Preprocessing.py 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import getPredictor
  13. from BiddingKG.dl.common.nerUtils import *
  14. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  15. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  16. from BiddingKG.dl.bidway.re_bidway import extract_bidway
  17. from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint
  18. from BiddingKG.dl.entityLink.entityLink import *
  19. #
  20. def tableToText(soup):
  21. '''
  22. @param:
  23. soup:网页html的soup
  24. @return:处理完表格信息的网页text
  25. '''
  26. def getTrs(tbody):
  27. #获取所有的tr
  28. trs = []
  29. objs = tbody.find_all(recursive=False)
  30. for obj in objs:
  31. if obj.name=="tr":
  32. trs.append(obj)
  33. if obj.name=="tbody":
  34. for tr in obj.find_all("tr",recursive=False):
  35. trs.append(tr)
  36. return trs
  37. def fixSpan(tbody):
  38. # 处理colspan, rowspan信息补全问题
  39. #trs = tbody.findChildren('tr', recursive=False)
  40. trs = getTrs(tbody)
  41. ths_len = 0
  42. ths = list()
  43. trs_set = set()
  44. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  45. # 遍历每一个tr
  46. for indtr, tr in enumerate(trs):
  47. ths_tmp = tr.findChildren('th', recursive=False)
  48. #不补全含有表格的tr
  49. if len(tr.findChildren('table'))>0:
  50. continue
  51. if len(ths_tmp) > 0:
  52. ths_len = ths_len + len(ths_tmp)
  53. for th in ths_tmp:
  54. ths.append(th)
  55. trs_set.add(tr)
  56. # 遍历每行中的element
  57. tds = tr.findChildren(recursive=False)
  58. for indtd, td in enumerate(tds):
  59. # 若有colspan 则补全同一行下一个位置
  60. if 'colspan' in td.attrs:
  61. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  62. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  63. if col<100 and len(td.get_text())<1000:
  64. td['colspan'] = 1
  65. for i in range(1, col, 1):
  66. td.insert_after(copy.copy(td))
  67. for indtr, tr in enumerate(trs):
  68. ths_tmp = tr.findChildren('th', recursive=False)
  69. #不补全含有表格的tr
  70. if len(tr.findChildren('table'))>0:
  71. continue
  72. if len(ths_tmp) > 0:
  73. ths_len = ths_len + len(ths_tmp)
  74. for th in ths_tmp:
  75. ths.append(th)
  76. trs_set.add(tr)
  77. # 遍历每行中的element
  78. tds = tr.findChildren(recursive=False)
  79. for indtd, td in enumerate(tds):
  80. # 若有rowspan 则补全下一行同样位置
  81. if 'rowspan' in td.attrs:
  82. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  83. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  84. td['rowspan'] = 1
  85. for i in range(1, row, 1):
  86. # 获取下一行的所有td, 在对应的位置插入
  87. if indtr+i<len(trs):
  88. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  89. if len(tds1) >= (indtd) and len(tds1)>0:
  90. if indtd > 0:
  91. tds1[indtd - 1].insert_after(copy.copy(td))
  92. else:
  93. tds1[0].insert_before(copy.copy(td))
  94. def getTable(tbody):
  95. #trs = tbody.findChildren('tr', recursive=False)
  96. trs = getTrs(tbody)
  97. inner_table = []
  98. for tr in trs:
  99. tr_line = []
  100. tds = tr.findChildren(['td','th'], recursive=False)
  101. for td in tds:
  102. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  103. #tr_line.append([td.get_text(),0])
  104. inner_table.append(tr_line)
  105. return inner_table
  106. #处理表格不对齐的问题
  107. def fixTable(inner_table,fix_value="~~"):
  108. maxWidth = 0
  109. for item in inner_table:
  110. if len(item)>maxWidth:
  111. maxWidth = len(item)
  112. for i in range(len(inner_table)):
  113. if len(inner_table[i])<maxWidth:
  114. for j in range(maxWidth-len(inner_table[i])):
  115. inner_table[i].append([fix_value,0])
  116. return inner_table
  117. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  118. height = len(inner_table)
  119. width = len(inner_table[0])
  120. for i in range(height):
  121. point = ""
  122. for j in range(width):
  123. if inner_table[i][j][0]==point and point!="":
  124. inner_table[i][j][0] = pad_row
  125. else:
  126. if inner_table[i][j][0] not in [pad_row,pad_col]:
  127. point = inner_table[i][j][0]
  128. for j in range(width):
  129. point = ""
  130. for i in range(height):
  131. if inner_table[i][j][0]==point and point!="":
  132. inner_table[i][j][0] = pad_col
  133. else:
  134. if inner_table[i][j][0] not in [pad_row,pad_col]:
  135. point = inner_table[i][j][0]
  136. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  137. height = len(inner_table)
  138. width = len(inner_table[0])
  139. for i in range(height):
  140. for j in range(width):
  141. if inner_table[i][j][0]==pad_row:
  142. inner_table[i][j][0] = inner_table[i][j-1][0]
  143. inner_table[i][j][1] = inner_table[i][j-1][1]
  144. if inner_table[i][j][0]==pad_col:
  145. inner_table[i][j][0] = inner_table[i-1][j][0]
  146. inner_table[i][j][1] = inner_table[i-1][j][1]
  147. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  148. '''
  149. @summary: 修复表头识别,将明显错误的进行修正
  150. '''
  151. def repairNeeded(line):
  152. first_1 = -1
  153. last_1 = -1
  154. first_0 = -1
  155. last_0 = -1
  156. count_1 = 0
  157. count_0 = 0
  158. for i in range(len(line)):
  159. if line[i][0]==fix_value:
  160. continue
  161. if line[i][1]==1:
  162. if first_1==-1:
  163. first_1 = i
  164. last_1 = i
  165. count_1 += 1
  166. if line[i][1]==0:
  167. if first_0 == -1:
  168. first_0 = i
  169. last_0 = i
  170. count_0 += 1
  171. if first_1 ==-1 or last_0 == -1:
  172. return False
  173. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  174. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  175. return True
  176. return False
  177. def getsimilarity(line,line1):
  178. same_count = 0
  179. for item,item1 in zip(line,line1):
  180. if item[1]==item1[1]:
  181. same_count += 1
  182. return same_count/len(line)
  183. def selfrepair(inner_table,index,dye_set,key_set):
  184. '''
  185. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  186. '''
  187. #print("B",inner_table[index])
  188. min_presure = 3
  189. list_dye = []
  190. first = None
  191. count = 0
  192. temp_set = set()
  193. _index = 0
  194. for item in inner_table[index]:
  195. if first is None:
  196. first = item[1]
  197. if item[0] not in temp_set:
  198. count += 1
  199. temp_set.add(item[0])
  200. else:
  201. if first == item[1]:
  202. if item[0] not in temp_set:
  203. temp_set.add(item[0])
  204. count += 1
  205. else:
  206. list_dye.append([first,count,_index])
  207. first = item[1]
  208. temp_set.add(item[0])
  209. count = 1
  210. _index += 1
  211. list_dye.append([first,count,_index])
  212. if len(list_dye)>1:
  213. begin = 0
  214. end = 0
  215. for i in range(len(list_dye)):
  216. end = list_dye[i][2]
  217. dye_flag = False
  218. #首尾要求压力减一
  219. if i==0:
  220. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  221. dye_flag = True
  222. dye_type = list_dye[i+1][0]
  223. elif i==len(list_dye)-1:
  224. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  225. dye_flag = True
  226. dye_type = list_dye[i-1][0]
  227. else:
  228. if list_dye[i][1]>1:
  229. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  230. dye_flag = True
  231. dye_type = list_dye[i+1][0]
  232. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  233. dye_flag = True
  234. dye_type = list_dye[i-1][0]
  235. else:
  236. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  237. dye_flag = True
  238. dye_type = list_dye[i+1][0]
  239. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  240. dye_flag = True
  241. dye_type = list_dye[i-1][0]
  242. if dye_flag:
  243. for h in range(begin,end):
  244. inner_table[index][h][1] = dye_type
  245. dye_set.add((inner_table[index][h][0],dye_type))
  246. key_set.add(inner_table[index][h][0])
  247. begin = end
  248. #print("E",inner_table[index])
  249. def otherrepair(inner_table,index,dye_set,key_set):
  250. list_provide_repair = []
  251. if index==0 and len(inner_table)>1:
  252. list_provide_repair.append(index+1)
  253. elif index==len(inner_table)-1:
  254. list_provide_repair.append(index-1)
  255. else:
  256. list_provide_repair.append(index+1)
  257. list_provide_repair.append(index-1)
  258. for provide_index in list_provide_repair:
  259. if not repairNeeded(inner_table[provide_index]):
  260. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  261. if same_prob>=0.8:
  262. for i in range(len(inner_table[provide_index])):
  263. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  264. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  265. key_set.add(inner_table[index][i][0])
  266. inner_table[index][i][1] = inner_table[provide_index][i][1]
  267. elif same_prob<=0.2:
  268. for i in range(len(inner_table[provide_index])):
  269. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  270. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  271. key_set.add(inner_table[index][i][0])
  272. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  273. len_dye_set = len(dye_set)
  274. height = len(inner_table)
  275. for i in range(height):
  276. if repairNeeded(inner_table[i]):
  277. selfrepair(inner_table,i,dye_set,key_set)
  278. #otherrepair(inner_table,i,dye_set,key_set)
  279. for h in range(len(inner_table)):
  280. for w in range(len(inner_table[0])):
  281. if inner_table[h][w][0] in key_set:
  282. for item in dye_set:
  283. if inner_table[h][w][0]==item[0]:
  284. inner_table[h][w][1] = item[1]
  285. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  286. if len(dye_set)!=len(key_set):
  287. for i in range(height):
  288. if repairNeeded(inner_table[i]):
  289. selfrepair(inner_table,i,dye_set,key_set)
  290. #otherrepair(inner_table,i,dye_set,key_set)
  291. return
  292. if len(dye_set)==len_dye_set:
  293. '''
  294. for i in range(height):
  295. if repairNeeded(inner_table[i]):
  296. otherrepair(inner_table,i,dye_set,key_set)
  297. '''
  298. return
  299. repairTable(inner_table, dye_set, key_set)
  300. def sliceTable(inner_table,fix_value="~~"):
  301. #进行分块
  302. height = len(inner_table)
  303. width = len(inner_table[0])
  304. head_list = []
  305. head_list.append(0)
  306. last_head = None
  307. last_is_same_value = False;
  308. for h in range(height):
  309. is_all_key = True#是否是全表头行
  310. is_all_value = True#是否是全属性值
  311. is_same_with_lastHead = True#和上一行的结构是否相同
  312. is_same_value=True#一行的item都一样
  313. #is_same_first_item = True#与上一行的第一项是否相同
  314. same_value = inner_table[h][0][0]
  315. for w in range(width):
  316. if last_head is not None:
  317. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  318. is_all_key = False
  319. if inner_table[h][w][0]==1:
  320. is_all_value = False
  321. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  322. is_same_with_lastHead = False
  323. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  324. is_same_value = False
  325. else:
  326. if re.search("\d+",same_value) is not None:
  327. is_same_value = False
  328. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  329. is_same_first_item = False
  330. last_head = h
  331. if last_is_same_value:
  332. last_is_same_value = is_same_value
  333. continue
  334. if is_same_value:
  335. head_list.append(h)
  336. last_is_same_value = is_same_value
  337. continue
  338. if not is_all_key:
  339. if not is_same_with_lastHead:
  340. head_list.append(h)
  341. head_list.append(height)
  342. return head_list
  343. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  344. set_item = set()
  345. height = len(inner_table)
  346. width = len(inner_table[0])
  347. for i in range(height):
  348. for j in range(width):
  349. item = inner_table[i][j][0]
  350. set_item.add(item)
  351. list_item = list(set_item)
  352. x = []
  353. for item in list_item:
  354. x.append(getPredictor("form").encode(item))
  355. predict_y = getPredictor("form").predict(np.array(x),type="item")
  356. _dict = dict()
  357. for item,values in zip(list_item,list(predict_y)):
  358. _dict[item] = values[1]
  359. # print("##",item,values)
  360. #print(_dict)
  361. for i in range(height):
  362. for j in range(width):
  363. item = inner_table[i][j][0]
  364. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  365. # print("=====")
  366. # for item in inner_table:
  367. # print(item)
  368. # print("======")
  369. repairTable(inner_table)
  370. head_list = sliceTable(inner_table)
  371. return inner_table,head_list
  372. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  373. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  374. predict_y = getPredictor("form").getModel("context").predict(data_x)
  375. for _position,_y in zip(data_position,predict_y):
  376. _w = _position[0]
  377. _h = _position[1]
  378. if _y[1]>prob_min:
  379. inner_table[_h][_w][1] = 1
  380. else:
  381. inner_table[_h][_w][1] = 0
  382. _item = inner_table[_h][_w][0]
  383. if re.search(pat_head,_item) is not None and len(item)<8:
  384. inner_table[_h][_w][1] = 1
  385. # print("=====")
  386. # for item in inner_table:
  387. # print(item)
  388. # print("======")
  389. repairTable(inner_table)
  390. head_list = sliceTable(inner_table)
  391. return inner_table,head_list
  392. #设置表头
  393. def setHead_inline(inner_table,prob_min=0.64):
  394. pad_row = "@@"
  395. pad_col = "##"
  396. removePadding(inner_table, pad_row, pad_col)
  397. pad_pattern = re.compile(pad_row+"|"+pad_col)
  398. height = len(inner_table)
  399. width = len(inner_table[0])
  400. head_list = []
  401. head_list.append(0)
  402. #行表头
  403. is_head_last = False
  404. for i in range(height):
  405. is_head = False
  406. is_long_value = False
  407. #判断是否是全padding值
  408. is_same_value = True
  409. same_value = inner_table[i][0][0]
  410. for j in range(width):
  411. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  412. is_same_value = False
  413. break
  414. #predict is head or not with model
  415. temp_item = ""
  416. for j in range(width):
  417. temp_item += inner_table[i][j][0]+"|"
  418. temp_item = re.sub(pad_pattern,"",temp_item)
  419. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  420. if form_prob is not None:
  421. if form_prob[0][1]>prob_min:
  422. is_head = True
  423. else:
  424. is_head = False
  425. #print(temp_item,form_prob)
  426. if len(inner_table[i][0][0])>40:
  427. is_long_value = True
  428. if is_head or is_long_value or is_same_value:
  429. #不把连续表头分开
  430. if not is_head_last:
  431. head_list.append(i)
  432. if is_long_value or is_same_value:
  433. head_list.append(i+1)
  434. if is_head:
  435. for j in range(width):
  436. inner_table[i][j][1] = 1
  437. is_head_last = is_head
  438. head_list.append(height)
  439. #列表头
  440. for i in range(len(head_list)-1):
  441. head_begin = head_list[i]
  442. head_end = head_list[i+1]
  443. #最后一列不设置为列表头
  444. for i in range(width-1):
  445. is_head = False
  446. #predict is head or not with model
  447. temp_item = ""
  448. for j in range(head_begin,head_end):
  449. temp_item += inner_table[j][i][0]+"|"
  450. temp_item = re.sub(pad_pattern,"",temp_item)
  451. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  452. if form_prob is not None:
  453. if form_prob[0][1]>prob_min:
  454. is_head = True
  455. else:
  456. is_head = False
  457. if is_head:
  458. for j in range(head_begin,head_end):
  459. inner_table[j][i][1] = 2
  460. addPadding(inner_table, pad_row, pad_col)
  461. return inner_table,head_list
  462. #设置表头
  463. def setHead_withRule(inner_table,pattern,pat_value,count):
  464. height = len(inner_table)
  465. width = len(inner_table[0])
  466. head_list = []
  467. head_list.append(0)
  468. #行表头
  469. is_head_last = False
  470. for i in range(height):
  471. set_match = set()
  472. is_head = False
  473. is_long_value = False
  474. is_same_value = True
  475. same_value = inner_table[i][0][0]
  476. for j in range(width):
  477. if inner_table[i][j][0]!=same_value:
  478. is_same_value = False
  479. break
  480. for j in range(width):
  481. if re.search(pat_value,inner_table[i][j][0]) is not None:
  482. is_head = False
  483. break
  484. str_find = re.findall(pattern,inner_table[i][j][0])
  485. if len(str_find)>0:
  486. set_match.add(inner_table[i][j][0])
  487. if len(set_match)>=count:
  488. is_head = True
  489. if len(inner_table[i][0][0])>40:
  490. is_long_value = True
  491. if is_head or is_long_value or is_same_value:
  492. if not is_head_last:
  493. head_list.append(i)
  494. if is_head:
  495. for j in range(width):
  496. inner_table[i][j][1] = 1
  497. is_head_last = is_head
  498. head_list.append(height)
  499. #列表头
  500. for i in range(len(head_list)-1):
  501. head_begin = head_list[i]
  502. head_end = head_list[i+1]
  503. #最后一列不设置为列表头
  504. for i in range(width-1):
  505. set_match = set()
  506. is_head = False
  507. for j in range(head_begin,head_end):
  508. if re.search(pat_value,inner_table[j][i][0]) is not None:
  509. is_head = False
  510. break
  511. str_find = re.findall(pattern,inner_table[j][i][0])
  512. if len(str_find)>0:
  513. set_match.add(inner_table[j][i][0])
  514. if len(set_match)>=count:
  515. is_head = True
  516. if is_head:
  517. for j in range(head_begin,head_end):
  518. inner_table[j][i][1] = 2
  519. return inner_table,head_list
  520. #取得表格的处理方向
  521. def getDirect(inner_table,begin,end):
  522. '''
  523. column_head = set()
  524. row_head = set()
  525. widths = len(inner_table[0])
  526. for height in range(begin,end):
  527. for width in range(widths):
  528. if inner_table[height][width][1] ==1:
  529. row_head.add(height)
  530. if inner_table[height][width][1] ==2:
  531. column_head.add(width)
  532. company_pattern = re.compile("公司")
  533. if 0 in column_head and begin not in row_head:
  534. return "column"
  535. if 0 in column_head and begin in row_head:
  536. for height in range(begin,end):
  537. count = 0
  538. count_flag = True
  539. for width_index in range(width):
  540. if inner_table[height][width_index][1]==0:
  541. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  542. count += 1
  543. else:
  544. count_flag = False
  545. if count_flag and count>=2:
  546. return "column"
  547. return "row"
  548. '''
  549. count_row_keys = 0
  550. count_column_keys = 0
  551. width = len(inner_table[0])
  552. if begin<end:
  553. for w in range(len(inner_table[begin])):
  554. if inner_table[begin][w][1]!=0:
  555. count_row_keys += 1
  556. for h in range(begin,end):
  557. if inner_table[h][0][1]!=0:
  558. count_column_keys += 1
  559. company_pattern = re.compile("有限(责任)?公司")
  560. for height in range(begin,end):
  561. count_set = set()
  562. count_flag = True
  563. for width_index in range(width):
  564. if inner_table[height][width_index][1]==0:
  565. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  566. count_set.add(inner_table[height][width_index][0])
  567. else:
  568. count_flag = False
  569. if count_flag and len(count_set)>=2:
  570. return "column"
  571. if count_column_keys>count_row_keys:
  572. return "column"
  573. return "row"
  574. #根据表格处理方向生成句子,
  575. def getTableText(inner_table,head_list,key_direct=False):
  576. # packPattern = "(标包|[标包][号段名])"
  577. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  578. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标|推荐意见)" # 2020/11/23 大网站规则,添加序号为排序
  579. entityPattern = "((候选|([中投]标|报价))(单位|公司|人|供应商))"
  580. moneyPattern = "([中投]标|报价)(金额|价)"
  581. height = len(inner_table)
  582. width = len(inner_table[0])
  583. text = ""
  584. for head_i in range(len(head_list)-1):
  585. head_begin = head_list[head_i]
  586. head_end = head_list[head_i+1]
  587. direct = getDirect(inner_table, head_begin, head_end)
  588. #若只有一行,则直接按行读取
  589. if head_end-head_begin==1:
  590. text_line = ""
  591. for i in range(head_begin,head_end):
  592. for w in range(len(inner_table[i])):
  593. if inner_table[i][w][1]==1:
  594. _punctuation = ":"
  595. else:
  596. _punctuation = ","
  597. if w>0:
  598. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  599. text_line += inner_table[i][w][0]+_punctuation
  600. else:
  601. text_line += inner_table[i][w][0]+_punctuation
  602. text_line = text_line+"。" if text_line!="" else text_line
  603. text += text_line
  604. else:
  605. #构建一个共现矩阵
  606. table_occurence = []
  607. for i in range(head_begin,head_end):
  608. line_oc = []
  609. for j in range(width):
  610. cell = inner_table[i][j]
  611. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0})
  612. table_occurence.append(line_oc)
  613. occu_height = len(table_occurence)
  614. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  615. #为每个属性值寻找表头
  616. for i in range(occu_height):
  617. for j in range(occu_width):
  618. cell = table_occurence[i][j]
  619. #是属性值
  620. if cell["type"]==0 and cell["text"]!="":
  621. left_head = ""
  622. top_head = ""
  623. find_flag = False
  624. temp_head = ""
  625. for loop_i in range(1,i+1):
  626. if not key_direct:
  627. key_values = [1,2]
  628. else:
  629. key_values = [1]
  630. if table_occurence[i-loop_i][j]["type"] in key_values:
  631. if find_flag:
  632. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  633. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  634. else:
  635. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  636. find_flag = True
  637. temp_head = table_occurence[i-loop_i][j]["text"]
  638. table_occurence[i-loop_i][j]["occu_count"] += 1
  639. else:
  640. #找到表头后遇到属性值就返回
  641. if find_flag:
  642. break
  643. cell["top_head"] += top_head
  644. find_flag = False
  645. temp_head = ""
  646. for loop_j in range(1,j+1):
  647. if not key_direct:
  648. key_values = [1,2]
  649. else:
  650. key_values = [2]
  651. if table_occurence[i][j-loop_j]["type"] in key_values:
  652. if find_flag:
  653. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  654. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  655. else:
  656. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  657. find_flag = True
  658. temp_head = table_occurence[i][j-loop_j]["text"]
  659. table_occurence[i][j-loop_j]["occu_count"] += 1
  660. else:
  661. if find_flag:
  662. break
  663. cell["left_head"] += left_head
  664. if direct=="row":
  665. for i in range(occu_height):
  666. pack_text = ""
  667. rank_text = ""
  668. entity_text = ""
  669. text_line = ""
  670. money_text = ""
  671. #在同一句话中重复的可以去掉
  672. text_set = set()
  673. for j in range(width):
  674. cell = table_occurence[i][j]
  675. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  676. cell = table_occurence[i][j]
  677. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  678. head += cell["left_head"]
  679. if str(head+cell["text"]) in text_set:
  680. continue
  681. if re.search(packPattern,head) is not None:
  682. pack_text += head+cell["text"]+","
  683. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  684. #排名替换为同一种表达
  685. print("====",head)
  686. rank_text += head+cell["text"]+","
  687. #print(rank_text)
  688. elif re.search(entityPattern,head) is not None:
  689. entity_text += head+cell["text"]+","
  690. #print(entity_text)
  691. else:
  692. if re.search(moneyPattern,head) is not None and entity_text!="":
  693. money_text += head+cell["text"]+","
  694. else:
  695. text_line += head+cell["text"]+","
  696. text_set.add(str(head+cell["text"]))
  697. text += pack_text+rank_text+entity_text+money_text+text_line
  698. text = text[:-1]+"。" if len(text)>0 else text
  699. else:
  700. for j in range(occu_width):
  701. pack_text = ""
  702. rank_text = ""
  703. entity_text = ""
  704. text_line = ""
  705. text_set = set()
  706. for i in range(occu_height):
  707. cell = table_occurence[i][j]
  708. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  709. cell = table_occurence[i][j]
  710. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  711. head += cell["top_head"]
  712. if str(head+cell["text"]) in text_set:
  713. continue
  714. if re.search(packPattern,head) is not None:
  715. pack_text += head+cell["text"]+","
  716. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  717. #排名替换为同一种表达
  718. rank_text += head+cell["text"]+","
  719. #print(rank_text)
  720. elif re.search(entityPattern,head) is not None:
  721. entity_text += head+cell["text"]+","
  722. #print(entity_text)
  723. else:
  724. text_line += head+cell["text"]+","
  725. text_set.add(str(head+cell["text"]))
  726. text += pack_text+rank_text+entity_text+text_line
  727. text = text[:-1]+"。" if len(text)>0 else text
  728. # if direct=="row":
  729. # for i in range(head_begin,head_end):
  730. # pack_text = ""
  731. # rank_text = ""
  732. # entity_text = ""
  733. # text_line = ""
  734. # #在同一句话中重复的可以去掉
  735. # text_set = set()
  736. # for j in range(width):
  737. # cell = inner_table[i][j]
  738. # #是属性值
  739. # if cell[1]==0 and cell[0]!="":
  740. # head = ""
  741. #
  742. # find_flag = False
  743. # temp_head = ""
  744. # for loop_i in range(0,i+1-head_begin):
  745. # if not key_direct:
  746. # key_values = [1,2]
  747. # else:
  748. # key_values = [1]
  749. # if inner_table[i-loop_i][j][1] in key_values:
  750. # if find_flag:
  751. # if inner_table[i-loop_i][j][0]!=temp_head:
  752. # head = inner_table[i-loop_i][j][0]+":"+head
  753. # else:
  754. # head = inner_table[i-loop_i][j][0]+":"+head
  755. # find_flag = True
  756. # temp_head = inner_table[i-loop_i][j][0]
  757. # else:
  758. # #找到表头后遇到属性值就返回
  759. # if find_flag:
  760. # break
  761. #
  762. # find_flag = False
  763. # temp_head = ""
  764. #
  765. #
  766. #
  767. # for loop_j in range(1,j+1):
  768. # if not key_direct:
  769. # key_values = [1,2]
  770. # else:
  771. # key_values = [2]
  772. # if inner_table[i][j-loop_j][1] in key_values:
  773. # if find_flag:
  774. # if inner_table[i][j-loop_j][0]!=temp_head:
  775. # head = inner_table[i][j-loop_j][0]+":"+head
  776. # else:
  777. # head = inner_table[i][j-loop_j][0]+":"+head
  778. # find_flag = True
  779. # temp_head = inner_table[i][j-loop_j][0]
  780. # else:
  781. # if find_flag:
  782. # break
  783. #
  784. # if str(head+inner_table[i][j][0]) in text_set:
  785. # continue
  786. # if re.search(packPattern,head) is not None:
  787. # pack_text += head+inner_table[i][j][0]+","
  788. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  789. # #排名替换为同一种表达
  790. # rank_text += head+inner_table[i][j][0]+","
  791. # #print(rank_text)
  792. # elif re.search(entityPattern,head) is not None:
  793. # entity_text += head+inner_table[i][j][0]+","
  794. # #print(entity_text)
  795. # else:
  796. # text_line += head+inner_table[i][j][0]+","
  797. # text_set.add(str(head+inner_table[i][j][0]))
  798. # text += pack_text+rank_text+entity_text+text_line
  799. # text = text[:-1]+"。" if len(text)>0 else text
  800. # else:
  801. # for j in range(width):
  802. #
  803. # rank_text = ""
  804. # entity_text = ""
  805. # text_line = ""
  806. # text_set = set()
  807. # for i in range(head_begin,head_end):
  808. # cell = inner_table[i][j]
  809. # #是属性值
  810. # if cell[1]==0 and cell[0]!="":
  811. # find_flag = False
  812. # head = ""
  813. # temp_head = ""
  814. #
  815. # for loop_j in range(1,j+1):
  816. # if not key_direct:
  817. # key_values = [1,2]
  818. # else:
  819. # key_values = [2]
  820. # if inner_table[i][j-loop_j][1] in key_values:
  821. # if find_flag:
  822. # if inner_table[i][j-loop_j][0]!=temp_head:
  823. # head = inner_table[i][j-loop_j][0]+":"+head
  824. # else:
  825. # head = inner_table[i][j-loop_j][0]+":"+head
  826. # find_flag = True
  827. # temp_head = inner_table[i][j-loop_j][0]
  828. # else:
  829. # if find_flag:
  830. # break
  831. # find_flag = False
  832. # temp_head = ""
  833. # for loop_i in range(0,i+1-head_begin):
  834. # if not key_direct:
  835. # key_values = [1,2]
  836. # else:
  837. # key_values = [1]
  838. # if inner_table[i-loop_i][j][1] in key_values:
  839. # if find_flag:
  840. # if inner_table[i-loop_i][j][0]!=temp_head:
  841. # head = inner_table[i-loop_i][j][0]+":"+head
  842. # else:
  843. # head = inner_table[i-loop_i][j][0]+":"+head
  844. # find_flag = True
  845. # temp_head = inner_table[i-loop_i][j][0]
  846. # else:
  847. # if find_flag:
  848. # break
  849. # if str(head+inner_table[i][j][0]) in text_set:
  850. # continue
  851. # if re.search(rankPattern,head) is not None:
  852. # rank_text += head+inner_table[i][j][0]+","
  853. # #print(rank_text)
  854. # elif re.search(entityPattern,head) is not None:
  855. # entity_text += head+inner_table[i][j][0]+","
  856. # #print(entity_text)
  857. # else:
  858. # text_line += head+inner_table[i][j][0]+","
  859. # text_set.add(str(head+inner_table[i][j][0]))
  860. # text += rank_text+entity_text+text_line
  861. # text = text[:-1]+"。" if len(text)>0 else text
  862. return text
  863. def removeFix(inner_table,fix_value="~~"):
  864. height = len(inner_table)
  865. width = len(inner_table[0])
  866. for h in range(height):
  867. for w in range(width):
  868. if inner_table[h][w][0]==fix_value:
  869. inner_table[h][w][0] = ""
  870. def trunTable(tbody):
  871. fixSpan(tbody)
  872. inner_table = getTable(tbody)
  873. inner_table = fixTable(inner_table)
  874. if len(inner_table)>0 and len(inner_table[0])>0:
  875. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  876. #inner_table,head_list = setHead_inline(inner_table)
  877. inner_table,head_list = setHead_initem(inner_table,pat_head)
  878. # inner_table,head_list = setHead_incontext(inner_table,pat_head)
  879. # print(inner_table)
  880. # for begin in range(len(head_list[:-1])):
  881. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  882. # print(item)
  883. # print("====")
  884. removeFix(inner_table)
  885. # print("----")
  886. # print(head_list)
  887. # for item in inner_table:
  888. # print(item)
  889. tbody.string = getTableText(inner_table,head_list)
  890. #print(tbody.string)
  891. tbody.name = "turntable"
  892. return inner_table
  893. return None
  894. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  895. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  896. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  897. list_innerTable = []
  898. tbodies = soup.find_all('table')
  899. # 遍历表格中的每个tbody
  900. #逆序处理嵌套表格
  901. for tbody_index in range(1,len(tbodies)+1):
  902. tbody = tbodies[len(tbodies)-tbody_index]
  903. inner_table = trunTable(tbody)
  904. list_innerTable.append(inner_table)
  905. tbodies = soup.find_all('tbody')
  906. # 遍历表格中的每个tbody
  907. #逆序处理嵌套表格
  908. for tbody_index in range(1,len(tbodies)+1):
  909. tbody = tbodies[len(tbodies)-tbody_index]
  910. inner_table = trunTable(tbody)
  911. list_innerTable.append(inner_table)
  912. return soup
  913. # return list_innerTable
  914. #数据清洗
  915. def segment(soup,final=True):
  916. # print("==")
  917. # print(soup)
  918. # print("====")
  919. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  920. subspaceList = ["td",'a',"span","p"]
  921. if soup.name in subspaceList:
  922. #判断有值叶子节点数
  923. _count = 0
  924. for child in soup.find_all(recursive=True):
  925. if child.get_text().strip()!="" and len(child.find_all())==0:
  926. _count += 1
  927. if _count<=1:
  928. text = soup.get_text()
  929. # 2020/11/24 大网站规则添加
  930. if 'title' in soup.attrs:
  931. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  932. text = soup.attrs['title']
  933. _list = []
  934. for x in re.split("\s+",text):
  935. if x.strip()!="":
  936. _list.append(len(x))
  937. if len(_list)>0:
  938. _minLength = min(_list)
  939. if _minLength>2:
  940. _substr = ","
  941. else:
  942. _substr = ""
  943. else:
  944. _substr = ""
  945. text = text.replace("\r\n",",").replace("\n",",")
  946. text = re.sub("\s+",_substr,text)
  947. # text = re.sub("\s+","##space##",text)
  948. return text
  949. segList = ["title"]
  950. commaList = ["div","br","td","p"]
  951. #commaList = []
  952. spaceList = ["span"]
  953. tbodies = soup.find_all('tbody')
  954. if len(tbodies) == 0:
  955. tbodies = soup.find_all('table')
  956. # 递归遍历所有节点,插入符号
  957. for child in soup.find_all(recursive=True):
  958. if child.name in segList:
  959. child.insert_after("。")
  960. if child.name in commaList:
  961. child.insert_after(",")
  962. # if child.name in subspaceList:
  963. # child.insert_before("#subs"+str(child.name)+"#")
  964. # child.insert_after("#sube"+str(child.name)+"#")
  965. # if child.name in spaceList:
  966. # child.insert_after(" ")
  967. text = str(soup.get_text())
  968. #替换英文冒号为中文冒号
  969. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  970. #替换为中文逗号
  971. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  972. #替换为中文分号
  973. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  974. #替换"""为"“",否则导入deepdive出错
  975. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  976. text = re.sub("\s{4,}",",",text)
  977. #替换标点
  978. #替换连续的标点
  979. if final:
  980. text = re.sub("##space##"," ",text)
  981. punc_pattern = "(?P<del>[。,;::,\s]+)"
  982. list_punc = re.findall(punc_pattern,text)
  983. list_punc.sort(key=lambda x:len(x),reverse=True)
  984. for punc_del in list_punc:
  985. if len(punc_del)>1:
  986. if len(punc_del.strip())>0:
  987. if ":" in punc_del.strip():
  988. text = re.sub(punc_del,":",text)
  989. else:
  990. text = re.sub(punc_del,punc_del.strip()[-1],text)
  991. else:
  992. text = re.sub(punc_del,"",text)
  993. #将连续的中文句号替换为一个
  994. text_split = text.split("。")
  995. text_split = [x for x in text_split if len(x)>0]
  996. text = "。".join(text_split)
  997. # #删除标签中的所有空格
  998. # for subs in subspaceList:
  999. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  1000. # while(True):
  1001. # oneMatch = re.search(re.compile(patten),text)
  1002. # if oneMatch is not None:
  1003. # _match = oneMatch.group(1)
  1004. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  1005. # else:
  1006. # break
  1007. # text过大报错
  1008. LOOP_LEN = 10000
  1009. LOOP_BEGIN = 0
  1010. _text = ""
  1011. if len(text)<10000000:
  1012. while(LOOP_BEGIN<len(text)):
  1013. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  1014. LOOP_BEGIN += LOOP_LEN
  1015. text = _text
  1016. return text
  1017. '''
  1018. #数据清洗
  1019. def segment(soup):
  1020. segList = ["title"]
  1021. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1022. spaceList = ["span"]
  1023. tbodies = soup.find_all('tbody')
  1024. if len(tbodies) == 0:
  1025. tbodies = soup.find_all('table')
  1026. # 递归遍历所有节点,插入符号
  1027. for child in soup.find_all(recursive=True):
  1028. if child.name == 'br':
  1029. child.insert_before(',')
  1030. child_text = re.sub('\s', '', child.get_text())
  1031. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1032. continue
  1033. if child.name in segList:
  1034. child.insert_after("。")
  1035. if child.name in commaList:
  1036. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1037. child.insert_after(",")
  1038. elif len(child_text) >=50:
  1039. child.insert_after("。")
  1040. #if child.name in spaceList:
  1041. #child.insert_after(" ")
  1042. text = str(soup.get_text())
  1043. text = re.sub("\s{5,}",",",text)
  1044. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1045. #替换"""为"“",否则导入deepdive出错
  1046. text = text.replace('"',"“")
  1047. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1048. #删除所有空格
  1049. text = re.sub("\s+","#nbsp#",text)
  1050. text_list = text.split('#nbsp#')
  1051. new_text = ''
  1052. for i in range(len(text_list)-1):
  1053. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1054. new_text += text_list[i]
  1055. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1056. new_text += text_list[i] + '。'
  1057. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1058. new_text += text_list[i] + ';'
  1059. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1060. new_text += text_list[i] + ' '
  1061. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1062. new_text += text_list[i]
  1063. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1064. new_text += text_list[i] + ','
  1065. else:
  1066. new_text += text_list[i]
  1067. new_text += text_list[-1]
  1068. text = new_text
  1069. #替换英文冒号为中文冒号
  1070. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1071. #替换为中文逗号
  1072. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1073. #替换为中文分号
  1074. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1075. #替换标点
  1076. while(True):
  1077. #替换连续的标点
  1078. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1079. if punc is not None:
  1080. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1081. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1082. if punc is not None:
  1083. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1084. else:
  1085. #替换标点之后的空格
  1086. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1087. if punc is not None:
  1088. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1089. else:
  1090. break
  1091. #将连续的中文句号替换为一个
  1092. text_split = text.split("。")
  1093. text_split = [x for x in text_split if len(x)>0]
  1094. text = "。".join(text_split)
  1095. #替换中文括号为英文括号
  1096. text = re.sub("(","(",text)
  1097. text = re.sub(")",")",text)
  1098. return text
  1099. '''
  1100. #连续实体合并(弃用)
  1101. def union_ner(list_ner):
  1102. result_list = []
  1103. union_index = []
  1104. union_index_set = set()
  1105. for i in range(len(list_ner)-1):
  1106. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1107. if list_ner[i][1]-list_ner[i+1][0]==1:
  1108. union_index_set.add(i)
  1109. union_index_set.add(i+1)
  1110. union_index.append((i,i+1))
  1111. for i in range(len(list_ner)):
  1112. if i not in union_index_set:
  1113. result_list.append(list_ner[i])
  1114. for item in union_index:
  1115. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1116. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1117. return result_list
  1118. # def get_preprocessed(articles,useselffool=False):
  1119. # '''
  1120. # @summary:预处理步骤,NLP处理、实体识别
  1121. # @param:
  1122. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1123. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1124. # '''
  1125. # list_articles = []
  1126. # list_sentences = []
  1127. # list_entitys = []
  1128. # cost_time = dict()
  1129. # for article in articles:
  1130. # list_sentences_temp = []
  1131. # list_entitys_temp = []
  1132. # doc_id = article[0]
  1133. # sourceContent = article[1]
  1134. # _send_doc_id = article[3]
  1135. # _title = article[4]
  1136. # #表格处理
  1137. # key_preprocess = "tableToText"
  1138. # start_time = time.time()
  1139. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1140. #
  1141. # # log(article_processed)
  1142. #
  1143. # if key_preprocess not in cost_time:
  1144. # cost_time[key_preprocess] = 0
  1145. # cost_time[key_preprocess] += time.time()-start_time
  1146. #
  1147. # #article_processed = article[1]
  1148. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1149. # #nlp处理
  1150. # if article_processed is not None and len(article_processed)!=0:
  1151. # split_patten = "。"
  1152. # sentences = []
  1153. # _begin = 0
  1154. # for _iter in re.finditer(split_patten,article_processed):
  1155. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1156. # _begin = _iter.span()[1]
  1157. # sentences.append(article_processed[_begin:])
  1158. #
  1159. # lemmas = []
  1160. # doc_offsets = []
  1161. # dep_types = []
  1162. # dep_tokens = []
  1163. #
  1164. # time1 = time.time()
  1165. #
  1166. # '''
  1167. # tokens_all = fool.cut(sentences)
  1168. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1169. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1170. # ner_entitys_all = fool.ner(sentences)
  1171. # '''
  1172. # #限流执行
  1173. # key_nerToken = "nerToken"
  1174. # start_time = time.time()
  1175. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1176. # if key_nerToken not in cost_time:
  1177. # cost_time[key_nerToken] = 0
  1178. # cost_time[key_nerToken] += time.time()-start_time
  1179. #
  1180. #
  1181. # for sentence_index in range(len(sentences)):
  1182. #
  1183. #
  1184. #
  1185. # list_sentence_entitys = []
  1186. # sentence_text = sentences[sentence_index]
  1187. # tokens = tokens_all[sentence_index]
  1188. #
  1189. # list_tokenbegin = []
  1190. # begin = 0
  1191. # for i in range(0,len(tokens)):
  1192. # list_tokenbegin.append(begin)
  1193. # begin += len(str(tokens[i]))
  1194. # list_tokenbegin.append(begin+1)
  1195. # #pos_tag = pos_all[sentence_index]
  1196. # pos_tag = ""
  1197. #
  1198. # ner_entitys = ner_entitys_all[sentence_index]
  1199. #
  1200. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1201. #
  1202. # #识别package
  1203. #
  1204. #
  1205. # #识别实体
  1206. # for ner_entity in ner_entitys:
  1207. # begin_index_temp = ner_entity[0]
  1208. # end_index_temp = ner_entity[1]
  1209. # entity_type = ner_entity[2]
  1210. # entity_text = ner_entity[3]
  1211. #
  1212. # for j in range(len(list_tokenbegin)):
  1213. # if list_tokenbegin[j]==begin_index_temp:
  1214. # begin_index = j
  1215. # break
  1216. # elif list_tokenbegin[j]>begin_index_temp:
  1217. # begin_index = j-1
  1218. # break
  1219. # begin_index_temp += len(str(entity_text))
  1220. # for j in range(begin_index,len(list_tokenbegin)):
  1221. # if list_tokenbegin[j]>=begin_index_temp:
  1222. # end_index = j-1
  1223. # break
  1224. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1225. #
  1226. # #去掉标点符号
  1227. # entity_text = re.sub("[,,。:]","",entity_text)
  1228. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1229. #
  1230. #
  1231. # #使用正则识别金额
  1232. # entity_type = "money"
  1233. #
  1234. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1235. #
  1236. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1237. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1238. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1239. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1240. #
  1241. # set_begin = set()
  1242. # for pattern_key in list_money_pattern.keys():
  1243. # pattern = re.compile(list_money_pattern[pattern_key])
  1244. # all_match = re.findall(pattern, sentence_text)
  1245. # index = 0
  1246. # for i in range(len(all_match)):
  1247. # if len(all_match[i][0])>0:
  1248. # # print("===",all_match[i])
  1249. # #print(all_match[i][0])
  1250. # unit = ""
  1251. # entity_text = all_match[i][3]
  1252. # if pattern_key in ["key_word","front_m"]:
  1253. # unit = all_match[i][1]
  1254. # else:
  1255. # unit = all_match[i][4]
  1256. # if entity_text.find("元")>=0:
  1257. # unit = ""
  1258. #
  1259. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1260. #
  1261. # begin_index_temp = index
  1262. # for j in range(len(list_tokenbegin)):
  1263. # if list_tokenbegin[j]==index:
  1264. # begin_index = j
  1265. # break
  1266. # elif list_tokenbegin[j]>index:
  1267. # begin_index = j-1
  1268. # break
  1269. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1270. # end_index_temp = index
  1271. # #index += len(str(all_match[i][0]))
  1272. # for j in range(begin_index,len(list_tokenbegin)):
  1273. # if list_tokenbegin[j]>=index:
  1274. # end_index = j-1
  1275. # break
  1276. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1277. #
  1278. #
  1279. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1280. # if len(unit)>0:
  1281. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1282. # else:
  1283. # entity_text = str(getUnifyMoney(entity_text))
  1284. #
  1285. # _exists = False
  1286. # for item in list_sentence_entitys:
  1287. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1288. # _exists = True
  1289. # if not _exists:
  1290. # if float(entity_text)>10:
  1291. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1292. #
  1293. # else:
  1294. # index += 1
  1295. #
  1296. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1297. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1298. # list_sentences.append(list_sentences_temp)
  1299. # list_entitys.append(list_entitys_temp)
  1300. # return list_articles,list_sentences,list_entitys,cost_time
  1301. def get_preprocessed(articles,useselffool=False):
  1302. '''
  1303. @summary:预处理步骤,NLP处理、实体识别
  1304. @param:
  1305. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1306. @return:list of articles,list of each article of sentences,list of each article of entitys
  1307. '''
  1308. cost_time = dict()
  1309. list_articles = get_preprocessed_article(articles,cost_time)
  1310. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1311. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1312. calibrateEnterprise(list_articles,list_sentences,list_entitys)
  1313. return list_articles,list_sentences,list_entitys,cost_time
  1314. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1315. '''
  1316. :param articles: 待处理的article source html
  1317. :param useselffool: 是否使用selffool
  1318. :return: list_articles
  1319. '''
  1320. list_articles = []
  1321. for article in articles:
  1322. doc_id = article[0]
  1323. sourceContent = article[1]
  1324. _send_doc_id = article[3]
  1325. _title = article[4]
  1326. #表格处理
  1327. key_preprocess = "tableToText"
  1328. start_time = time.time()
  1329. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1330. # log(article_processed)
  1331. if key_preprocess not in cost_time:
  1332. cost_time[key_preprocess] = 0
  1333. cost_time[key_preprocess] += time.time()-start_time
  1334. #article_processed = article[1]
  1335. _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title)
  1336. _article.fingerprint = getFingerprint(_title+sourceContent)
  1337. list_articles.append(_article)
  1338. return list_articles
  1339. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1340. '''
  1341. :param list_articles: 经过预处理的article text
  1342. :return: list_sentences
  1343. '''
  1344. list_sentences = []
  1345. for article in list_articles:
  1346. list_sentences_temp = []
  1347. list_entitys_temp = []
  1348. doc_id = article.id
  1349. _send_doc_id = article.doc_id
  1350. _title = article.title
  1351. #表格处理
  1352. key_preprocess = "tableToText"
  1353. start_time = time.time()
  1354. article_processed = article.content
  1355. if key_preprocess not in cost_time:
  1356. cost_time[key_preprocess] = 0
  1357. cost_time[key_preprocess] += time.time()-start_time
  1358. #nlp处理
  1359. if article_processed is not None and len(article_processed)!=0:
  1360. split_patten = "。"
  1361. sentences = []
  1362. _begin = 0
  1363. sentences_set = set()
  1364. for _iter in re.finditer(split_patten,article_processed):
  1365. _sen = article_processed[_begin:_iter.span()[1]]
  1366. if len(_sen)>0 and _sen not in sentences_set:
  1367. sentences.append(_sen)
  1368. sentences_set.add(_sen)
  1369. _begin = _iter.span()[1]
  1370. _sen = article_processed[_begin:]
  1371. if len(_sen)>0 and _sen not in sentences_set:
  1372. sentences.append(_sen)
  1373. sentences_set.add(_sen)
  1374. article.content = "".join(sentences)
  1375. # sentences.append(article_processed[_begin:])
  1376. lemmas = []
  1377. doc_offsets = []
  1378. dep_types = []
  1379. dep_tokens = []
  1380. time1 = time.time()
  1381. '''
  1382. tokens_all = fool.cut(sentences)
  1383. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1384. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1385. ner_entitys_all = fool.ner(sentences)
  1386. '''
  1387. #限流执行
  1388. key_nerToken = "nerToken"
  1389. start_time = time.time()
  1390. tokens_all = getTokens(sentences,useselffool=useselffool)
  1391. if key_nerToken not in cost_time:
  1392. cost_time[key_nerToken] = 0
  1393. cost_time[key_nerToken] += time.time()-start_time
  1394. for sentence_index in range(len(sentences)):
  1395. sentence_text = sentences[sentence_index]
  1396. tokens = tokens_all[sentence_index]
  1397. #pos_tag = pos_all[sentence_index]
  1398. pos_tag = ""
  1399. ner_entitys = ""
  1400. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1401. if len(list_sentences_temp)==0:
  1402. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1403. list_sentences.append(list_sentences_temp)
  1404. return list_sentences
  1405. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1406. '''
  1407. :param list_sentences:分局情况
  1408. :param cost_time:
  1409. :return: list_entitys
  1410. '''
  1411. list_entitys = []
  1412. for list_sentence in list_sentences:
  1413. sentences = []
  1414. list_entitys_temp = []
  1415. for _sentence in list_sentence:
  1416. sentences.append(_sentence.sentence_text)
  1417. lemmas = []
  1418. doc_offsets = []
  1419. dep_types = []
  1420. dep_tokens = []
  1421. time1 = time.time()
  1422. '''
  1423. tokens_all = fool.cut(sentences)
  1424. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1425. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1426. ner_entitys_all = fool.ner(sentences)
  1427. '''
  1428. #限流执行
  1429. key_nerToken = "nerToken"
  1430. start_time = time.time()
  1431. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1432. if key_nerToken not in cost_time:
  1433. cost_time[key_nerToken] = 0
  1434. cost_time[key_nerToken] += time.time()-start_time
  1435. for sentence_index in range(len(list_sentence)):
  1436. list_sentence_entitys = []
  1437. sentence_text = list_sentence[sentence_index].sentence_text
  1438. tokens = list_sentence[sentence_index].tokens
  1439. doc_id = list_sentence[sentence_index].doc_id
  1440. list_tokenbegin = []
  1441. begin = 0
  1442. for i in range(0,len(tokens)):
  1443. list_tokenbegin.append(begin)
  1444. begin += len(str(tokens[i]))
  1445. list_tokenbegin.append(begin+1)
  1446. #pos_tag = pos_all[sentence_index]
  1447. pos_tag = ""
  1448. ner_entitys = ner_entitys_all[sentence_index]
  1449. #识别package
  1450. #识别实体
  1451. for ner_entity in ner_entitys:
  1452. begin_index_temp = ner_entity[0]
  1453. end_index_temp = ner_entity[1]
  1454. entity_type = ner_entity[2]
  1455. entity_text = ner_entity[3]
  1456. for j in range(len(list_tokenbegin)):
  1457. if list_tokenbegin[j]==begin_index_temp:
  1458. begin_index = j
  1459. break
  1460. elif list_tokenbegin[j]>begin_index_temp:
  1461. begin_index = j-1
  1462. break
  1463. begin_index_temp += len(str(entity_text))
  1464. for j in range(begin_index,len(list_tokenbegin)):
  1465. if list_tokenbegin[j]>=begin_index_temp:
  1466. end_index = j-1
  1467. break
  1468. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1469. #去掉标点符号
  1470. entity_text = re.sub("[,,。:]","",entity_text)
  1471. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1472. #使用正则识别金额
  1473. entity_type = "money"
  1474. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1475. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1476. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1477. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1478. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1479. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1480. set_begin = set()
  1481. # for pattern_key in list_money_pattern.keys():
  1482. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1483. # # pattern = re.compile(list_money_pattern[pattern_key])
  1484. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1485. # all_match = re.findall(pattern, sentence_text)
  1486. # index = 0
  1487. # for i in range(len(all_match)):
  1488. # if len(all_match[i][0])>0:
  1489. # print("===",all_match[i])
  1490. # #print(all_match[i][0])
  1491. # unit = ""
  1492. # entity_text = all_match[i][3]
  1493. # if pattern_key in ["key_word","front_m"]:
  1494. # unit = all_match[i][1]
  1495. # if pattern_key=="key_word":
  1496. # if all_match[i][1]=="" and all_match[i][4]!="":
  1497. # unit = all_match[i][4]
  1498. # else:
  1499. # unit = all_match[i][4]
  1500. # if entity_text.find("元")>=0:
  1501. # unit = ""
  1502. #
  1503. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1504. # begin_index_temp = index
  1505. # for j in range(len(list_tokenbegin)):
  1506. # if list_tokenbegin[j]==index:
  1507. # begin_index = j
  1508. # break
  1509. # elif list_tokenbegin[j]>index:
  1510. # begin_index = j-1
  1511. # break
  1512. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1513. # end_index_temp = index
  1514. # #index += len(str(all_match[i][0]))
  1515. # for j in range(begin_index,len(list_tokenbegin)):
  1516. # if list_tokenbegin[j]>=index:
  1517. # end_index = j-1
  1518. # break
  1519. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1520. #
  1521. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1522. # if len(unit)>0:
  1523. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1524. # else:
  1525. # entity_text = str(getUnifyMoney(entity_text))
  1526. #
  1527. # _exists = False
  1528. # for item in list_sentence_entitys:
  1529. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1530. # _exists = True
  1531. # if not _exists:
  1532. # if float(entity_text)>1:
  1533. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1534. #
  1535. # else:
  1536. # index += 1
  1537. all_match = re.finditer(pattern_money, sentence_text)
  1538. index = 0
  1539. for _match in all_match:
  1540. if len(_match.group())>0:
  1541. # print("===",_match.group())
  1542. # print(_match.groupdict())
  1543. unit = ""
  1544. entity_text = ""
  1545. text_beforeMoney = ""
  1546. filter = ""
  1547. filter_unit = False
  1548. notSure = False
  1549. for k,v in _match.groupdict().items():
  1550. if v!="" and v is not None:
  1551. if k=='text_key_word':
  1552. notSure = True
  1553. if k.split("_")[0]=="money":
  1554. entity_text = v
  1555. if k.split("_")[0]=="unit":
  1556. unit = v
  1557. if k.split("_")[0]=="text":
  1558. text_beforeMoney = v
  1559. if k.split("_")[0]=="filter":
  1560. filter = v
  1561. if re.search("filter_unit",k) is not None:
  1562. filter_unit = True
  1563. if entity_text.find("元")>=0:
  1564. unit = ""
  1565. else:
  1566. if filter_unit:
  1567. continue
  1568. if filter!="":
  1569. continue
  1570. index = _match.span()[0]+len(text_beforeMoney)
  1571. begin_index_temp = index
  1572. for j in range(len(list_tokenbegin)):
  1573. if list_tokenbegin[j]==index:
  1574. begin_index = j
  1575. break
  1576. elif list_tokenbegin[j]>index:
  1577. begin_index = j-1
  1578. break
  1579. index = _match.span()[1]
  1580. end_index_temp = index
  1581. #index += len(str(all_match[i][0]))
  1582. for j in range(begin_index,len(list_tokenbegin)):
  1583. if list_tokenbegin[j]>=index:
  1584. end_index = j-1
  1585. break
  1586. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1587. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1588. if len(unit)>0:
  1589. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1590. else:
  1591. entity_text = str(getUnifyMoney(entity_text))
  1592. if float(entity_text)<100 or float(entity_text)>100000000000:
  1593. continue
  1594. if notSure and unit=="" and float(entity_text)>100*10000:
  1595. continue
  1596. _exists = False
  1597. for item in list_sentence_entitys:
  1598. if item.entity_id==entity_id and item.entity_type==entity_type:
  1599. _exists = True
  1600. if (begin_index >=item.begin_index and begin_index<=item.end_index) or (end_index>=item.begin_index and end_index<=item.end_index):
  1601. _exists = True
  1602. if not _exists:
  1603. if float(entity_text)>1:
  1604. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1605. else:
  1606. index += 1
  1607. # 资金来源提取 2020/12/30 新增
  1608. list_moneySource = extract_moneySource(sentence_text)
  1609. entity_type = "moneysource"
  1610. for moneySource in list_moneySource:
  1611. begin_index_temp = moneySource['begin_index']
  1612. for j in range(len(list_tokenbegin)):
  1613. if list_tokenbegin[j] == begin_index_temp:
  1614. begin_index = j
  1615. break
  1616. elif list_tokenbegin[j] > begin_index_temp:
  1617. begin_index = j - 1
  1618. break
  1619. index = moneySource['end_index']
  1620. end_index_temp = index
  1621. for j in range(begin_index, len(list_tokenbegin)):
  1622. if list_tokenbegin[j] >= index:
  1623. end_index = j - 1
  1624. break
  1625. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1626. entity_text = moneySource['body']
  1627. list_sentence_entitys.append(
  1628. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1629. begin_index_temp, end_index_temp))
  1630. # 服务期限提取 2020/12/30 新增
  1631. list_servicetime = extract_servicetime(sentence_text)
  1632. entity_type = "serviceTime"
  1633. for servicetime in list_servicetime:
  1634. begin_index_temp = servicetime['begin_index']
  1635. for j in range(len(list_tokenbegin)):
  1636. if list_tokenbegin[j] == begin_index_temp:
  1637. begin_index = j
  1638. break
  1639. elif list_tokenbegin[j] > begin_index_temp:
  1640. begin_index = j - 1
  1641. break
  1642. index = servicetime['end_index']
  1643. end_index_temp = index
  1644. for j in range(begin_index, len(list_tokenbegin)):
  1645. if list_tokenbegin[j] >= index:
  1646. end_index = j - 1
  1647. break
  1648. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1649. entity_text = servicetime['body']
  1650. list_sentence_entitys.append(
  1651. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1652. begin_index_temp, end_index_temp))
  1653. # 招标方式提取 2020/12/30 新增
  1654. list_bidway = extract_bidway(sentence_text)
  1655. entity_type = "bidway"
  1656. for bidway in list_bidway:
  1657. begin_index_temp = bidway['begin_index']
  1658. end_index_temp = bidway['end_index']
  1659. begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  1660. end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  1661. if begin_index is None or end_index is None:
  1662. continue
  1663. print(begin_index_temp,end_index_temp,begin_index,end_index)
  1664. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1665. entity_text = bidway['body']
  1666. list_sentence_entitys.append(
  1667. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1668. begin_index_temp, end_index_temp))
  1669. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1670. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1671. list_entitys.append(list_entitys_temp)
  1672. return list_entitys
  1673. def union_result(codeName,prem):
  1674. '''
  1675. @summary:模型的结果拼成字典
  1676. @param:
  1677. codeName:编号名称模型的结果字典
  1678. prem:拿到属性的角色的字典
  1679. @return:拼接起来的字典
  1680. '''
  1681. result = []
  1682. assert len(codeName)==len(prem)
  1683. for item_code,item_prem in zip(codeName,prem):
  1684. result.append(dict(item_code,**item_prem))
  1685. return result
  1686. def persistenceData(data):
  1687. '''
  1688. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1689. '''
  1690. import psycopg2
  1691. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1692. cursor = conn.cursor()
  1693. for item_index in range(len(data)):
  1694. item = data[item_index]
  1695. doc_id = item[0]
  1696. dic = item[1]
  1697. code = dic['code']
  1698. name = dic['name']
  1699. prem = dic['prem']
  1700. if len(code)==0:
  1701. code_insert = ""
  1702. else:
  1703. code_insert = ";".join(code)
  1704. prem_insert = ""
  1705. for item in prem:
  1706. for x in item:
  1707. if isinstance(x, list):
  1708. if len(x)>0:
  1709. for x1 in x:
  1710. prem_insert+="/".join(x1)+","
  1711. prem_insert+="$"
  1712. else:
  1713. prem_insert+=str(x)+"$"
  1714. prem_insert+=";"
  1715. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1716. cursor.execute(sql)
  1717. conn.commit()
  1718. conn.close()
  1719. def persistenceData1(list_entitys,list_sentences):
  1720. '''
  1721. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1722. '''
  1723. import psycopg2
  1724. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1725. cursor = conn.cursor()
  1726. for list_entity in list_entitys:
  1727. for entity in list_entity:
  1728. if entity.values is not None:
  1729. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1730. else:
  1731. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1732. cursor.execute(sql)
  1733. for list_sentence in list_sentences:
  1734. for sentence in list_sentence:
  1735. str_tokens = "["
  1736. for item in sentence.tokens:
  1737. str_tokens += "'"
  1738. if item=="'":
  1739. str_tokens += "''"
  1740. else:
  1741. str_tokens += item
  1742. str_tokens += "',"
  1743. str_tokens = str_tokens[:-1]+"]"
  1744. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1745. cursor.execute(sql)
  1746. conn.commit()
  1747. conn.close()
  1748. def _handle(item,result_queue):
  1749. dochtml = item["dochtml"]
  1750. docid = item["docid"]
  1751. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1752. flag = False
  1753. if list_innerTable:
  1754. flag = True
  1755. for table in list_innerTable:
  1756. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1757. def getPredictTable():
  1758. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1759. import pandas as pd
  1760. import json
  1761. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1762. df = pd.read_csv(filename)
  1763. df_data = {"json_table":[],"docid":[]}
  1764. _count = 0
  1765. _sum = len(df["docid"])
  1766. task_queue = Queue()
  1767. result_queue = Queue()
  1768. _index = 0
  1769. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1770. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1771. _index += 1
  1772. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1773. mh.run()
  1774. while True:
  1775. try:
  1776. item = result_queue.get(block=True,timeout=1)
  1777. df_data["docid"].append(item["docid"])
  1778. df_data["json_table"].append(item["json_table"])
  1779. except Exception as e:
  1780. print(e)
  1781. break
  1782. df_1 = pd.DataFrame(df_data)
  1783. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1784. if __name__=="__main__":
  1785. '''
  1786. import glob
  1787. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1788. file_txt = str(file).replace("html","txt")
  1789. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1790. f.write("\n================\n")
  1791. content = codecs.open(file,"r",encoding="utf8").read()
  1792. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1793. '''
  1794. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1795. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1796. getPredictTable()