(begin,end):
  519. if inner_table[h][0][1]!=0:
  520. count_column_keys += 1
  521. company_pattern = re.compile("有限(责任)?公司")
  522. for height in range(begin,end):
  523. count_set = set()
  524. count_flag = True
  525. for width_index in range(width):
  526. if inner_table[height][width_index][1]==0:
  527. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  528. count_set.add(inner_table[height][width_index][0])
  529. else:
  530. count_flag = False
  531. if count_flag and len(count_set)>=2:
  532. return "column"
  533. if count_column_keys>count_row_keys:
  534. return "column"
  535. return "row"
  536. #根据表格处理方向生成句子,
  537. def getTableText(inner_table,head_list,key_direct=False):
  538. # packPattern = "(标包|[标包][号段名])"
  539. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  540. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果)" # 2020/11/23 大网站规则,添加序号为排序
  541. entityPattern = "(候选|([中投]标|报价)(人|单位|候选)|单位名称|供应商)"
  542. height = len(inner_table)
  543. width = len(inner_table[0])
  544. text = ""
  545. for head_i in range(len(head_list)-1):
  546. head_begin = head_list[head_i]
  547. head_end = head_list[head_i+1]
  548. direct = getDirect(inner_table, head_begin, head_end)
  549. #若只有一行,则直接按行读取
  550. if head_end-head_begin==1:
  551. text_line = ""
  552. for i in range(head_begin,head_end):
  553. for w in range(len(inner_table[i])):
  554. if inner_table[i][w][1]==1:
  555. _punctuation = ":"
  556. else:
  557. _punctuation = ","
  558. if w>0:
  559. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  560. text_line += inner_table[i][w][0]+_punctuation
  561. else:
  562. text_line += inner_table[i][w][0]+_punctuation
  563. text_line = text_line+"。" if text_line!="" else text_line
  564. text += text_line
  565. else:
  566. if direct=="row":
  567. for i in range(head_begin,head_end):
  568. pack_text = ""
  569. rank_text = ""
  570. entity_text = ""
  571. text_line = ""
  572. #在同一句话中重复的可以去掉
  573. text_set = set()
  574. for j in range(width):
  575. cell = inner_table[i][j]
  576. #是属性值
  577. if cell[1]==0 and cell[0]!="":
  578. head = ""
  579. find_flag = False
  580. temp_head = ""
  581. for loop_i in range(0,i+1-head_begin):
  582. if not key_direct:
  583. key_values = [1,2]
  584. else:
  585. key_values = [1]
  586. if inner_table[i-loop_i][j][1] in key_values:
  587. if find_flag:
  588. if inner_table[i-loop_i][j][0]!=temp_head:
  589. head = inner_table[i-loop_i][j][0]+":"+head
  590. else:
  591. head = inner_table[i-loop_i][j][0]+":"+head
  592. find_flag = True
  593. temp_head = inner_table[i-loop_i][j][0]
  594. else:
  595. #找到表头后遇到属性值就返回
  596. if find_flag:
  597. break
  598. find_flag = False
  599. temp_head = ""
  600. for loop_j in range(1,j+1):
  601. if not key_direct:
  602. key_values = [1,2]
  603. else:
  604. key_values = [2]
  605. if inner_table[i][j-loop_j][1] in key_values:
  606. if find_flag:
  607. if inner_table[i][j-loop_j][0]!=temp_head:
  608. head = inner_table[i][j-loop_j][0]+":"+head
  609. else:
  610. head = inner_table[i][j-loop_j][0]+":"+head
  611. find_flag = True
  612. temp_head = inner_table[i][j-loop_j][0]
  613. else:
  614. if find_flag:
  615. break
  616. if str(head+inner_table[i][j][0]) in text_set:
  617. continue
  618. if re.search(packPattern,head) is not None:
  619. pack_text += head+inner_table[i][j][0]+","
  620. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  621. #排名替换为同一种表达
  622. rank_text += head+inner_table[i][j][0]+","
  623. #print(rank_text)
  624. elif re.search(entityPattern,head) is not None:
  625. entity_text += head+inner_table[i][j][0]+","
  626. #print(entity_text)
  627. else:
  628. text_line += head+inner_table[i][j][0]+","
  629. text_set.add(str(head+inner_table[i][j][0]))
  630. text += pack_text+rank_text+entity_text+text_line
  631. text = text[:-1]+"。" if len(text)>0 else text
  632. else:
  633. for j in range(width):
  634. rank_text = ""
  635. entity_text = ""
  636. text_line = ""
  637. text_set = set()
  638. for i in range(head_begin,head_end):
  639. cell = inner_table[i][j]
  640. #是属性值
  641. if cell[1]==0 and cell[0]!="":
  642. find_flag = False
  643. head = ""
  644. temp_head = ""
  645. for loop_j in range(1,j+1):
  646. if not key_direct:
  647. key_values = [1,2]
  648. else:
  649. key_values = [2]
  650. if inner_table[i][j-loop_j][1] in key_values:
  651. if find_flag:
  652. if inner_table[i][j-loop_j][0]!=temp_head:
  653. head = inner_table[i][j-loop_j][0]+":"+head
  654. else:
  655. head = inner_table[i][j-loop_j][0]+":"+head
  656. find_flag = True
  657. temp_head = inner_table[i][j-loop_j][0]
  658. else:
  659. if find_flag:
  660. break
  661. find_flag = False
  662. temp_head = ""
  663. for loop_i in range(0,i+1-head_begin):
  664. if not key_direct:
  665. key_values = [1,2]
  666. else:
  667. key_values = [1]
  668. if inner_table[i-loop_i][j][1] in key_values:
  669. if find_flag:
  670. if inner_table[i-loop_i][j][0]!=temp_head:
  671. head = inner_table[i-loop_i][j][0]+":"+head
  672. else:
  673. head = inner_table[i-loop_i][j][0]+":"+head
  674. find_flag = True
  675. temp_head = inner_table[i-loop_i][j][0]
  676. else:
  677. if find_flag:
  678. break
  679. if str(head+inner_table[i][j][0]) in text_set:
  680. continue
  681. if re.search(rankPattern,head) is not None:
  682. rank_text += head+inner_table[i][j][0]+","
  683. #print(rank_text)
  684. elif re.search(entityPattern,head) is not None:
  685. entity_text += head+inner_table[i][j][0]+","
  686. #print(entity_text)
  687. else:
  688. text_line += head+inner_table[i][j][0]+","
  689. text_set.add(str(head+inner_table[i][j][0]))
  690. text += rank_text+entity_text+text_line
  691. text = text[:-1]+"。" if len(text)>0 else text
  692. return text
  693. def removeFix(inner_table,fix_value="~~"):
  694. height = len(inner_table)
  695. width = len(inner_table[0])
  696. for h in range(height):
  697. for w in range(width):
  698. if inner_table[h][w][0]==fix_value:
  699. inner_table[h][w][0] = ""
  700. def trunTable(tbody):
  701. fixSpan(tbody)
  702. inner_table = getTable(tbody)
  703. inner_table = fixTable(inner_table)
  704. if len(inner_table)>0 and len(inner_table[0])>0:
  705. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  706. #inner_table,head_list = setHead_inline(inner_table)
  707. inner_table,head_list = setHead_initem(inner_table,pat_head)
  708. # print(inner_table)
  709. # for begin in range(len(head_list[:-1])):
  710. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  711. # print(item)
  712. # print("====")
  713. removeFix(inner_table)
  714. '''
  715. print("----")
  716. print(head_list)
  717. for item in inner_table:
  718. print(item)
  719. '''
  720. tbody.string = getTableText(inner_table,head_list)
  721. #print(tbody.string)
  722. tbody.name = "turntable"
  723. return inner_table
  724. return None
  725. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  726. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  727. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  728. list_innerTable = []
  729. tbodies = soup.find_all('table')
  730. # 遍历表格中的每个tbody
  731. #逆序处理嵌套表格
  732. for tbody_index in range(1,len(tbodies)+1):
  733. tbody = tbodies[len(tbodies)-tbody_index]
  734. inner_table = trunTable(tbody)
  735. list_innerTable.append(inner_table)
  736. tbodies = soup.find_all('tbody')
  737. # 遍历表格中的每个tbody
  738. #逆序处理嵌套表格
  739. for tbody_index in range(1,len(tbodies)+1):
  740. tbody = tbodies[len(tbodies)-tbody_index]
  741. inner_table = trunTable(tbody)
  742. list_innerTable.append(inner_table)
  743. return soup
  744. # return list_innerTable
  745. #数据清洗
  746. def segment(soup):
  747. # print("==")
  748. # print(soup)
  749. # print("====")
  750. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  751. if soup.name=="td":
  752. #判断有值叶子节点数
  753. _count = 0
  754. for child in soup.find_all(recursive=True):
  755. if child.get_text().strip()!="" and len(child.find_all())==0:
  756. _count += 1
  757. if _count<=1:
  758. text = soup.get_text()
  759. # 2020/11/24 大网站规则添加
  760. if 'title' in soup.attrs:
  761. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  762. text = soup.attrs['title']
  763. _list = []
  764. for x in re.split("\s+",text):
  765. if x.strip()!="":
  766. _list.append(len(x))
  767. if len(_list)>0:
  768. _minLength = min(_list)
  769. if _minLength>2:
  770. _substr = ","
  771. else:
  772. _substr = ""
  773. else:
  774. _substr = ""
  775. text = _substr.join(re.split("(\s+)",text))
  776. text = text.replace("\r\n",",").replace("\n",",")
  777. text = re.sub("^[,\s]*|[,\s]*$","",text)
  778. return text
  779. segList = ["title"]
  780. commaList = ["div","br","td","p"]
  781. #commaList = []
  782. spaceList = ["span"]
  783. subspaceList = ["td",'a',"span","p"]
  784. tbodies = soup.find_all('tbody')
  785. if len(tbodies) == 0:
  786. tbodies = soup.find_all('table')
  787. # 递归遍历所有节点,插入符号
  788. for child in soup.find_all(recursive=True):
  789. if child.name in segList:
  790. child.insert_after("。")
  791. if child.name in commaList:
  792. child.insert_after(",")
  793. # if child.name in subspaceList:
  794. # child.insert_before("#subs"+str(child.name)+"#")
  795. # child.insert_after("#sube"+str(child.name)+"#")
  796. if child.name in spaceList:
  797. child.insert_after(" ")
  798. text = str(soup.get_text())
  799. #替换英文冒号为中文冒号
  800. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  801. #替换为中文逗号
  802. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  803. #替换为中文分号
  804. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  805. #删除标签中的所有空格
  806. for subs in subspaceList:
  807. patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  808. while(True):
  809. oneMatch = re.search(re.compile(patten),text)
  810. if oneMatch is not None:
  811. _match = oneMatch.group(1)
  812. _minLength = min([len(x) for x in re.split("(\s*)",_match)])
  813. if _minLength>2:
  814. _substr = ","
  815. else:
  816. _substr = ""
  817. text = text.replace("#subs"+str(subs)+"#"+oneMatch.group(1)+"#sube"+str(subs)+"#",re.sub("\s",_substr,oneMatch.group(1)))
  818. else:
  819. break
  820. #替换"""为"“",否则导入deepdive出错
  821. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  822. text = re.sub("\s{4,}",",",text)
  823. #替换标点
  824. while(True):
  825. #替换连续的标点
  826. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  827. if punc is not None:
  828. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  829. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  830. if punc is not None:
  831. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  832. else:
  833. #替换标点之后的空格
  834. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  835. if punc is not None:
  836. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  837. else:
  838. break
  839. #将连续的中文句号替换为一个
  840. text_split = text.split("。")
  841. text_split = [x for x in text_split if len(x)>0]
  842. list_text = []
  843. # for _t in text_split:
  844. # list_text.append(re.sub(")",")",re.sub("(","(",re.sub("\s*","",_t))))
  845. text = "。".join(text_split)
  846. # text = text.replace(')',")").replace("(","(").replace("\s","")
  847. #删除所有空格
  848. # text过大报错
  849. LOOP_LEN = 10000
  850. LOOP_BEGIN = 0
  851. _text = ""
  852. if len(text)<10000000:
  853. while(LOOP_BEGIN<len(text)):
  854. _text += re.sub(")",")",re.sub("(","(",re.sub("\s*","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  855. LOOP_BEGIN += LOOP_LEN
  856. else:
  857. return text
  858. # text = re.sub("\s*","",text)
  859. # #替换中文括号为英文括号
  860. # text = re.sub("(","(",text)
  861. # text = re.sub(")",")",text)
  862. return _text
  863. '''
  864. #数据清洗
  865. def segment(soup):
  866. segList = ["title"]
  867. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  868. spaceList = ["span"]
  869. tbodies = soup.find_all('tbody')
  870. if len(tbodies) == 0:
  871. tbodies = soup.find_all('table')
  872. # 递归遍历所有节点,插入符号
  873. for child in soup.find_all(recursive=True):
  874. if child.name == 'br':
  875. child.insert_before(',')
  876. child_text = re.sub('\s', '', child.get_text())
  877. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  878. continue
  879. if child.name in segList:
  880. child.insert_after("。")
  881. if child.name in commaList:
  882. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  883. child.insert_after(",")
  884. elif len(child_text) >=50:
  885. child.insert_after("。")
  886. #if child.name in spaceList:
  887. #child.insert_after(" ")
  888. text = str(soup.get_text())
  889. text = re.sub("\s{5,}",",",text)
  890. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  891. #替换"""为"“",否则导入deepdive出错
  892. text = text.replace('"',"“")
  893. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  894. #删除所有空格
  895. text = re.sub("\s+","#nbsp#",text)
  896. text_list = text.split('#nbsp#')
  897. new_text = ''
  898. for i in range(len(text_list)-1):
  899. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  900. new_text += text_list[i]
  901. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  902. new_text += text_list[i] + '。'
  903. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  904. new_text += text_list[i] + ';'
  905. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  906. new_text += text_list[i] + ' '
  907. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  908. new_text += text_list[i]
  909. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  910. new_text += text_list[i] + ','
  911. else:
  912. new_text += text_list[i]
  913. new_text += text_list[-1]
  914. text = new_text
  915. #替换英文冒号为中文冒号
  916. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  917. #替换为中文逗号
  918. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  919. #替换为中文分号
  920. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  921. #替换标点
  922. while(True):
  923. #替换连续的标点
  924. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  925. if punc is not None:
  926. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  927. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  928. if punc is not None:
  929. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  930. else:
  931. #替换标点之后的空格
  932. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  933. if punc is not None:
  934. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  935. else:
  936. break
  937. #将连续的中文句号替换为一个
  938. text_split = text.split("。")
  939. text_split = [x for x in text_split if len(x)>0]
  940. text = "。".join(text_split)
  941. #替换中文括号为英文括号
  942. text = re.sub("(","(",text)
  943. text = re.sub(")",")",text)
  944. return text
  945. '''
  946. #连续实体合并(弃用)
  947. def union_ner(list_ner):
  948. result_list = []
  949. union_index = []
  950. union_index_set = set()
  951. for i in range(len(list_ner)-1):
  952. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  953. if list_ner[i][1]-list_ner[i+1][0]==1:
  954. union_index_set.add(i)
  955. union_index_set.add(i+1)
  956. union_index.append((i,i+1))
  957. for i in range(len(list_ner)):
  958. if i not in union_index_set:
  959. result_list.append(list_ner[i])
  960. for item in union_index:
  961. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  962. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  963. return result_list
  964. def getTokensAndNers(sentences,MAXAREA = 10000,useselffool=False):
  965. '''
  966. @param: sentences:句子数
  967. @return 限流执行后的分词和实体识别list
  968. '''
  969. def getData(tokens,ners,process_data):
  970. process_sentences = [item[1] for item in process_data]
  971. token_ = selffool.cut(process_sentences)
  972. if useselffool:
  973. ner_ = selffool.self_ner(process_sentences)
  974. else:
  975. ner_ = selffool.ner(process_sentences)
  976. for i in range(len(token_)):
  977. the_index = process_data[i][0]
  978. tokens[the_index] = token_[i]
  979. ners[the_index] = ner_[i]
  980. sents = []
  981. for i in range(len(sentences)):
  982. sents.append([i,sentences[i]])
  983. sents.sort(key=lambda x:len(x[1]),reverse=True)
  984. index_ = 0
  985. tokens = [[]for i in range(len(sentences))]
  986. ners = [[]for i in range(len(sentences))]
  987. while(True):
  988. width = len(sents[index_][1])
  989. height = MAXAREA//width+1
  990. if height>len(sents)-index_:
  991. height = len(sents)-index_
  992. process_data = sents[index_:index_+height]
  993. getData(tokens, ners, process_data)
  994. index_ += height
  995. if index_>=len(sents):
  996. break
  997. return tokens,ners
  998. def getTokens(sentences,MAXAREA = 10000,useselffool=True):
  999. '''
  1000. @param: sentences:句子数
  1001. @return 限流执行后的分词list
  1002. '''
  1003. def getData(tokens,process_data):
  1004. process_sentences = [item[1] for item in process_data]
  1005. token_ = selffool.cut(process_sentences)
  1006. for i in range(len(token_)):
  1007. the_index = process_data[i][0]
  1008. tokens[the_index] = token_[i]
  1009. sents = []
  1010. for i in range(len(sentences)):
  1011. sents.append([i,sentences[i]])
  1012. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1013. index_ = 0
  1014. tokens = [[]for i in range(len(sentences))]
  1015. while(True):
  1016. width = len(sents[index_][1])
  1017. height = MAXAREA//width+1
  1018. if height>len(sents)-index_:
  1019. height = len(sents)-index_
  1020. process_data = sents[index_:index_+height]
  1021. getData(tokens, process_data)
  1022. index_ += height
  1023. if index_>=len(sents):
  1024. break
  1025. return tokens
  1026. def getNers(sentences,MAXAREA = 10000,useselffool=False):
  1027. '''
  1028. @param: sentences:句子数
  1029. @return 限流执行后的实体识别list
  1030. '''
  1031. def getData(ners,process_data):
  1032. process_sentences = [item[1] for item in process_data]
  1033. if useselffool:
  1034. ner_ = selffool.self_ner(process_sentences)
  1035. else:
  1036. ner_ = selffool.ner(process_sentences)
  1037. for i in range(len(ner_)):
  1038. the_index = process_data[i][0]
  1039. ners[the_index] = ner_[i]
  1040. sents = []
  1041. for i in range(len(sentences)):
  1042. sents.append([i,sentences[i]])
  1043. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1044. index_ = 0
  1045. ners = [[]for i in range(len(sentences))]
  1046. while(True):
  1047. width = len(sents[index_][1])
  1048. height = MAXAREA//width+1
  1049. if height>len(sents)-index_:
  1050. height = len(sents)-index_
  1051. process_data = sents[index_:index_+height]
  1052. getData( ners, process_data)
  1053. index_ += height
  1054. if index_>=len(sents):
  1055. break
  1056. return ners
  1057. # def get_preprocessed(articles,useselffool=False):
  1058. # '''
  1059. # @summary:预处理步骤,NLP处理、实体识别
  1060. # @param:
  1061. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1062. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1063. # '''
  1064. # list_articles = []
  1065. # list_sentences = []
  1066. # list_entitys = []
  1067. # cost_time = dict()
  1068. # for article in articles:
  1069. # list_sentences_temp = []
  1070. # list_entitys_temp = []
  1071. # doc_id = article[0]
  1072. # sourceContent = article[1]
  1073. # _send_doc_id = article[3]
  1074. # _title = article[4]
  1075. # #表格处理
  1076. # key_preprocess = "tableToText"
  1077. # start_time = time.time()
  1078. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1079. #
  1080. # # log(article_processed)
  1081. #
  1082. # if key_preprocess not in cost_time:
  1083. # cost_time[key_preprocess] = 0
  1084. # cost_time[key_preprocess] += time.time()-start_time
  1085. #
  1086. # #article_processed = article[1]
  1087. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1088. # #nlp处理
  1089. # if article_processed is not None and len(article_processed)!=0:
  1090. # split_patten = "。"
  1091. # sentences = []
  1092. # _begin = 0
  1093. # for _iter in re.finditer(split_patten,article_processed):
  1094. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1095. # _begin = _iter.span()[1]
  1096. # sentences.append(article_processed[_begin:])
  1097. #
  1098. # lemmas = []
  1099. # doc_offsets = []
  1100. # dep_types = []
  1101. # dep_tokens = []
  1102. #
  1103. # time1 = time.time()
  1104. #
  1105. # '''
  1106. # tokens_all = fool.cut(sentences)
  1107. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1108. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1109. # ner_entitys_all = fool.ner(sentences)
  1110. # '''
  1111. # #限流执行
  1112. # key_nerToken = "nerToken"
  1113. # start_time = time.time()
  1114. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1115. # if key_nerToken not in cost_time:
  1116. # cost_time[key_nerToken] = 0
  1117. # cost_time[key_nerToken] += time.time()-start_time
  1118. #
  1119. #
  1120. # for sentence_index in range(len(sentences)):
  1121. #
  1122. #
  1123. #
  1124. # list_sentence_entitys = []
  1125. # sentence_text = sentences[sentence_index]
  1126. # tokens = tokens_all[sentence_index]
  1127. #
  1128. # list_tokenbegin = []
  1129. # begin = 0
  1130. # for i in range(0,len(tokens)):
  1131. # list_tokenbegin.append(begin)
  1132. # begin += len(str(tokens[i]))
  1133. # list_tokenbegin.append(begin+1)
  1134. # #pos_tag = pos_all[sentence_index]
  1135. # pos_tag = ""
  1136. #
  1137. # ner_entitys = ner_entitys_all[sentence_index]
  1138. #
  1139. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1140. #
  1141. # #识别package
  1142. #
  1143. #
  1144. # #识别实体
  1145. # for ner_entity in ner_entitys:
  1146. # begin_index_temp = ner_entity[0]
  1147. # end_index_temp = ner_entity[1]
  1148. # entity_type = ner_entity[2]
  1149. # entity_text = ner_entity[3]
  1150. #
  1151. # for j in range(len(list_tokenbegin)):
  1152. # if list_tokenbegin[j]==begin_index_temp:
  1153. # begin_index = j
  1154. # break
  1155. # elif list_tokenbegin[j]>begin_index_temp:
  1156. # begin_index = j-1
  1157. # break
  1158. # begin_index_temp += len(str(entity_text))
  1159. # for j in range(begin_index,len(list_tokenbegin)):
  1160. # if list_tokenbegin[j]>=begin_index_temp:
  1161. # end_index = j-1
  1162. # break
  1163. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1164. #
  1165. # #去掉标点符号
  1166. # entity_text = re.sub("[,,。:]","",entity_text)
  1167. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1168. #
  1169. #
  1170. # #使用正则识别金额
  1171. # entity_type = "money"
  1172. #
  1173. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1174. #
  1175. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1176. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1177. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1178. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1179. #
  1180. # set_begin = set()
  1181. # for pattern_key in list_money_pattern.keys():
  1182. # pattern = re.compile(list_money_pattern[pattern_key])
  1183. # all_match = re.findall(pattern, sentence_text)
  1184. # index = 0
  1185. # for i in range(len(all_match)):
  1186. # if len(all_match[i][0])>0:
  1187. # # print("===",all_match[i])
  1188. # #print(all_match[i][0])
  1189. # unit = ""
  1190. # entity_text = all_match[i][3]
  1191. # if pattern_key in ["key_word","front_m"]:
  1192. # unit = all_match[i][1]
  1193. # else:
  1194. # unit = all_match[i][4]
  1195. # if entity_text.find("元")>=0:
  1196. # unit = ""
  1197. #
  1198. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1199. #
  1200. # begin_index_temp = index
  1201. # for j in range(len(list_tokenbegin)):
  1202. # if list_tokenbegin[j]==index:
  1203. # begin_index = j
  1204. # break
  1205. # elif list_tokenbegin[j]>index:
  1206. # begin_index = j-1
  1207. # break
  1208. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1209. # end_index_temp = index
  1210. # #index += len(str(all_match[i][0]))
  1211. # for j in range(begin_index,len(list_tokenbegin)):
  1212. # if list_tokenbegin[j]>=index:
  1213. # end_index = j-1
  1214. # break
  1215. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1216. #
  1217. #
  1218. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1219. # if len(unit)>0:
  1220. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1221. # else:
  1222. # entity_text = str(getUnifyMoney(entity_text))
  1223. #
  1224. # _exists = False
  1225. # for item in list_sentence_entitys:
  1226. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1227. # _exists = True
  1228. # if not _exists:
  1229. # if float(entity_text)>10:
  1230. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1231. #
  1232. # else:
  1233. # index += 1
  1234. #
  1235. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1236. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1237. # list_sentences.append(list_sentences_temp)
  1238. # list_entitys.append(list_entitys_temp)
  1239. # return list_articles,list_sentences,list_entitys,cost_time
  1240. def get_preprocessed(articles,useselffool=False):
  1241. '''
  1242. @summary:预处理步骤,NLP处理、实体识别
  1243. @param:
  1244. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1245. @return:list of articles,list of each article of sentences,list of each article of entitys
  1246. '''
  1247. cost_time = dict()
  1248. list_articles = get_preprocessed_article(articles,cost_time)
  1249. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1250. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1251. return list_articles,list_sentences,list_entitys,cost_time
  1252. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1253. '''
  1254. :param articles: 待处理的article source html
  1255. :param useselffool: 是否使用selffool
  1256. :return: list_articles
  1257. '''
  1258. list_articles = []
  1259. for article in articles:
  1260. doc_id = article[0]
  1261. sourceContent = article[1]
  1262. _send_doc_id = article[3]
  1263. _title = article[4]
  1264. #表格处理
  1265. key_preprocess = "tableToText"
  1266. start_time = time.time()
  1267. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1268. # log(article_processed)
  1269. if key_preprocess not in cost_time:
  1270. cost_time[key_preprocess] = 0
  1271. cost_time[key_preprocess] += time.time()-start_time
  1272. #article_processed = article[1]
  1273. list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1274. return list_articles
  1275. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1276. '''
  1277. :param list_articles: 经过预处理的article text
  1278. :return: list_sentences
  1279. '''
  1280. list_sentences = []
  1281. for article in list_articles:
  1282. list_sentences_temp = []
  1283. list_entitys_temp = []
  1284. doc_id = article.id
  1285. _send_doc_id = article.doc_id
  1286. _title = article.title
  1287. #表格处理
  1288. key_preprocess = "tableToText"
  1289. start_time = time.time()
  1290. article_processed = article.content
  1291. if key_preprocess not in cost_time:
  1292. cost_time[key_preprocess] = 0
  1293. cost_time[key_preprocess] += time.time()-start_time
  1294. #nlp处理
  1295. if article_processed is not None and len(article_processed)!=0:
  1296. split_patten = "。"
  1297. sentences = []
  1298. _begin = 0
  1299. sentences_set = set()
  1300. for _iter in re.finditer(split_patten,article_processed):
  1301. _sen = article_processed[_begin:_iter.span()[1]]
  1302. if len(_sen)>0 and _sen not in sentences_set:
  1303. sentences.append(_sen)
  1304. sentences_set.add(_sen)
  1305. _begin = _iter.span()[1]
  1306. _sen = article_processed[_begin:]
  1307. if len(_sen)>0 and _sen not in sentences_set:
  1308. sentences.append(_sen)
  1309. sentences_set.add(_sen)
  1310. article.content = "".join(sentences)
  1311. # sentences.append(article_processed[_begin:])
  1312. lemmas = []
  1313. doc_offsets = []
  1314. dep_types = []
  1315. dep_tokens = []
  1316. time1 = time.time()
  1317. '''
  1318. tokens_all = fool.cut(sentences)
  1319. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1320. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1321. ner_entitys_all = fool.ner(sentences)
  1322. '''
  1323. #限流执行
  1324. key_nerToken = "nerToken"
  1325. start_time = time.time()
  1326. tokens_all = getTokens(sentences,useselffool=useselffool)
  1327. if key_nerToken not in cost_time:
  1328. cost_time[key_nerToken] = 0
  1329. cost_time[key_nerToken] += time.time()-start_time
  1330. for sentence_index in range(len(sentences)):
  1331. sentence_text = sentences[sentence_index]
  1332. tokens = tokens_all[sentence_index]
  1333. #pos_tag = pos_all[sentence_index]
  1334. pos_tag = ""
  1335. ner_entitys = ""
  1336. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1337. if len(list_sentences_temp)==0:
  1338. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1339. list_sentences.append(list_sentences_temp)
  1340. return list_sentences
  1341. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1342. '''
  1343. :param list_sentences:分局情况
  1344. :param cost_time:
  1345. :return: list_entitys
  1346. '''
  1347. list_entitys = []
  1348. for list_sentence in list_sentences:
  1349. sentences = []
  1350. list_entitys_temp = []
  1351. for _sentence in list_sentence:
  1352. sentences.append(_sentence.sentence_text)
  1353. lemmas = []
  1354. doc_offsets = []
  1355. dep_types = []
  1356. dep_tokens = []
  1357. time1 = time.time()
  1358. '''
  1359. tokens_all = fool.cut(sentences)
  1360. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1361. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1362. ner_entitys_all = fool.ner(sentences)
  1363. '''
  1364. #限流执行
  1365. key_nerToken = "nerToken"
  1366. start_time = time.time()
  1367. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1368. if key_nerToken not in cost_time:
  1369. cost_time[key_nerToken] = 0
  1370. cost_time[key_nerToken] += time.time()-start_time
  1371. for sentence_index in range(len(list_sentence)):
  1372. list_sentence_entitys = []
  1373. sentence_text = list_sentence[sentence_index].sentence_text
  1374. tokens = list_sentence[sentence_index].tokens
  1375. doc_id = list_sentence[sentence_index].doc_id
  1376. list_tokenbegin = []
  1377. begin = 0
  1378. for i in range(0,len(tokens)):
  1379. list_tokenbegin.append(begin)
  1380. begin += len(str(tokens[i]))
  1381. list_tokenbegin.append(begin+1)
  1382. #pos_tag = pos_all[sentence_index]
  1383. pos_tag = ""
  1384. ner_entitys = ner_entitys_all[sentence_index]
  1385. #识别package
  1386. #识别实体
  1387. for ner_entity in ner_entitys:
  1388. begin_index_temp = ner_entity[0]
  1389. end_index_temp = ner_entity[1]
  1390. entity_type = ner_entity[2]
  1391. entity_text = ner_entity[3]
  1392. for j in range(len(list_tokenbegin)):
  1393. if list_tokenbegin[j]==begin_index_temp:
  1394. begin_index = j
  1395. break
  1396. elif list_tokenbegin[j]>begin_index_temp:
  1397. begin_index = j-1
  1398. break
  1399. begin_index_temp += len(str(entity_text))
  1400. for j in range(begin_index,len(list_tokenbegin)):
  1401. if list_tokenbegin[j]>=begin_index_temp:
  1402. end_index = j-1
  1403. break
  1404. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1405. #去掉标点符号
  1406. entity_text = re.sub("[,,。:]","",entity_text)
  1407. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1408. #使用正则识别金额
  1409. entity_type = "money"
  1410. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1411. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1412. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1413. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1414. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1415. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1416. set_begin = set()
  1417. # for pattern_key in list_money_pattern.keys():
  1418. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1419. # # pattern = re.compile(list_money_pattern[pattern_key])
  1420. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1421. # all_match = re.findall(pattern, sentence_text)
  1422. # index = 0
  1423. # for i in range(len(all_match)):
  1424. # if len(all_match[i][0])>0:
  1425. # print("===",all_match[i])
  1426. # #print(all_match[i][0])
  1427. # unit = ""
  1428. # entity_text = all_match[i][3]
  1429. # if pattern_key in ["key_word","front_m"]:
  1430. # unit = all_match[i][1]
  1431. # if pattern_key=="key_word":
  1432. # if all_match[i][1]=="" and all_match[i][4]!="":
  1433. # unit = all_match[i][4]
  1434. # else:
  1435. # unit = all_match[i][4]
  1436. # if entity_text.find("元")>=0:
  1437. # unit = ""
  1438. #
  1439. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1440. # begin_index_temp = index
  1441. # for j in range(len(list_tokenbegin)):
  1442. # if list_tokenbegin[j]==index:
  1443. # begin_index = j
  1444. # break
  1445. # elif list_tokenbegin[j]>index:
  1446. # begin_index = j-1
  1447. # break
  1448. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1449. # end_index_temp = index
  1450. # #index += len(str(all_match[i][0]))
  1451. # for j in range(begin_index,len(list_tokenbegin)):
  1452. # if list_tokenbegin[j]>=index:
  1453. # end_index = j-1
  1454. # break
  1455. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1456. #
  1457. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1458. # if len(unit)>0:
  1459. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1460. # else:
  1461. # entity_text = str(getUnifyMoney(entity_text))
  1462. #
  1463. # _exists = False
  1464. # for item in list_sentence_entitys:
  1465. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1466. # _exists = True
  1467. # if not _exists:
  1468. # if float(entity_text)>1:
  1469. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1470. #
  1471. # else:
  1472. # index += 1
  1473. all_match = re.finditer(pattern_money, sentence_text)
  1474. index = 0
  1475. for _match in all_match:
  1476. if len(_match.group())>0:
  1477. # print("===",_match.group())
  1478. # print(_match.groupdict())
  1479. unit = ""
  1480. entity_text = ""
  1481. text_beforeMoney = ""
  1482. filter = ""
  1483. filter_unit = False
  1484. for k,v in _match.groupdict().items():
  1485. if v!="" and v is not None:
  1486. if k.split("_")[0]=="money":
  1487. entity_text = v
  1488. if k.split("_")[0]=="unit":
  1489. unit = v
  1490. if k.split("_")[0]=="text":
  1491. text_beforeMoney = v
  1492. if k.split("_")[0]=="filter":
  1493. filter = v
  1494. if re.search("filter_unit",k) is not None:
  1495. filter_unit = True
  1496. if entity_text.find("元")>=0:
  1497. unit = ""
  1498. else:
  1499. if filter_unit:
  1500. continue
  1501. if filter!="":
  1502. continue
  1503. index = _match.span()[0]+len(text_beforeMoney)
  1504. begin_index_temp = index
  1505. for j in range(len(list_tokenbegin)):
  1506. if list_tokenbegin[j]==index:
  1507. begin_index = j
  1508. break
  1509. elif list_tokenbegin[j]>index:
  1510. begin_index = j-1
  1511. break
  1512. index = _match.span()[1]
  1513. end_index_temp = index
  1514. #index += len(str(all_match[i][0]))
  1515. for j in range(begin_index,len(list_tokenbegin)):
  1516. if list_tokenbegin[j]>=index:
  1517. end_index = j-1
  1518. break
  1519. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1520. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1521. if len(unit)>0:
  1522. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1523. else:
  1524. entity_text = str(getUnifyMoney(entity_text))
  1525. if float(entity_text)<100 or float(entity_text)>100000000000:
  1526. continue
  1527. _exists = False
  1528. for item in list_sentence_entitys:
  1529. if item.entity_id==entity_id and item.entity_type==entity_type:
  1530. _exists = True
  1531. if not _exists:
  1532. if float(entity_text)>1:
  1533. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1534. else:
  1535. index += 1
  1536. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1537. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1538. list_entitys.append(list_entitys_temp)
  1539. return list_entitys
  1540. def union_result(codeName,prem):
  1541. '''
  1542. @summary:模型的结果拼成字典
  1543. @param:
  1544. codeName:编号名称模型的结果字典
  1545. prem:拿到属性的角色的字典
  1546. @return:拼接起来的字典
  1547. '''
  1548. result = []
  1549. assert len(codeName)==len(prem)
  1550. for item_code,item_prem in zip(codeName,prem):
  1551. if item_code[0]==item_prem[0]:
  1552. result.append([item_code[0],dict(item_code[1],**item_prem[1])])
  1553. return result
  1554. def persistenceData(data):
  1555. '''
  1556. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1557. '''
  1558. import psycopg2
  1559. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1560. cursor = conn.cursor()
  1561. for item_index in range(len(data)):
  1562. item = data[item_index]
  1563. doc_id = item[0]
  1564. dic = item[1]
  1565. code = dic['code']
  1566. name = dic['name']
  1567. prem = dic['prem']
  1568. if len(code)==0:
  1569. code_insert = ""
  1570. else:
  1571. code_insert = ";".join(code)
  1572. prem_insert = ""
  1573. for item in prem:
  1574. for x in item:
  1575. if isinstance(x, list):
  1576. if len(x)>0:
  1577. for x1 in x:
  1578. prem_insert+="/".join(x1)+","
  1579. prem_insert+="$"
  1580. else:
  1581. prem_insert+=str(x)+"$"
  1582. prem_insert+=";"
  1583. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1584. cursor.execute(sql)
  1585. conn.commit()
  1586. conn.close()
  1587. def persistenceData1(list_entitys,list_sentences):
  1588. '''
  1589. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1590. '''
  1591. import psycopg2
  1592. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1593. cursor = conn.cursor()
  1594. for list_entity in list_entitys:
  1595. for entity in list_entity:
  1596. if entity.values is not None:
  1597. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1598. else:
  1599. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1600. cursor.execute(sql)
  1601. for list_sentence in list_sentences:
  1602. for sentence in list_sentence:
  1603. str_tokens = "["
  1604. for item in sentence.tokens:
  1605. str_tokens += "'"
  1606. if item=="'":
  1607. str_tokens += "''"
  1608. else:
  1609. str_tokens += item
  1610. str_tokens += "',"
  1611. str_tokens = str_tokens[:-1]+"]"
  1612. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1613. cursor.execute(sql)
  1614. conn.commit()
  1615. conn.close()
  1616. def _handle(item,result_queue):
  1617. dochtml = item["dochtml"]
  1618. docid = item["docid"]
  1619. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1620. flag = False
  1621. if list_innerTable:
  1622. flag = True
  1623. for table in list_innerTable:
  1624. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1625. def getPredictTable():
  1626. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1627. import pandas as pd
  1628. import json
  1629. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1630. df = pd.read_csv(filename)
  1631. df_data = {"json_table":[],"docid":[]}
  1632. _count = 0
  1633. _sum = len(df["docid"])
  1634. task_queue = Queue()
  1635. result_queue = Queue()
  1636. _index = 0
  1637. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1638. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1639. _index += 1
  1640. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1641. mh.run()
  1642. while True:
  1643. try:
  1644. item = result_queue.get(block=True,timeout=1)
  1645. df_data["docid"].append(item["docid"])
  1646. df_data["json_table"].append(item["json_table"])
  1647. except Exception as e:
  1648. print(e)
  1649. break
  1650. df_1 = pd.DataFrame(df_data)
  1651. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1652. if __name__=="__main__":
  1653. '''
  1654. import glob
  1655. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1656. file_txt = str(file).replace("html","txt")
  1657. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1658. f.write("\n================\n")
  1659. content = codecs.open(file,"r",encoding="utf8").read()
  1660. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1661. '''
  1662. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1663. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1664. getPredictTable()