Preprocessing.py 136 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775
  1. # -*- coding: utf-8 -*-
  2. from bs4 import BeautifulSoup, Comment
  3. import copy
  4. import sys
  5. import os
  6. import time
  7. import codecs
  8. from BiddingKG.dl.ratio.re_ratio import extract_ratio
  9. from BiddingKG.dl.table_head.predict import predict
  10. sys.setrecursionlimit(1000000)
  11. sys.path.append(os.path.abspath("../.."))
  12. sys.path.append(os.path.abspath(".."))
  13. from BiddingKG.dl.common.Utils import *
  14. from BiddingKG.dl.interface.Entitys import *
  15. from BiddingKG.dl.interface.predictor import getPredictor
  16. from BiddingKG.dl.common.nerUtils import *
  17. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  18. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  19. from BiddingKG.dl.relation_extraction.re_email import extract_email
  20. from BiddingKG.dl.bidway.re_bidway import extract_bidway,bidway_integrate
  21. from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint
  22. from BiddingKG.dl.entityLink.entityLink import *
  23. #
  24. def tableToText(soup):
  25. '''
  26. @param:
  27. soup:网页html的soup
  28. @return:处理完表格信息的网页text
  29. '''
  30. def getTrs(tbody):
  31. #获取所有的tr
  32. trs = []
  33. objs = tbody.find_all(recursive=False)
  34. for obj in objs:
  35. if obj.name=="tr":
  36. trs.append(obj)
  37. if obj.name=="tbody":
  38. for tr in obj.find_all("tr",recursive=False):
  39. trs.append(tr)
  40. return trs
  41. def fixSpan(tbody):
  42. # 处理colspan, rowspan信息补全问题
  43. #trs = tbody.findChildren('tr', recursive=False)
  44. trs = getTrs(tbody)
  45. ths_len = 0
  46. ths = list()
  47. trs_set = set()
  48. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  49. # 遍历每一个tr
  50. for indtr, tr in enumerate(trs):
  51. ths_tmp = tr.findChildren('th', recursive=False)
  52. #不补全含有表格的tr
  53. if len(tr.findChildren('table'))>0:
  54. continue
  55. if len(ths_tmp) > 0:
  56. ths_len = ths_len + len(ths_tmp)
  57. for th in ths_tmp:
  58. ths.append(th)
  59. trs_set.add(tr)
  60. # 遍历每行中的element
  61. tds = tr.findChildren(recursive=False)
  62. for indtd, td in enumerate(tds):
  63. # 若有colspan 则补全同一行下一个位置
  64. if 'colspan' in td.attrs:
  65. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  66. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  67. if col<100 and len(td.get_text())<1000:
  68. td['colspan'] = 1
  69. for i in range(1, col, 1):
  70. td.insert_after(copy.copy(td))
  71. for indtr, tr in enumerate(trs):
  72. ths_tmp = tr.findChildren('th', recursive=False)
  73. #不补全含有表格的tr
  74. if len(tr.findChildren('table'))>0:
  75. continue
  76. if len(ths_tmp) > 0:
  77. ths_len = ths_len + len(ths_tmp)
  78. for th in ths_tmp:
  79. ths.append(th)
  80. trs_set.add(tr)
  81. # 遍历每行中的element
  82. tds = tr.findChildren(recursive=False)
  83. for indtd, td in enumerate(tds):
  84. # 若有rowspan 则补全下一行同样位置
  85. if 'rowspan' in td.attrs:
  86. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  87. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  88. td['rowspan'] = 1
  89. for i in range(1, row, 1):
  90. # 获取下一行的所有td, 在对应的位置插入
  91. if indtr+i<len(trs):
  92. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  93. if len(tds1) >= (indtd) and len(tds1)>0:
  94. if indtd > 0:
  95. tds1[indtd - 1].insert_after(copy.copy(td))
  96. else:
  97. tds1[0].insert_before(copy.copy(td))
  98. elif indtd-2>0 and len(tds1) > 0 and len(tds1) == indtd - 1: # 修正某些表格最后一列没补全
  99. tds1[indtd-2].insert_after(copy.copy(td))
  100. def getTable(tbody):
  101. #trs = tbody.findChildren('tr', recursive=False)
  102. trs = getTrs(tbody)
  103. inner_table = []
  104. for tr in trs:
  105. tr_line = []
  106. tds = tr.findChildren(['td','th'], recursive=False)
  107. if len(tds)==0:
  108. tr_line.append([re.sub('\xa0','',segment(tr,final=False)),0]) # 2021/12/21 修复部分表格没有td 造成数据丢失
  109. for td in tds:
  110. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  111. #tr_line.append([td.get_text(),0])
  112. inner_table.append(tr_line)
  113. return inner_table
  114. #处理表格不对齐的问题
  115. def fixTable(inner_table,fix_value="~~"):
  116. maxWidth = 0
  117. for item in inner_table:
  118. if len(item)>maxWidth:
  119. maxWidth = len(item)
  120. for i in range(len(inner_table)):
  121. if len(inner_table[i])<maxWidth:
  122. for j in range(maxWidth-len(inner_table[i])):
  123. inner_table[i].append([fix_value,0])
  124. return inner_table
  125. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  126. height = len(inner_table)
  127. width = len(inner_table[0])
  128. for i in range(height):
  129. point = ""
  130. for j in range(width):
  131. if inner_table[i][j][0]==point and point!="":
  132. inner_table[i][j][0] = pad_row
  133. else:
  134. if inner_table[i][j][0] not in [pad_row,pad_col]:
  135. point = inner_table[i][j][0]
  136. for j in range(width):
  137. point = ""
  138. for i in range(height):
  139. if inner_table[i][j][0]==point and point!="":
  140. inner_table[i][j][0] = pad_col
  141. else:
  142. if inner_table[i][j][0] not in [pad_row,pad_col]:
  143. point = inner_table[i][j][0]
  144. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  145. height = len(inner_table)
  146. width = len(inner_table[0])
  147. for i in range(height):
  148. for j in range(width):
  149. if inner_table[i][j][0]==pad_row:
  150. inner_table[i][j][0] = inner_table[i][j-1][0]
  151. inner_table[i][j][1] = inner_table[i][j-1][1]
  152. if inner_table[i][j][0]==pad_col:
  153. inner_table[i][j][0] = inner_table[i-1][j][0]
  154. inner_table[i][j][1] = inner_table[i-1][j][1]
  155. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  156. '''
  157. @summary: 修复表头识别,将明显错误的进行修正
  158. '''
  159. def repairNeeded(line):
  160. first_1 = -1
  161. last_1 = -1
  162. first_0 = -1
  163. last_0 = -1
  164. count_1 = 0
  165. count_0 = 0
  166. for i in range(len(line)):
  167. if line[i][0]==fix_value:
  168. continue
  169. if line[i][1]==1:
  170. if first_1==-1:
  171. first_1 = i
  172. last_1 = i
  173. count_1 += 1
  174. if line[i][1]==0:
  175. if first_0 == -1:
  176. first_0 = i
  177. last_0 = i
  178. count_0 += 1
  179. if first_1 ==-1 or last_0 == -1:
  180. return False
  181. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  182. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  183. return True
  184. return False
  185. def getsimilarity(line,line1):
  186. same_count = 0
  187. for item,item1 in zip(line,line1):
  188. if item[1]==item1[1]:
  189. same_count += 1
  190. return same_count/len(line)
  191. def selfrepair(inner_table,index,dye_set,key_set):
  192. '''
  193. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  194. '''
  195. #print("B",inner_table[index])
  196. min_presure = 3
  197. list_dye = []
  198. first = None
  199. count = 0
  200. temp_set = set()
  201. _index = 0
  202. for item in inner_table[index]:
  203. if first is None:
  204. first = item[1]
  205. if item[0] not in temp_set:
  206. count += 1
  207. temp_set.add(item[0])
  208. else:
  209. if first == item[1]:
  210. if item[0] not in temp_set:
  211. temp_set.add(item[0])
  212. count += 1
  213. else:
  214. list_dye.append([first,count,_index])
  215. first = item[1]
  216. temp_set.add(item[0])
  217. count = 1
  218. _index += 1
  219. list_dye.append([first,count,_index])
  220. if len(list_dye)>1:
  221. begin = 0
  222. end = 0
  223. for i in range(len(list_dye)):
  224. end = list_dye[i][2]
  225. dye_flag = False
  226. #首尾要求压力减一
  227. if i==0:
  228. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  229. dye_flag = True
  230. dye_type = list_dye[i+1][0]
  231. elif i==len(list_dye)-1:
  232. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  233. dye_flag = True
  234. dye_type = list_dye[i-1][0]
  235. else:
  236. if list_dye[i][1]>1:
  237. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  238. dye_flag = True
  239. dye_type = list_dye[i+1][0]
  240. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  241. dye_flag = True
  242. dye_type = list_dye[i-1][0]
  243. else:
  244. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  245. dye_flag = True
  246. dye_type = list_dye[i+1][0]
  247. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  248. dye_flag = True
  249. dye_type = list_dye[i-1][0]
  250. if dye_flag:
  251. for h in range(begin,end):
  252. inner_table[index][h][1] = dye_type
  253. dye_set.add((inner_table[index][h][0],dye_type))
  254. key_set.add(inner_table[index][h][0])
  255. begin = end
  256. #print("E",inner_table[index])
  257. def otherrepair(inner_table,index,dye_set,key_set):
  258. list_provide_repair = []
  259. if index==0 and len(inner_table)>1:
  260. list_provide_repair.append(index+1)
  261. elif index==len(inner_table)-1:
  262. list_provide_repair.append(index-1)
  263. else:
  264. list_provide_repair.append(index+1)
  265. list_provide_repair.append(index-1)
  266. for provide_index in list_provide_repair:
  267. if not repairNeeded(inner_table[provide_index]):
  268. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  269. if same_prob>=0.8:
  270. for i in range(len(inner_table[provide_index])):
  271. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  272. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  273. key_set.add(inner_table[index][i][0])
  274. inner_table[index][i][1] = inner_table[provide_index][i][1]
  275. elif same_prob<=0.2:
  276. for i in range(len(inner_table[provide_index])):
  277. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  278. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  279. key_set.add(inner_table[index][i][0])
  280. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  281. len_dye_set = len(dye_set)
  282. height = len(inner_table)
  283. for i in range(height):
  284. if repairNeeded(inner_table[i]):
  285. selfrepair(inner_table,i,dye_set,key_set)
  286. #otherrepair(inner_table,i,dye_set,key_set)
  287. for h in range(len(inner_table)):
  288. for w in range(len(inner_table[0])):
  289. if inner_table[h][w][0] in key_set:
  290. for item in dye_set:
  291. if inner_table[h][w][0]==item[0]:
  292. inner_table[h][w][1] = item[1]
  293. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  294. if len(dye_set)!=len(key_set):
  295. for i in range(height):
  296. if repairNeeded(inner_table[i]):
  297. selfrepair(inner_table,i,dye_set,key_set)
  298. #otherrepair(inner_table,i,dye_set,key_set)
  299. return
  300. if len(dye_set)==len_dye_set:
  301. '''
  302. for i in range(height):
  303. if repairNeeded(inner_table[i]):
  304. otherrepair(inner_table,i,dye_set,key_set)
  305. '''
  306. return
  307. repairTable(inner_table, dye_set, key_set)
  308. def sliceTable(inner_table,fix_value="~~"):
  309. #进行分块
  310. height = len(inner_table)
  311. width = len(inner_table[0])
  312. head_list = []
  313. head_list.append(0)
  314. last_head = None
  315. last_is_same_value = False
  316. for h in range(height):
  317. is_all_key = True#是否是全表头行
  318. is_all_value = True#是否是全属性值
  319. is_same_with_lastHead = True#和上一行的结构是否相同
  320. is_same_value=True#一行的item都一样
  321. #is_same_first_item = True#与上一行的第一项是否相同
  322. same_value = inner_table[h][0][0]
  323. for w in range(width):
  324. if last_head is not None:
  325. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  326. is_all_key = False
  327. if inner_table[h][w][0]==1:
  328. is_all_value = False
  329. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  330. is_same_with_lastHead = False
  331. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  332. is_same_value = False
  333. else:
  334. if re.search("\d+",same_value) is not None:
  335. is_same_value = False
  336. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  337. is_same_first_item = False
  338. last_head = h
  339. if last_is_same_value:
  340. last_is_same_value = is_same_value
  341. continue
  342. if is_same_value:
  343. head_list.append(h)
  344. last_is_same_value = is_same_value
  345. continue
  346. if not is_all_key:
  347. if not is_same_with_lastHead:
  348. head_list.append(h)
  349. head_list.append(height)
  350. return head_list
  351. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  352. set_item = set()
  353. height = len(inner_table)
  354. width = len(inner_table[0])
  355. for i in range(height):
  356. for j in range(width):
  357. item = inner_table[i][j][0]
  358. set_item.add(item)
  359. list_item = list(set_item)
  360. x = []
  361. for item in list_item:
  362. x.append(getPredictor("form").encode(item))
  363. predict_y = getPredictor("form").predict(np.array(x),type="item")
  364. _dict = dict()
  365. for item,values in zip(list_item,list(predict_y)):
  366. _dict[item] = values[1]
  367. # print("##",item,values)
  368. #print(_dict)
  369. for i in range(height):
  370. for j in range(width):
  371. item = inner_table[i][j][0]
  372. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  373. # print("=====")
  374. # for item in inner_table:
  375. # print(item)
  376. # print("======")
  377. repairTable(inner_table)
  378. head_list = sliceTable(inner_table)
  379. return inner_table,head_list
  380. def set_head_model(inner_table):
  381. for i in range(len(inner_table)):
  382. for j in range(len(inner_table[i])):
  383. inner_table[i][j] = inner_table[i][j][0]
  384. # 模型预测表头
  385. predict_list = predict(inner_table)
  386. with open(r"C:\Users\Administrator\Desktop\table_head_test.txt", "a") as f:
  387. for i in range(len(predict_list)):
  388. f.write(str(i) + " " + str(inner_table[i]) + "\n")
  389. f.write(str(i) + " " + str(predict_list[i]) + "\n")
  390. f.write("\n")
  391. # print("table_list", inner_table)
  392. # print("predict_list", predict_list)
  393. for i in range(len(inner_table)):
  394. for j in range(len(inner_table[i])):
  395. inner_table[i][j] = [inner_table[i][j], int(predict_list[i][j])]
  396. head_list = sliceTable(inner_table)
  397. return inner_table, head_list
  398. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  399. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  400. predict_y = getPredictor("form").getModel("context").predict(data_x)
  401. for _position,_y in zip(data_position,predict_y):
  402. _w = _position[0]
  403. _h = _position[1]
  404. if _y[1]>prob_min:
  405. inner_table[_h][_w][1] = 1
  406. else:
  407. inner_table[_h][_w][1] = 0
  408. _item = inner_table[_h][_w][0]
  409. if re.search(pat_head,_item) is not None and len(_item)<8:
  410. inner_table[_h][_w][1] = 1
  411. # print("=====")
  412. # for item in inner_table:
  413. # print(item)
  414. # print("======")
  415. height = len(inner_table)
  416. width = len(inner_table[0])
  417. for i in range(height):
  418. for j in range(width):
  419. if re.search("[::]$", inner_table[i][j][0]) and len(inner_table[i][j][0])<8:
  420. inner_table[i][j][1] = 1
  421. repairTable(inner_table)
  422. head_list = sliceTable(inner_table)
  423. # print("inner_table:",inner_table)
  424. return inner_table,head_list
  425. #设置表头
  426. def setHead_inline(inner_table,prob_min=0.64):
  427. pad_row = "@@"
  428. pad_col = "##"
  429. removePadding(inner_table, pad_row, pad_col)
  430. pad_pattern = re.compile(pad_row+"|"+pad_col)
  431. height = len(inner_table)
  432. width = len(inner_table[0])
  433. head_list = []
  434. head_list.append(0)
  435. #行表头
  436. is_head_last = False
  437. for i in range(height):
  438. is_head = False
  439. is_long_value = False
  440. #判断是否是全padding值
  441. is_same_value = True
  442. same_value = inner_table[i][0][0]
  443. for j in range(width):
  444. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  445. is_same_value = False
  446. break
  447. #predict is head or not with model
  448. temp_item = ""
  449. for j in range(width):
  450. temp_item += inner_table[i][j][0]+"|"
  451. temp_item = re.sub(pad_pattern,"",temp_item)
  452. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  453. if form_prob is not None:
  454. if form_prob[0][1]>prob_min:
  455. is_head = True
  456. else:
  457. is_head = False
  458. #print(temp_item,form_prob)
  459. if len(inner_table[i][0][0])>40:
  460. is_long_value = True
  461. if is_head or is_long_value or is_same_value:
  462. #不把连续表头分开
  463. if not is_head_last:
  464. head_list.append(i)
  465. if is_long_value or is_same_value:
  466. head_list.append(i+1)
  467. if is_head:
  468. for j in range(width):
  469. inner_table[i][j][1] = 1
  470. is_head_last = is_head
  471. head_list.append(height)
  472. #列表头
  473. for i in range(len(head_list)-1):
  474. head_begin = head_list[i]
  475. head_end = head_list[i+1]
  476. #最后一列不设置为列表头
  477. for i in range(width-1):
  478. is_head = False
  479. #predict is head or not with model
  480. temp_item = ""
  481. for j in range(head_begin,head_end):
  482. temp_item += inner_table[j][i][0]+"|"
  483. temp_item = re.sub(pad_pattern,"",temp_item)
  484. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  485. if form_prob is not None:
  486. if form_prob[0][1]>prob_min:
  487. is_head = True
  488. else:
  489. is_head = False
  490. if is_head:
  491. for j in range(head_begin,head_end):
  492. inner_table[j][i][1] = 2
  493. addPadding(inner_table, pad_row, pad_col)
  494. return inner_table,head_list
  495. #设置表头
  496. def setHead_withRule(inner_table,pattern,pat_value,count):
  497. height = len(inner_table)
  498. width = len(inner_table[0])
  499. head_list = []
  500. head_list.append(0)
  501. #行表头
  502. is_head_last = False
  503. for i in range(height):
  504. set_match = set()
  505. is_head = False
  506. is_long_value = False
  507. is_same_value = True
  508. same_value = inner_table[i][0][0]
  509. for j in range(width):
  510. if inner_table[i][j][0]!=same_value:
  511. is_same_value = False
  512. break
  513. for j in range(width):
  514. if re.search(pat_value,inner_table[i][j][0]) is not None:
  515. is_head = False
  516. break
  517. str_find = re.findall(pattern,inner_table[i][j][0])
  518. if len(str_find)>0:
  519. set_match.add(inner_table[i][j][0])
  520. if len(set_match)>=count:
  521. is_head = True
  522. if len(inner_table[i][0][0])>40:
  523. is_long_value = True
  524. if is_head or is_long_value or is_same_value:
  525. if not is_head_last:
  526. head_list.append(i)
  527. if is_head:
  528. for j in range(width):
  529. inner_table[i][j][1] = 1
  530. is_head_last = is_head
  531. head_list.append(height)
  532. #列表头
  533. for i in range(len(head_list)-1):
  534. head_begin = head_list[i]
  535. head_end = head_list[i+1]
  536. #最后一列不设置为列表头
  537. for i in range(width-1):
  538. set_match = set()
  539. is_head = False
  540. for j in range(head_begin,head_end):
  541. if re.search(pat_value,inner_table[j][i][0]) is not None:
  542. is_head = False
  543. break
  544. str_find = re.findall(pattern,inner_table[j][i][0])
  545. if len(str_find)>0:
  546. set_match.add(inner_table[j][i][0])
  547. if len(set_match)>=count:
  548. is_head = True
  549. if is_head:
  550. for j in range(head_begin,head_end):
  551. inner_table[j][i][1] = 2
  552. return inner_table,head_list
  553. #取得表格的处理方向
  554. def getDirect(inner_table,begin,end):
  555. '''
  556. column_head = set()
  557. row_head = set()
  558. widths = len(inner_table[0])
  559. for height in range(begin,end):
  560. for width in range(widths):
  561. if inner_table[height][width][1] ==1:
  562. row_head.add(height)
  563. if inner_table[height][width][1] ==2:
  564. column_head.add(width)
  565. company_pattern = re.compile("公司")
  566. if 0 in column_head and begin not in row_head:
  567. return "column"
  568. if 0 in column_head and begin in row_head:
  569. for height in range(begin,end):
  570. count = 0
  571. count_flag = True
  572. for width_index in range(width):
  573. if inner_table[height][width_index][1]==0:
  574. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  575. count += 1
  576. else:
  577. count_flag = False
  578. if count_flag and count>=2:
  579. return "column"
  580. return "row"
  581. '''
  582. count_row_keys = 0
  583. count_column_keys = 0
  584. width = len(inner_table[0])
  585. if begin<end:
  586. for w in range(len(inner_table[begin])):
  587. if inner_table[begin][w][1]!=0:
  588. count_row_keys += 1
  589. for h in range(begin,end):
  590. if inner_table[h][0][1]!=0:
  591. count_column_keys += 1
  592. company_pattern = re.compile("有限(责任)?公司")
  593. for height in range(begin,end):
  594. count_set = set()
  595. count_flag = True
  596. for width_index in range(width):
  597. if inner_table[height][width_index][1]==0:
  598. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  599. count_set.add(inner_table[height][width_index][0])
  600. else:
  601. count_flag = False
  602. if count_flag and len(count_set)>=2:
  603. return "column"
  604. # if count_column_keys>count_row_keys: #2022/2/15 此项不够严谨,造成很多错误,故取消
  605. # return "column"
  606. return "row"
  607. #根据表格处理方向生成句子,
  608. def getTableText(inner_table,head_list,key_direct=False):
  609. # packPattern = "(标包|[标包][号段名])"
  610. packPattern = "(标包|标的|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  611. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标|推荐意见)" # 2020/11/23 大网站规则,添加序号为排序
  612. entityPattern = "((候选|([中投]标|报价))(单位|公司|人|供应商))"
  613. moneyPattern = "([中投]标|报价)(金额|价)"
  614. height = len(inner_table)
  615. width = len(inner_table[0])
  616. text = ""
  617. for head_i in range(len(head_list)-1):
  618. head_begin = head_list[head_i]
  619. head_end = head_list[head_i+1]
  620. direct = getDirect(inner_table, head_begin, head_end)
  621. #若只有一行,则直接按行读取
  622. if head_end-head_begin==1:
  623. text_line = ""
  624. for i in range(head_begin,head_end):
  625. for w in range(len(inner_table[i])):
  626. if inner_table[i][w][1]==1:
  627. _punctuation = ":"
  628. else:
  629. _punctuation = "," #2021/12/15 统一为中文标点,避免 206893924 国际F座1108,1,009,197.49元
  630. if w>0:
  631. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  632. text_line += inner_table[i][w][0]+_punctuation
  633. else:
  634. text_line += inner_table[i][w][0]+_punctuation
  635. text_line = text_line+"。" if text_line!="" else text_line
  636. text += text_line
  637. else:
  638. #构建一个共现矩阵
  639. table_occurence = []
  640. for i in range(head_begin,head_end):
  641. line_oc = []
  642. for j in range(width):
  643. cell = inner_table[i][j]
  644. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0})
  645. table_occurence.append(line_oc)
  646. occu_height = len(table_occurence)
  647. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  648. #为每个属性值寻找表头
  649. for i in range(occu_height):
  650. for j in range(occu_width):
  651. cell = table_occurence[i][j]
  652. #是属性值
  653. if cell["type"]==0 and cell["text"]!="":
  654. left_head = ""
  655. top_head = ""
  656. find_flag = False
  657. temp_head = ""
  658. for loop_i in range(1,i+1):
  659. if not key_direct:
  660. key_values = [1,2]
  661. else:
  662. key_values = [1]
  663. if table_occurence[i-loop_i][j]["type"] in key_values:
  664. if find_flag:
  665. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  666. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  667. else:
  668. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  669. find_flag = True
  670. temp_head = table_occurence[i-loop_i][j]["text"]
  671. table_occurence[i-loop_i][j]["occu_count"] += 1
  672. else:
  673. #找到表头后遇到属性值就返回
  674. if find_flag:
  675. break
  676. cell["top_head"] += top_head
  677. find_flag = False
  678. temp_head = ""
  679. for loop_j in range(1,j+1):
  680. if not key_direct:
  681. key_values = [1,2]
  682. else:
  683. key_values = [2]
  684. if table_occurence[i][j-loop_j]["type"] in key_values:
  685. if find_flag:
  686. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  687. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  688. else:
  689. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  690. find_flag = True
  691. temp_head = table_occurence[i][j-loop_j]["text"]
  692. table_occurence[i][j-loop_j]["occu_count"] += 1
  693. else:
  694. if find_flag:
  695. break
  696. cell["left_head"] += left_head
  697. if direct=="row":
  698. for i in range(occu_height):
  699. pack_text = ""
  700. rank_text = ""
  701. entity_text = ""
  702. text_line = ""
  703. money_text = ""
  704. #在同一句话中重复的可以去掉
  705. text_set = set()
  706. for j in range(width):
  707. cell = table_occurence[i][j]
  708. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  709. cell = table_occurence[i][j]
  710. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  711. if re.search("单报标限总]价|金额|成交报?价|报价", head):
  712. head = cell["left_head"] + head
  713. else:
  714. head += cell["left_head"]
  715. if str(head+cell["text"]) in text_set:
  716. continue
  717. if re.search(packPattern,head) is not None:
  718. pack_text += head+cell["text"]+","
  719. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  720. #排名替换为同一种表达
  721. rank_text += head+cell["text"]+","
  722. #print(rank_text)
  723. elif re.search(entityPattern,head) is not None:
  724. entity_text += head+cell["text"]+","
  725. #print(entity_text)
  726. else:
  727. if re.search(moneyPattern,head) is not None and entity_text!="":
  728. money_text += head+cell["text"]+","
  729. else:
  730. text_line += head+cell["text"]+","
  731. text_set.add(str(head+cell["text"]))
  732. text += pack_text+rank_text+entity_text+money_text+text_line
  733. text = text[:-1]+"。" if len(text)>0 else text
  734. else:
  735. for j in range(occu_width):
  736. pack_text = ""
  737. rank_text = ""
  738. entity_text = ""
  739. text_line = ""
  740. text_set = set()
  741. for i in range(occu_height):
  742. cell = table_occurence[i][j]
  743. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  744. cell = table_occurence[i][j]
  745. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  746. if re.search("单报标限总]价|金额|成交报?价|报价", head):
  747. head = cell["top_head"] + head
  748. else:
  749. head += cell["top_head"]
  750. if str(head+cell["text"]) in text_set:
  751. continue
  752. if re.search(packPattern,head) is not None:
  753. pack_text += head+cell["text"]+","
  754. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  755. #排名替换为同一种表达
  756. rank_text += head+cell["text"]+","
  757. #print(rank_text)
  758. elif re.search(entityPattern,head) is not None and \
  759. re.search('业绩|资格|条件',head)==None and re.search('业绩',cell["text"])==None : #2021/10/19 解决包含业绩的行调到前面问题
  760. entity_text += head+cell["text"]+","
  761. #print(entity_text)
  762. else:
  763. text_line += head+cell["text"]+","
  764. text_set.add(str(head+cell["text"]))
  765. text += pack_text+rank_text+entity_text+text_line
  766. text = text[:-1]+"。" if len(text)>0 else text
  767. # if direct=="row":
  768. # for i in range(head_begin,head_end):
  769. # pack_text = ""
  770. # rank_text = ""
  771. # entity_text = ""
  772. # text_line = ""
  773. # #在同一句话中重复的可以去掉
  774. # text_set = set()
  775. # for j in range(width):
  776. # cell = inner_table[i][j]
  777. # #是属性值
  778. # if cell[1]==0 and cell[0]!="":
  779. # head = ""
  780. #
  781. # find_flag = False
  782. # temp_head = ""
  783. # for loop_i in range(0,i+1-head_begin):
  784. # if not key_direct:
  785. # key_values = [1,2]
  786. # else:
  787. # key_values = [1]
  788. # if inner_table[i-loop_i][j][1] in key_values:
  789. # if find_flag:
  790. # if inner_table[i-loop_i][j][0]!=temp_head:
  791. # head = inner_table[i-loop_i][j][0]+":"+head
  792. # else:
  793. # head = inner_table[i-loop_i][j][0]+":"+head
  794. # find_flag = True
  795. # temp_head = inner_table[i-loop_i][j][0]
  796. # else:
  797. # #找到表头后遇到属性值就返回
  798. # if find_flag:
  799. # break
  800. #
  801. # find_flag = False
  802. # temp_head = ""
  803. #
  804. #
  805. #
  806. # for loop_j in range(1,j+1):
  807. # if not key_direct:
  808. # key_values = [1,2]
  809. # else:
  810. # key_values = [2]
  811. # if inner_table[i][j-loop_j][1] in key_values:
  812. # if find_flag:
  813. # if inner_table[i][j-loop_j][0]!=temp_head:
  814. # head = inner_table[i][j-loop_j][0]+":"+head
  815. # else:
  816. # head = inner_table[i][j-loop_j][0]+":"+head
  817. # find_flag = True
  818. # temp_head = inner_table[i][j-loop_j][0]
  819. # else:
  820. # if find_flag:
  821. # break
  822. #
  823. # if str(head+inner_table[i][j][0]) in text_set:
  824. # continue
  825. # if re.search(packPattern,head) is not None:
  826. # pack_text += head+inner_table[i][j][0]+","
  827. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  828. # #排名替换为同一种表达
  829. # rank_text += head+inner_table[i][j][0]+","
  830. # #print(rank_text)
  831. # elif re.search(entityPattern,head) is not None:
  832. # entity_text += head+inner_table[i][j][0]+","
  833. # #print(entity_text)
  834. # else:
  835. # text_line += head+inner_table[i][j][0]+","
  836. # text_set.add(str(head+inner_table[i][j][0]))
  837. # text += pack_text+rank_text+entity_text+text_line
  838. # text = text[:-1]+"。" if len(text)>0 else text
  839. # else:
  840. # for j in range(width):
  841. #
  842. # rank_text = ""
  843. # entity_text = ""
  844. # text_line = ""
  845. # text_set = set()
  846. # for i in range(head_begin,head_end):
  847. # cell = inner_table[i][j]
  848. # #是属性值
  849. # if cell[1]==0 and cell[0]!="":
  850. # find_flag = False
  851. # head = ""
  852. # temp_head = ""
  853. #
  854. # for loop_j in range(1,j+1):
  855. # if not key_direct:
  856. # key_values = [1,2]
  857. # else:
  858. # key_values = [2]
  859. # if inner_table[i][j-loop_j][1] in key_values:
  860. # if find_flag:
  861. # if inner_table[i][j-loop_j][0]!=temp_head:
  862. # head = inner_table[i][j-loop_j][0]+":"+head
  863. # else:
  864. # head = inner_table[i][j-loop_j][0]+":"+head
  865. # find_flag = True
  866. # temp_head = inner_table[i][j-loop_j][0]
  867. # else:
  868. # if find_flag:
  869. # break
  870. # find_flag = False
  871. # temp_head = ""
  872. # for loop_i in range(0,i+1-head_begin):
  873. # if not key_direct:
  874. # key_values = [1,2]
  875. # else:
  876. # key_values = [1]
  877. # if inner_table[i-loop_i][j][1] in key_values:
  878. # if find_flag:
  879. # if inner_table[i-loop_i][j][0]!=temp_head:
  880. # head = inner_table[i-loop_i][j][0]+":"+head
  881. # else:
  882. # head = inner_table[i-loop_i][j][0]+":"+head
  883. # find_flag = True
  884. # temp_head = inner_table[i-loop_i][j][0]
  885. # else:
  886. # if find_flag:
  887. # break
  888. # if str(head+inner_table[i][j][0]) in text_set:
  889. # continue
  890. # if re.search(rankPattern,head) is not None:
  891. # rank_text += head+inner_table[i][j][0]+","
  892. # #print(rank_text)
  893. # elif re.search(entityPattern,head) is not None:
  894. # entity_text += head+inner_table[i][j][0]+","
  895. # #print(entity_text)
  896. # else:
  897. # text_line += head+inner_table[i][j][0]+","
  898. # text_set.add(str(head+inner_table[i][j][0]))
  899. # text += rank_text+entity_text+text_line
  900. # text = text[:-1]+"。" if len(text)>0 else text
  901. return text
  902. def removeFix(inner_table,fix_value="~~"):
  903. height = len(inner_table)
  904. width = len(inner_table[0])
  905. for h in range(height):
  906. for w in range(width):
  907. if inner_table[h][w][0]==fix_value:
  908. inner_table[h][w][0] = ""
  909. def trunTable(tbody):
  910. fixSpan(tbody)
  911. inner_table = getTable(tbody)
  912. inner_table = fixTable(inner_table)
  913. if len(inner_table)>0 and len(inner_table[0])>0:
  914. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  915. #inner_table,head_list = setHead_inline(inner_table)
  916. # inner_table, head_list = setHead_initem(inner_table,pat_head)
  917. inner_table, head_list = set_head_model(inner_table)
  918. # inner_table,head_list = setHead_incontext(inner_table,pat_head)
  919. # print(inner_table)
  920. # for begin in range(len(head_list[:-1])):
  921. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  922. # print(item)
  923. # print("====")
  924. removeFix(inner_table)
  925. # print("----")
  926. # print(head_list)
  927. # for item in inner_table:
  928. # print(item)
  929. tbody.string = getTableText(inner_table,head_list)
  930. #print(tbody.string)
  931. tbody.name = "turntable"
  932. return inner_table
  933. return None
  934. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标|(需求|服务|项目|施工|采购|招租|出租|转让|出让|业主|询价|委托|权属|招标|竞得|抽取|承建)(人|方|单位)(名称)?|(供应商|供货商|服务商)(名称)?)$')
  935. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  936. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  937. list_innerTable = []
  938. # 2022/2/9 删除干扰标签
  939. for tag in soup.find_all('option'): #例子: 216661412
  940. if 'selected' not in tag.attrs:
  941. tag.extract()
  942. for ul in soup.find_all('ul'): #例子 156439663 多个不同channel 类别的标题
  943. if ul.find_all('li') == ul.findChildren(recursive=False) and len(set(re.findall(
  944. '招标公告|中标结果公示|中标候选人公示|招标答疑|开标评标|合同履?约?公示|开标评标|资格评审',
  945. ul.get_text(), re.S)))>3:
  946. ul.extract()
  947. tbodies = soup.find_all('table')
  948. # 遍历表格中的每个tbody
  949. #逆序处理嵌套表格
  950. for tbody_index in range(1,len(tbodies)+1):
  951. tbody = tbodies[len(tbodies)-tbody_index]
  952. inner_table = trunTable(tbody)
  953. list_innerTable.append(inner_table)
  954. tbodies = soup.find_all('tbody')
  955. # 遍历表格中的每个tbody
  956. #逆序处理嵌套表格
  957. for tbody_index in range(1,len(tbodies)+1):
  958. tbody = tbodies[len(tbodies)-tbody_index]
  959. inner_table = trunTable(tbody)
  960. list_innerTable.append(inner_table)
  961. return soup
  962. # return list_innerTable
  963. re_num = re.compile("[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十]")
  964. num_dict = {
  965. "一": 1, "二": 2,
  966. "三": 3, "四": 4,
  967. "五": 5, "六": 6,
  968. "七": 7, "八": 8,
  969. "九": 9, "十": 10}
  970. # 一百以内的中文大写转换为数字
  971. def change2num(text):
  972. result_num = -1
  973. # text = text[:6]
  974. match = re_num.search(text)
  975. if match:
  976. _num = match.group()
  977. if num_dict.get(_num):
  978. return num_dict.get(_num)
  979. else:
  980. tenths = 1
  981. the_unit = 0
  982. num_split = _num.split("十")
  983. if num_dict.get(num_split[0]):
  984. tenths = num_dict.get(num_split[0])
  985. if num_dict.get(num_split[1]):
  986. the_unit = num_dict.get(num_split[1])
  987. result_num = tenths * 10 + the_unit
  988. elif re.search("\d{1,2}",text):
  989. _num = re.search("\d{1,2}",text).group()
  990. result_num = int(_num)
  991. return result_num
  992. #大纲分段处理
  993. def get_preprocessed_outline(soup):
  994. pattern_0 = re.compile("^(?:[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十])[、.\.]")
  995. pattern_1 = re.compile("^[\((]?(?:[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十])[\))]")
  996. pattern_2 = re.compile("^\d{1,2}[、.\.](?=[^\d]{1,2}|$)")
  997. pattern_3 = re.compile("^[\((]?\d{1,2}[\))]")
  998. pattern_list = [pattern_0, pattern_1, pattern_2, pattern_3]
  999. body = soup.find("body")
  1000. body_child = body.find_all(recursive=False)
  1001. deal_part = body
  1002. # print(body_child[0]['id'])
  1003. if 'id' in body_child[0].attrs:
  1004. if len(body_child) <= 2 and body_child[0]['id'] == 'pcontent':
  1005. deal_part = body_child[0]
  1006. if len(deal_part.find_all(recursive=False))>2:
  1007. deal_part = deal_part.parent
  1008. skip_tag = ['turntable', 'tbody', 'th', 'tr', 'td', 'table','thead','tfoot']
  1009. for part in deal_part.find_all(recursive=False):
  1010. # 查找解析文本的主干部分
  1011. is_main_text = False
  1012. through_text_num = 0
  1013. while (not is_main_text and part.find_all(recursive=False)):
  1014. while len(part.find_all(recursive=False)) == 1 and part.get_text(strip=True) == \
  1015. part.find_all(recursive=False)[0].get_text(strip=True):
  1016. part = part.find_all(recursive=False)[0]
  1017. max_len = len(part.get_text(strip=True))
  1018. is_main_text = True
  1019. for t_part in part.find_all(recursive=False):
  1020. if t_part.name not in skip_tag and t_part.get_text(strip=True)!="":
  1021. through_text_num += 1
  1022. if t_part.get_text(strip=True)!="" and len(t_part.get_text(strip=True))/max_len>=0.65:
  1023. if t_part.name not in skip_tag:
  1024. is_main_text = False
  1025. part = t_part
  1026. break
  1027. else:
  1028. while len(t_part.find_all(recursive=False)) == 1 and t_part.get_text(strip=True) == \
  1029. t_part.find_all(recursive=False)[0].get_text(strip=True):
  1030. t_part = t_part.find_all(recursive=False)[0]
  1031. if through_text_num>2:
  1032. is_table = True
  1033. for _t_part in t_part.find_all(recursive=False):
  1034. if _t_part.name not in skip_tag:
  1035. is_table = False
  1036. break
  1037. if not is_table:
  1038. is_main_text = False
  1039. part = t_part
  1040. break
  1041. else:
  1042. is_main_text = False
  1043. part = t_part
  1044. break
  1045. is_find = False
  1046. for _pattern in pattern_list:
  1047. last_index = 0
  1048. handle_list = []
  1049. for _part in part.find_all(recursive=False):
  1050. if _part.name not in skip_tag and _part.get_text(strip=True) != "":
  1051. # print('text:', _part.get_text(strip=True))
  1052. re_match = re.search(_pattern, _part.get_text(strip=True))
  1053. if re_match:
  1054. outline_index = change2num(re_match.group())
  1055. if last_index < outline_index:
  1056. # _part.insert_before("##split##")
  1057. handle_list.append(_part)
  1058. last_index = outline_index
  1059. if len(handle_list)>1:
  1060. is_find = True
  1061. for _part in handle_list:
  1062. _part.insert_before("##split##")
  1063. if is_find:
  1064. break
  1065. # print(soup)
  1066. return soup
  1067. #数据清洗
  1068. def segment(soup,final=True):
  1069. # print("==")
  1070. # print(soup)
  1071. # print("====")
  1072. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  1073. subspaceList = ["td",'a',"span","p"]
  1074. if soup.name in subspaceList:
  1075. #判断有值叶子节点数
  1076. _count = 0
  1077. for child in soup.find_all(recursive=True):
  1078. if child.get_text().strip()!="" and len(child.find_all())==0:
  1079. _count += 1
  1080. if _count<=1:
  1081. text = soup.get_text()
  1082. # 2020/11/24 大网站规则添加
  1083. if 'title' in soup.attrs:
  1084. if '...' in soup.get_text() and soup.get_text().strip()[:-3] in soup.attrs['title']:
  1085. text = soup.attrs['title']
  1086. _list = []
  1087. for x in re.split("\s+",text):
  1088. if x.strip()!="":
  1089. _list.append(len(x))
  1090. if len(_list)>0:
  1091. _minLength = min(_list)
  1092. if _minLength>2:
  1093. _substr = ","
  1094. else:
  1095. _substr = ""
  1096. else:
  1097. _substr = ""
  1098. text = text.replace("\r\n",",").replace("\n",",")
  1099. text = re.sub("\s+",_substr,text)
  1100. # text = re.sub("\s+","##space##",text)
  1101. return text
  1102. segList = ["title"]
  1103. commaList = ["div","br","td","p","li"]
  1104. #commaList = []
  1105. spaceList = ["span"]
  1106. tbodies = soup.find_all('tbody')
  1107. if len(tbodies) == 0:
  1108. tbodies = soup.find_all('table')
  1109. # 递归遍历所有节点,插入符号
  1110. for child in soup.find_all(recursive=True):
  1111. # print(child.name,child.get_text())
  1112. if child.name in segList:
  1113. child.insert_after("。")
  1114. if child.name in commaList:
  1115. child.insert_after(",")
  1116. # if child.name == 'div' and 'class' in child.attrs:
  1117. # # 添加附件"attachment"标识
  1118. # if "richTextFetch" in child['class']:
  1119. # child.insert_before("##attachment##")
  1120. # print(child.parent)
  1121. # if child.name in subspaceList:
  1122. # child.insert_before("#subs"+str(child.name)+"#")
  1123. # child.insert_after("#sube"+str(child.name)+"#")
  1124. # if child.name in spaceList:
  1125. # child.insert_after(" ")
  1126. text = str(soup.get_text())
  1127. #替换英文冒号为中文冒号
  1128. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1129. #替换为中文逗号
  1130. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1131. #替换为中文分号
  1132. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1133. # 感叹号替换为中文句号
  1134. text = re.sub("(?<=[\u4e00-\u9fa5])[!!]|[!!](?=[\u4e00-\u9fa5])","。",text)
  1135. #替换格式未识别的问号为" " ,update:2021/7/20
  1136. text = re.sub("[?\?]{2,}"," ",text)
  1137. #替换"""为"“",否则导入deepdive出错
  1138. # text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1139. text = text.replace('"',"“").replace("\r","").replace("\n","") #2022/1/4修复 非分段\n 替换为逗号造成 公司拆分 span \n南航\n上海\n分公司
  1140. # print('==1',text)
  1141. # text = re.sub("\s{4,}",",",text)
  1142. # 解决公告中的" "空格替换问题
  1143. if re.search("\s{4,}",text):
  1144. _text = ""
  1145. for _sent in re.split("。+",text):
  1146. for _sent2 in re.split(',+',_sent):
  1147. for _sent3 in re.split(":+",_sent2):
  1148. for _t in re.split("\s{4,}",_sent3):
  1149. if len(_t)<3:
  1150. _text += _t
  1151. else:
  1152. _text += ","+_t
  1153. _text += ":"
  1154. _text = _text[:-1]
  1155. _text += ","
  1156. _text = _text[:-1]
  1157. _text += "。"
  1158. _text = _text[:-1]
  1159. text = _text
  1160. # print('==2',text)
  1161. #替换标点
  1162. #替换连续的标点
  1163. if final:
  1164. text = re.sub("##space##"," ",text)
  1165. punc_pattern = "(?P<del>[。,;::,\s]+)"
  1166. list_punc = re.findall(punc_pattern,text)
  1167. list_punc.sort(key=lambda x:len(x),reverse=True)
  1168. for punc_del in list_punc:
  1169. if len(punc_del)>1:
  1170. if len(punc_del.strip())>0:
  1171. if ":" in punc_del.strip():
  1172. if "。" in punc_del.strip():
  1173. text = re.sub(punc_del, ":。", text)
  1174. else:
  1175. text = re.sub(punc_del,":",text)
  1176. else:
  1177. text = re.sub(punc_del,punc_del.strip()[0],text) #2021/12/09 修正由于某些标签后插入符号把原来符号替换
  1178. else:
  1179. text = re.sub(punc_del,"",text)
  1180. #将连续的中文句号替换为一个
  1181. text_split = text.split("。")
  1182. text_split = [x for x in text_split if len(x)>0]
  1183. text = "。".join(text_split)
  1184. # #删除标签中的所有空格
  1185. # for subs in subspaceList:
  1186. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  1187. # while(True):
  1188. # oneMatch = re.search(re.compile(patten),text)
  1189. # if oneMatch is not None:
  1190. # _match = oneMatch.group(1)
  1191. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  1192. # else:
  1193. # break
  1194. # text过大报错
  1195. LOOP_LEN = 10000
  1196. LOOP_BEGIN = 0
  1197. _text = ""
  1198. if len(text)<10000000:
  1199. while(LOOP_BEGIN<len(text)):
  1200. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  1201. LOOP_BEGIN += LOOP_LEN
  1202. text = _text
  1203. # 附件标识前修改为句号,避免正文和附件内容混合在一起
  1204. text = re.sub("[^。](?=##attachment##)","。",text)
  1205. return text
  1206. '''
  1207. #数据清洗
  1208. def segment(soup):
  1209. segList = ["title"]
  1210. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1211. spaceList = ["span"]
  1212. tbodies = soup.find_all('tbody')
  1213. if len(tbodies) == 0:
  1214. tbodies = soup.find_all('table')
  1215. # 递归遍历所有节点,插入符号
  1216. for child in soup.find_all(recursive=True):
  1217. if child.name == 'br':
  1218. child.insert_before(',')
  1219. child_text = re.sub('\s', '', child.get_text())
  1220. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1221. continue
  1222. if child.name in segList:
  1223. child.insert_after("。")
  1224. if child.name in commaList:
  1225. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1226. child.insert_after(",")
  1227. elif len(child_text) >=50:
  1228. child.insert_after("。")
  1229. #if child.name in spaceList:
  1230. #child.insert_after(" ")
  1231. text = str(soup.get_text())
  1232. text = re.sub("\s{5,}",",",text)
  1233. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1234. #替换"""为"“",否则导入deepdive出错
  1235. text = text.replace('"',"“")
  1236. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1237. #删除所有空格
  1238. text = re.sub("\s+","#nbsp#",text)
  1239. text_list = text.split('#nbsp#')
  1240. new_text = ''
  1241. for i in range(len(text_list)-1):
  1242. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1243. new_text += text_list[i]
  1244. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1245. new_text += text_list[i] + '。'
  1246. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1247. new_text += text_list[i] + ';'
  1248. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1249. new_text += text_list[i] + ' '
  1250. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1251. new_text += text_list[i]
  1252. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1253. new_text += text_list[i] + ','
  1254. else:
  1255. new_text += text_list[i]
  1256. new_text += text_list[-1]
  1257. text = new_text
  1258. #替换英文冒号为中文冒号
  1259. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1260. #替换为中文逗号
  1261. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1262. #替换为中文分号
  1263. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1264. #替换标点
  1265. while(True):
  1266. #替换连续的标点
  1267. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1268. if punc is not None:
  1269. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1270. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1271. if punc is not None:
  1272. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1273. else:
  1274. #替换标点之后的空格
  1275. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1276. if punc is not None:
  1277. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1278. else:
  1279. break
  1280. #将连续的中文句号替换为一个
  1281. text_split = text.split("。")
  1282. text_split = [x for x in text_split if len(x)>0]
  1283. text = "。".join(text_split)
  1284. #替换中文括号为英文括号
  1285. text = re.sub("(","(",text)
  1286. text = re.sub(")",")",text)
  1287. return text
  1288. '''
  1289. #连续实体合并(弃用)
  1290. def union_ner(list_ner):
  1291. result_list = []
  1292. union_index = []
  1293. union_index_set = set()
  1294. for i in range(len(list_ner)-1):
  1295. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1296. if list_ner[i][1]-list_ner[i+1][0]==1:
  1297. union_index_set.add(i)
  1298. union_index_set.add(i+1)
  1299. union_index.append((i,i+1))
  1300. for i in range(len(list_ner)):
  1301. if i not in union_index_set:
  1302. result_list.append(list_ner[i])
  1303. for item in union_index:
  1304. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1305. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1306. return result_list
  1307. # def get_preprocessed(articles,useselffool=False):
  1308. # '''
  1309. # @summary:预处理步骤,NLP处理、实体识别
  1310. # @param:
  1311. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1312. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1313. # '''
  1314. # list_articles = []
  1315. # list_sentences = []
  1316. # list_entitys = []
  1317. # cost_time = dict()
  1318. # for article in articles:
  1319. # list_sentences_temp = []
  1320. # list_entitys_temp = []
  1321. # doc_id = article[0]
  1322. # sourceContent = article[1]
  1323. # _send_doc_id = article[3]
  1324. # _title = article[4]
  1325. # #表格处理
  1326. # key_preprocess = "tableToText"
  1327. # start_time = time.time()
  1328. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1329. #
  1330. # # log(article_processed)
  1331. #
  1332. # if key_preprocess not in cost_time:
  1333. # cost_time[key_preprocess] = 0
  1334. # cost_time[key_preprocess] += time.time()-start_time
  1335. #
  1336. # #article_processed = article[1]
  1337. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1338. # #nlp处理
  1339. # if article_processed is not None and len(article_processed)!=0:
  1340. # split_patten = "。"
  1341. # sentences = []
  1342. # _begin = 0
  1343. # for _iter in re.finditer(split_patten,article_processed):
  1344. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1345. # _begin = _iter.span()[1]
  1346. # sentences.append(article_processed[_begin:])
  1347. #
  1348. # lemmas = []
  1349. # doc_offsets = []
  1350. # dep_types = []
  1351. # dep_tokens = []
  1352. #
  1353. # time1 = time.time()
  1354. #
  1355. # '''
  1356. # tokens_all = fool.cut(sentences)
  1357. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1358. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1359. # ner_entitys_all = fool.ner(sentences)
  1360. # '''
  1361. # #限流执行
  1362. # key_nerToken = "nerToken"
  1363. # start_time = time.time()
  1364. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1365. # if key_nerToken not in cost_time:
  1366. # cost_time[key_nerToken] = 0
  1367. # cost_time[key_nerToken] += time.time()-start_time
  1368. #
  1369. #
  1370. # for sentence_index in range(len(sentences)):
  1371. #
  1372. #
  1373. #
  1374. # list_sentence_entitys = []
  1375. # sentence_text = sentences[sentence_index]
  1376. # tokens = tokens_all[sentence_index]
  1377. #
  1378. # list_tokenbegin = []
  1379. # begin = 0
  1380. # for i in range(0,len(tokens)):
  1381. # list_tokenbegin.append(begin)
  1382. # begin += len(str(tokens[i]))
  1383. # list_tokenbegin.append(begin+1)
  1384. # #pos_tag = pos_all[sentence_index]
  1385. # pos_tag = ""
  1386. #
  1387. # ner_entitys = ner_entitys_all[sentence_index]
  1388. #
  1389. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1390. #
  1391. # #识别package
  1392. #
  1393. #
  1394. # #识别实体
  1395. # for ner_entity in ner_entitys:
  1396. # begin_index_temp = ner_entity[0]
  1397. # end_index_temp = ner_entity[1]
  1398. # entity_type = ner_entity[2]
  1399. # entity_text = ner_entity[3]
  1400. #
  1401. # for j in range(len(list_tokenbegin)):
  1402. # if list_tokenbegin[j]==begin_index_temp:
  1403. # begin_index = j
  1404. # break
  1405. # elif list_tokenbegin[j]>begin_index_temp:
  1406. # begin_index = j-1
  1407. # break
  1408. # begin_index_temp += len(str(entity_text))
  1409. # for j in range(begin_index,len(list_tokenbegin)):
  1410. # if list_tokenbegin[j]>=begin_index_temp:
  1411. # end_index = j-1
  1412. # break
  1413. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1414. #
  1415. # #去掉标点符号
  1416. # entity_text = re.sub("[,,。:]","",entity_text)
  1417. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1418. #
  1419. #
  1420. # #使用正则识别金额
  1421. # entity_type = "money"
  1422. #
  1423. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1424. #
  1425. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1426. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1427. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1428. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1429. #
  1430. # set_begin = set()
  1431. # for pattern_key in list_money_pattern.keys():
  1432. # pattern = re.compile(list_money_pattern[pattern_key])
  1433. # all_match = re.findall(pattern, sentence_text)
  1434. # index = 0
  1435. # for i in range(len(all_match)):
  1436. # if len(all_match[i][0])>0:
  1437. # # print("===",all_match[i])
  1438. # #print(all_match[i][0])
  1439. # unit = ""
  1440. # entity_text = all_match[i][3]
  1441. # if pattern_key in ["key_word","front_m"]:
  1442. # unit = all_match[i][1]
  1443. # else:
  1444. # unit = all_match[i][4]
  1445. # if entity_text.find("元")>=0:
  1446. # unit = ""
  1447. #
  1448. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1449. #
  1450. # begin_index_temp = index
  1451. # for j in range(len(list_tokenbegin)):
  1452. # if list_tokenbegin[j]==index:
  1453. # begin_index = j
  1454. # break
  1455. # elif list_tokenbegin[j]>index:
  1456. # begin_index = j-1
  1457. # break
  1458. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1459. # end_index_temp = index
  1460. # #index += len(str(all_match[i][0]))
  1461. # for j in range(begin_index,len(list_tokenbegin)):
  1462. # if list_tokenbegin[j]>=index:
  1463. # end_index = j-1
  1464. # break
  1465. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1466. #
  1467. #
  1468. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1469. # if len(unit)>0:
  1470. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1471. # else:
  1472. # entity_text = str(getUnifyMoney(entity_text))
  1473. #
  1474. # _exists = False
  1475. # for item in list_sentence_entitys:
  1476. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1477. # _exists = True
  1478. # if not _exists:
  1479. # if float(entity_text)>10:
  1480. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1481. #
  1482. # else:
  1483. # index += 1
  1484. #
  1485. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1486. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1487. # list_sentences.append(list_sentences_temp)
  1488. # list_entitys.append(list_entitys_temp)
  1489. # return list_articles,list_sentences,list_entitys,cost_time
  1490. def get_preprocessed(articles, useselffool=False):
  1491. '''
  1492. @summary:预处理步骤,NLP处理、实体识别
  1493. @param:
  1494. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1495. @return:list of articles,list of each article of sentences,list of each article of entitys
  1496. '''
  1497. cost_time = dict()
  1498. list_articles = get_preprocessed_article(articles,cost_time)
  1499. list_sentences,list_outlines = get_preprocessed_sentences(list_articles,True,cost_time)
  1500. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1501. calibrateEnterprise(list_articles,list_sentences,list_entitys)
  1502. return list_articles,list_sentences,list_entitys,list_outlines,cost_time
  1503. def special_treatment(sourceContent, web_source_no):
  1504. if web_source_no == 'DX000202-1':
  1505. ser = re.search('中标供应商及中标金额:【((\w{5,20}-[\d,.]+,)+)】', sourceContent)
  1506. if ser:
  1507. new = ""
  1508. l = ser.group(1).split(',')
  1509. for i in range(len(l)):
  1510. it = l[i]
  1511. if '-' in it:
  1512. role, money = it.split('-')
  1513. new += '标段%d, 中标供应商: ' % (i + 1) + role + ',中标金额:' + money + '。'
  1514. sourceContent = sourceContent.replace(ser.group(0), new, 1)
  1515. elif web_source_no == '00753-14':
  1516. pcontent = sourceContent.find("div", id="pcontent")
  1517. pcontent = pcontent.find_all(recursive=False)[0]
  1518. first_table = None
  1519. for idx in range(len(pcontent.find_all(recursive=False))):
  1520. t_part = pcontent.find_all(recursive=False)[idx]
  1521. if t_part.name != "table":
  1522. break
  1523. if idx == 0:
  1524. first_table = t_part
  1525. else:
  1526. for _tr in t_part.find("tbody").find_all(recursive=False):
  1527. first_table.find("tbody").append(_tr)
  1528. t_part.clear()
  1529. elif web_source_no == 'DX008357-11':
  1530. pcontent = sourceContent.find("div", id="pcontent")
  1531. pcontent = pcontent.find_all(recursive=False)[0]
  1532. error_table = []
  1533. is_error_table = False
  1534. for part in pcontent.find_all(recursive=False):
  1535. if is_error_table:
  1536. if part.name == "table":
  1537. error_table.append(part)
  1538. else:
  1539. break
  1540. if part.name == "div" and part.get_text(strip=True) == "中标候选单位:":
  1541. is_error_table = True
  1542. first_table = None
  1543. for idx in range(len(error_table)):
  1544. t_part = error_table[idx]
  1545. # if t_part.name != "table":
  1546. # break
  1547. if idx == 0:
  1548. for _tr in t_part.find("tbody").find_all(recursive=False):
  1549. if _tr.get_text(strip=True) == "":
  1550. _tr.decompose()
  1551. first_table = t_part
  1552. else:
  1553. for _tr in t_part.find("tbody").find_all(recursive=False):
  1554. if _tr.get_text(strip=True) != "":
  1555. first_table.find("tbody").append(_tr)
  1556. t_part.clear()
  1557. elif web_source_no == '18021-2':
  1558. pcontent = sourceContent.find("div", id="pcontent")
  1559. td = pcontent.find_all("td")
  1560. for _td in td:
  1561. if str(_td.string).strip() == "报价金额":
  1562. _td.string = "单价"
  1563. elif web_source_no == '13740-2':
  1564. # “xxx成为成交供应商”
  1565. re_match = re.search("[^,。]+成为[^,。]*成交供应商", sourceContent)
  1566. if re_match:
  1567. sourceContent = sourceContent.replace(re_match.group(), "成交人:" + re_match.group(), sourceContent)
  1568. elif web_source_no == '03786-10':
  1569. ser1 = re.search('中标价:([\d,.]+)', sourceContent)
  1570. ser2 = re.search('合同金额[((]万元[))]:([\d,.]+)', sourceContent)
  1571. if ser1 and ser2:
  1572. m1 = ser1.group(1).replace(',', '')
  1573. m2 = ser2.group(1).replace(',', '')
  1574. if float(m1) < 100000 and (m1.split('.')[0] == m2.split('.')[0] or m2 == '0'):
  1575. new = '中标价(万元):' + m1
  1576. sourceContent = sourceContent.replace(ser1.group(0), new, 1)
  1577. elif web_source_no=='00076-4':
  1578. ser = re.search('主要标的数量:([0-9一]+)\w{,3},主要标的单价:([\d,.]+)元?,合同金额:(.00),', sourceContent)
  1579. if ser:
  1580. num = ser.group(1).replace('一', '1')
  1581. try:
  1582. num = 1 if num == '0' else num
  1583. unit_price = ser.group(2).replace(',', '')
  1584. total_price = str(int(num) * float(unit_price))
  1585. new = '合同金额:' + total_price
  1586. sourceContent = sourceContent.replace('合同金额:.00', new, 1)
  1587. except Exception as e:
  1588. log('preprocessing.py special_treatment exception')
  1589. elif web_source_no=='DX000105-2':
  1590. if re.search("成交公示", sourceContent) and re.search(',投标人:', sourceContent) and re.search(',成交人:', sourceContent)==None:
  1591. sourceContent = sourceContent.replace(',投标人:', ',成交人:')
  1592. elif web_source_no in ['04080-3', '04080-4']:
  1593. ser = re.search('合同金额:([0-9,]+.[0-9]{3,})(.{,4})', sourceContent)
  1594. if ser and '万' not in ser.group(2):
  1595. sourceContent = sourceContent.replace('合同金额:', '合同金额(万元):')
  1596. elif web_source_no=='03761-3':
  1597. ser = re.search('中标价,([0-9]+)[.0-9]*%', sourceContent)
  1598. if ser and int(ser.group(1))>100:
  1599. sourceContent = sourceContent.replace(ser.group(0), ser.group(0)[:-1]+'元')
  1600. elif web_source_no=='00695-7':
  1601. ser = re.search('支付金额:', sourceContent)
  1602. if ser:
  1603. sourceContent = sourceContent.replace('支付金额:', '合同金额:')
  1604. return sourceContent
  1605. def article_limit(soup,limit_words=30000):
  1606. sub_space = re.compile("\s+")
  1607. def soup_limit(_soup,_count,max_count=30000,max_gap=500):
  1608. """
  1609. :param _soup: soup
  1610. :param _count: 当前字数
  1611. :param max_count: 字数最大限制
  1612. :param max_gap: 超过限制后的最大误差
  1613. :return:
  1614. """
  1615. _gap = _count - max_count
  1616. _is_skip = False
  1617. next_soup = None
  1618. while len(_soup.find_all(recursive=False)) == 1 and \
  1619. _soup.get_text(strip=True) == _soup.find_all(recursive=False)[0].get_text(strip=True):
  1620. _soup = _soup.find_all(recursive=False)[0]
  1621. try:
  1622. for _soup_part in _soup.find_all(recursive=False):
  1623. if not _is_skip:
  1624. _count += len(re.sub(sub_space, "", _soup_part.get_text()))
  1625. if _count >= max_count:
  1626. _gap = _count - max_count
  1627. if _gap <= max_gap:
  1628. _is_skip = True
  1629. else:
  1630. next_soup = _soup_part
  1631. _count -= len(re.sub(sub_space, "", _soup_part.get_text()))
  1632. break
  1633. else:
  1634. _soup_part.decompose()
  1635. except:
  1636. return _count,_gap,None
  1637. return _count,_gap,next_soup
  1638. text_count = 0
  1639. have_attachment = False
  1640. attachment_part = None
  1641. for child in soup.find_all(recursive=True):
  1642. if child.name == 'div' and 'class' in child.attrs:
  1643. if "richTextFetch" in child['class']:
  1644. child.insert_before("##attachment##")
  1645. attachment_part = child
  1646. have_attachment = True
  1647. break
  1648. if not have_attachment:
  1649. # 无附件
  1650. if len(re.sub(sub_space, "", soup.get_text())) > limit_words:
  1651. text_count,gap,n_soup = soup_limit(soup,text_count,max_count=limit_words,max_gap=500)
  1652. while n_soup:
  1653. text_count, gap, n_soup = soup_limit(n_soup, text_count, max_count=limit_words, max_gap=500)
  1654. else:
  1655. # 有附件
  1656. _text = re.sub(sub_space, "", soup.get_text())
  1657. _text_split = _text.split("##attachment##")
  1658. if len(_text_split[0])>limit_words:
  1659. main_soup = attachment_part.parent
  1660. main_text = main_soup.find_all(recursive=False)[0]
  1661. text_count, gap, n_soup = soup_limit(main_text, text_count, max_count=limit_words, max_gap=500)
  1662. while n_soup:
  1663. text_count, gap, n_soup = soup_limit(n_soup, text_count, max_count=limit_words, max_gap=500)
  1664. if len(_text_split[1])>limit_words:
  1665. attachment_text_nums = 0
  1666. attachment_skip = False
  1667. for part in attachment_part.find_all(recursive=False):
  1668. if not attachment_skip:
  1669. attachment_text_nums += len(re.sub(sub_space, "", part.get_text()))
  1670. if attachment_text_nums>=limit_words:
  1671. attachment_skip = True
  1672. else:
  1673. part.decompose()
  1674. return soup
  1675. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1676. '''
  1677. :param articles: 待处理的article source html
  1678. :param useselffool: 是否使用selffool
  1679. :return: list_articles
  1680. '''
  1681. list_articles = []
  1682. for article in articles:
  1683. doc_id = article[0]
  1684. sourceContent = article[1]
  1685. sourceContent = re.sub("<html>|</html>|<body>|</body>","",sourceContent)
  1686. sourceContent = sourceContent.replace('<br/>', '<br>')
  1687. sourceContent = re.sub("<br>(\s{0,}<br>)+","<br>",sourceContent)
  1688. # for br_match in re.findall("[^>]+?<br>",sourceContent):
  1689. # _new = re.sub("<br>","",br_match)
  1690. # # <br>标签替换为<p>标签
  1691. # if not re.search("^\s+$",_new):
  1692. # _new = '<p>'+_new + '</p>'
  1693. # # print(br_match,_new)
  1694. # sourceContent = sourceContent.replace(br_match,_new,1)
  1695. _send_doc_id = article[3]
  1696. _title = article[4]
  1697. page_time = article[5]
  1698. web_source_no = article[6]
  1699. '''特别数据源对 html 做特别修改'''
  1700. if web_source_no in ['DX000202-1']:
  1701. sourceContent = special_treatment(sourceContent, web_source_no)
  1702. #表格处理
  1703. key_preprocess = "tableToText"
  1704. start_time = time.time()
  1705. # article_processed = tableToText(BeautifulSoup(sourceContent,"lxml"))
  1706. article_processed = BeautifulSoup(sourceContent,"lxml")
  1707. '''特别数据源对 BeautifulSoup(html) 做特别修改'''
  1708. if web_source_no in ["00753-14","DX008357-11","18021-2"]:
  1709. article_processed = special_treatment(article_processed, web_source_no)
  1710. for _soup in article_processed.descendants:
  1711. # 识别无标签文本,添加<span>标签
  1712. if not _soup.name and not _soup.parent.string and _soup.string.strip()!="":
  1713. # print(_soup.parent.string,_soup.string.strip())
  1714. _soup.wrap(article_processed.new_tag("span"))
  1715. # print(article_processed)
  1716. # 正文和附件内容限制字数30000
  1717. article_processed = article_limit(article_processed,limit_words=30000)
  1718. article_processed = get_preprocessed_outline(article_processed)
  1719. article_processed = tableToText(article_processed)
  1720. # print(article_processed)
  1721. article_processed = segment(article_processed)
  1722. article_processed = article_processed.replace('.','.') # 2021/12/01 修正OCR识别PDF小数点错误问题
  1723. article_processed = article_processed.replace('报价限价', '招标限价') #2021/12/17 由于报价限价预测为中投标金额所以修改
  1724. article_processed = article_processed.replace('成交工程价款', '成交工程价') # 2021/12/21 修正为中标价
  1725. # 修复OCR金额中“,”、“。”识别错误
  1726. article_processed_list = article_processed.split("##attachment##")
  1727. if len(article_processed_list)>1:
  1728. attachment_text = article_processed_list[1]
  1729. for _match in re.finditer("\d。\d{2}",attachment_text):
  1730. _match_text = _match.group()
  1731. attachment_text = attachment_text.replace(_match_text,_match_text.replace("。","."),1)
  1732. for _match in re.finditer("(\d,\d{3})[,,.]",attachment_text):
  1733. _match_text = _match.group()
  1734. attachment_text = attachment_text.replace(_match_text,_match_text.replace(",",","),1)
  1735. article_processed_list[1] = attachment_text
  1736. article_processed = "##attachment##".join(article_processed_list)
  1737. '''特别数据源对 预处理后文本 做特别修改'''
  1738. if web_source_no in ['03786-10', '00076-4', 'DX000105-2', '04080-3', '04080-4', '03761-3', '00695-7',"13740-2"]:
  1739. article_processed = special_treatment(article_processed, web_source_no)
  1740. # 提取bidway
  1741. list_bidway = extract_bidway(article_processed, _title)
  1742. if list_bidway:
  1743. bidway = list_bidway[0].get("body")
  1744. # bidway名称统一规范
  1745. bidway = bidway_integrate(bidway)
  1746. else:
  1747. bidway = ""
  1748. # 修正被","逗号分隔的时间
  1749. repair_time = re.compile("[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d|"
  1750. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[:时点],?[0-6]\d分?|"
  1751. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[时点]|"
  1752. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]|"
  1753. "[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d"
  1754. )
  1755. for _time in set(re.findall(repair_time,article_processed)):
  1756. if re.search(",",_time):
  1757. _time2 = re.sub(",", "", _time)
  1758. item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time2)
  1759. if item:
  1760. _time2 = _time2.replace(item.group(),item.group() + " ")
  1761. article_processed = article_processed.replace(_time, _time2)
  1762. else:
  1763. item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time)
  1764. if item:
  1765. _time2 = _time.replace(item.group(),item.group() + " ")
  1766. article_processed = article_processed.replace(_time, _time2)
  1767. # print('re_rtime',re.findall(repair_time,article_processed))
  1768. # log(article_processed)
  1769. if key_preprocess not in cost_time:
  1770. cost_time[key_preprocess] = 0
  1771. cost_time[key_preprocess] += round(time.time()-start_time,2)
  1772. #article_processed = article[1]
  1773. _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title,
  1774. bidway=bidway)
  1775. _article.fingerprint = getFingerprint(_title+sourceContent)
  1776. _article.page_time = page_time
  1777. list_articles.append(_article)
  1778. return list_articles
  1779. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1780. '''
  1781. :param list_articles: 经过预处理的article text
  1782. :return: list_sentences
  1783. '''
  1784. list_sentences = []
  1785. list_outlines = []
  1786. for article in list_articles:
  1787. list_sentences_temp = []
  1788. list_entitys_temp = []
  1789. doc_id = article.id
  1790. _send_doc_id = article.doc_id
  1791. _title = article.title
  1792. #表格处理
  1793. key_preprocess = "tableToText"
  1794. start_time = time.time()
  1795. article_processed = article.content
  1796. attachment_begin_index = -1
  1797. if key_preprocess not in cost_time:
  1798. cost_time[key_preprocess] = 0
  1799. cost_time[key_preprocess] += time.time()-start_time
  1800. #nlp处理
  1801. if article_processed is not None and len(article_processed)!=0:
  1802. split_patten = "。"
  1803. sentences = []
  1804. _begin = 0
  1805. sentences_set = set()
  1806. for _iter in re.finditer(split_patten,article_processed):
  1807. _sen = article_processed[_begin:_iter.span()[1]]
  1808. if len(_sen)>0 and _sen not in sentences_set:
  1809. # 标识在附件里的句子
  1810. if re.search("##attachment##",_sen):
  1811. attachment_begin_index = len(sentences)
  1812. # _sen = re.sub("##attachment##","",_sen)
  1813. sentences.append(_sen)
  1814. sentences_set.add(_sen)
  1815. _begin = _iter.span()[1]
  1816. _sen = article_processed[_begin:]
  1817. if re.search("##attachment##", _sen):
  1818. # _sen = re.sub("##attachment##", "", _sen)
  1819. attachment_begin_index = len(sentences)
  1820. if len(_sen)>0 and _sen not in sentences_set:
  1821. sentences.append(_sen)
  1822. sentences_set.add(_sen)
  1823. # 解析outline大纲分段
  1824. outline_list = []
  1825. if re.search("##split##",article.content):
  1826. temp_sentences = []
  1827. last_sentence_index = (-1,-1)
  1828. outline_index = 0
  1829. for sentence_index in range(len(sentences)):
  1830. sentence_text = sentences[sentence_index]
  1831. for _ in re.findall("##split##", sentence_text):
  1832. _match = re.search("##split##", sentence_text)
  1833. if last_sentence_index[0] > -1:
  1834. sentence_begin_index,wordOffset_begin = last_sentence_index
  1835. sentence_end_index = sentence_index
  1836. wordOffset_end = _match.start()
  1837. if sentence_begin_index<attachment_begin_index and sentence_end_index>=attachment_begin_index:
  1838. outline_list.append(Outline(doc_id,outline_index,'',sentence_begin_index,attachment_begin_index-1,wordOffset_begin,len(sentences[attachment_begin_index-1])))
  1839. else:
  1840. outline_list.append(Outline(doc_id,outline_index,'',sentence_begin_index,sentence_end_index,wordOffset_begin,wordOffset_end))
  1841. outline_index += 1
  1842. sentence_text = re.sub("##split##", "", sentence_text,count=1)
  1843. last_sentence_index = (sentence_index,_match.start())
  1844. temp_sentences.append(sentence_text)
  1845. if attachment_begin_index>-1 and last_sentence_index[0]<attachment_begin_index:
  1846. outline_list.append(Outline(doc_id,outline_index,'',last_sentence_index[0],attachment_begin_index-1,last_sentence_index[1],len(temp_sentences[attachment_begin_index-1])))
  1847. else:
  1848. outline_list.append(Outline(doc_id,outline_index,'',last_sentence_index[0],len(sentences)-1,last_sentence_index[1],len(temp_sentences[-1])))
  1849. sentences = temp_sentences
  1850. #解析outline的outline_text内容
  1851. for _outline in outline_list:
  1852. if _outline.sentence_begin_index==_outline.sentence_end_index:
  1853. _text = sentences[_outline.sentence_begin_index][_outline.wordOffset_begin:_outline.wordOffset_end]
  1854. else:
  1855. _text = ""
  1856. for idx in range(_outline.sentence_begin_index,_outline.sentence_end_index+1):
  1857. if idx==_outline.sentence_begin_index:
  1858. _text += sentences[idx][_outline.wordOffset_begin:]
  1859. elif idx==_outline.sentence_end_index:
  1860. _text += sentences[idx][:_outline.wordOffset_end]
  1861. else:
  1862. _text += sentences[idx]
  1863. _outline.outline_text = _text
  1864. _outline_summary = re.split("[::,]",_text,1)[0]
  1865. if len(_outline_summary)<20:
  1866. _outline.outline_summary = _outline_summary
  1867. # print(_outline.outline_index,_outline.outline_text)
  1868. article.content = "".join(sentences)
  1869. # sentences.append(article_processed[_begin:])
  1870. lemmas = []
  1871. doc_offsets = []
  1872. dep_types = []
  1873. dep_tokens = []
  1874. time1 = time.time()
  1875. '''
  1876. tokens_all = fool.cut(sentences)
  1877. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1878. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1879. ner_entitys_all = fool.ner(sentences)
  1880. '''
  1881. #限流执行
  1882. key_nerToken = "nerToken"
  1883. start_time = time.time()
  1884. tokens_all = getTokens(sentences,useselffool=useselffool)
  1885. if key_nerToken not in cost_time:
  1886. cost_time[key_nerToken] = 0
  1887. cost_time[key_nerToken] += round(time.time()-start_time,2)
  1888. in_attachment = False
  1889. for sentence_index in range(len(sentences)):
  1890. if sentence_index == attachment_begin_index:
  1891. in_attachment = True
  1892. sentence_text = sentences[sentence_index]
  1893. tokens = tokens_all[sentence_index]
  1894. #pos_tag = pos_all[sentence_index]
  1895. pos_tag = ""
  1896. ner_entitys = ""
  1897. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys,in_attachment=in_attachment))
  1898. if len(list_sentences_temp)==0:
  1899. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1900. list_sentences.append(list_sentences_temp)
  1901. list_outlines.append(outline_list)
  1902. return list_sentences,list_outlines
  1903. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1904. '''
  1905. :param list_sentences:分局情况
  1906. :param cost_time:
  1907. :return: list_entitys
  1908. '''
  1909. list_entitys = []
  1910. for list_sentence in list_sentences:
  1911. sentences = []
  1912. list_entitys_temp = []
  1913. for _sentence in list_sentence:
  1914. sentences.append(_sentence.sentence_text)
  1915. lemmas = []
  1916. doc_offsets = []
  1917. dep_types = []
  1918. dep_tokens = []
  1919. time1 = time.time()
  1920. '''
  1921. tokens_all = fool.cut(sentences)
  1922. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1923. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1924. ner_entitys_all = fool.ner(sentences)
  1925. '''
  1926. #限流执行
  1927. key_nerToken = "nerToken"
  1928. start_time = time.time()
  1929. found_yeji = 0 # 2021/8/6 增加判断是否正文包含评标结果 及类似业绩判断用于过滤后面的金额
  1930. # found_pingbiao = False
  1931. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1932. if key_nerToken not in cost_time:
  1933. cost_time[key_nerToken] = 0
  1934. cost_time[key_nerToken] += round(time.time()-start_time,2)
  1935. company_dict = set()
  1936. company_index = dict((i,set()) for i in range(len(list_sentence)))
  1937. for sentence_index in range(len(list_sentence)):
  1938. list_sentence_entitys = []
  1939. sentence_text = list_sentence[sentence_index].sentence_text
  1940. tokens = list_sentence[sentence_index].tokens
  1941. doc_id = list_sentence[sentence_index].doc_id
  1942. in_attachment = list_sentence[sentence_index].in_attachment
  1943. list_tokenbegin = []
  1944. begin = 0
  1945. for i in range(0,len(tokens)):
  1946. list_tokenbegin.append(begin)
  1947. begin += len(str(tokens[i]))
  1948. list_tokenbegin.append(begin+1)
  1949. #pos_tag = pos_all[sentence_index]
  1950. pos_tag = ""
  1951. ner_entitys = ner_entitys_all[sentence_index]
  1952. '''正则识别角色实体 经营部|经销部|电脑部|服务部|复印部|印刷部|彩印部|装饰部|修理部|汽修部|修理店|零售店|设计店|服务店|家具店|专卖店|分店|文具行|商行|印刷厂|修理厂|维修中心|修配中心|养护中心|服务中心|会馆|文化馆|超市|门市|商场|家具城|印刷社|经销处'''
  1953. for it in re.finditer(
  1954. '(?P<text_key_word>(((单一来源|中标|中选|中价|成交)(供应商|供货商|服务商|候选人|单位|人))|(供应商|供货商|服务商|候选人))(名称)?[为::]+)(?P<text>([^,。、;《::]{5,20})(厂|中心|超市|门市|商场|工作室|文印室|城|部|店|站|馆|行|社|处))[,。]',
  1955. sentence_text):
  1956. for k, v in it.groupdict().items():
  1957. if k == 'text_key_word':
  1958. keyword = v
  1959. if k == 'text':
  1960. entity = v
  1961. b = it.start() + len(keyword)
  1962. e = it.end() - 1
  1963. if (b, e, 'location', entity) in ner_entitys:
  1964. ner_entitys.remove((b, e, 'location', entity))
  1965. ner_entitys.append((b, e, 'company', entity))
  1966. elif (b, e, 'org', entity) not in ner_entitys and (b, e, 'company', entity) not in ner_entitys:
  1967. ner_entitys.append((b, e, 'company', entity))
  1968. for it in re.finditer(
  1969. '(?P<text_key_word>((建设|招租|招标|采购)(单位|人)|业主)(名称)?[为::]+)(?P<text>\w{2,4}[省市县区镇]([^,。、;《]{2,20})(管理处|办公室|委员会|村委会|纪念馆|监狱|管教所|修养所|社区|农场|林场|羊场|猪场|石场|村|幼儿园))[,。]',
  1970. sentence_text):
  1971. for k, v in it.groupdict().items():
  1972. if k == 'text_key_word':
  1973. keyword = v
  1974. if k == 'text':
  1975. entity = v
  1976. b = it.start() + len(keyword)
  1977. e = it.end() - 1
  1978. if (b, e, 'location', entity) in ner_entitys:
  1979. ner_entitys.remove((b, e, 'location', entity))
  1980. ner_entitys.append((b, e, 'org', entity))
  1981. if (b, e, 'org', entity) not in ner_entitys and (b, e, 'company', entity) not in ner_entitys:
  1982. ner_entitys.append((b, e, 'org', entity))
  1983. for ner_entity in ner_entitys:
  1984. if ner_entity[2] in ['company','org']:
  1985. company_dict.add((ner_entity[2],ner_entity[3]))
  1986. company_index[sentence_index].add((ner_entity[0],ner_entity[1]))
  1987. #识别package
  1988. #识别实体
  1989. for ner_entity in ner_entitys:
  1990. begin_index_temp = ner_entity[0]
  1991. end_index_temp = ner_entity[1]
  1992. entity_type = ner_entity[2]
  1993. entity_text = ner_entity[3]
  1994. if entity_type in ["org","company"] and not isLegalEnterprise(entity_text):
  1995. continue
  1996. for j in range(len(list_tokenbegin)):
  1997. if list_tokenbegin[j]==begin_index_temp:
  1998. begin_index = j
  1999. break
  2000. elif list_tokenbegin[j]>begin_index_temp:
  2001. begin_index = j-1
  2002. break
  2003. begin_index_temp += len(str(entity_text))
  2004. for j in range(begin_index,len(list_tokenbegin)):
  2005. if list_tokenbegin[j]>=begin_index_temp:
  2006. end_index = j-1
  2007. break
  2008. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  2009. #去掉标点符号
  2010. entity_text = re.sub("[,,。:!&@$\*]","",entity_text)
  2011. entity_text = entity_text.replace("(","(").replace(")",")") if isinstance(entity_text,str) else entity_text
  2012. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1],in_attachment=in_attachment))
  2013. # 标记文章末尾的"发布人”、“发布时间”实体
  2014. if sentence_index==len(list_sentence)-1:
  2015. if len(list_sentence_entitys[-2:])>2:
  2016. second2last = list_sentence_entitys[-2]
  2017. last = list_sentence_entitys[-1]
  2018. if (second2last.entity_type in ["company",'org'] and last.entity_type=="time") or (
  2019. second2last.entity_type=="time" and last.entity_type in ["company",'org']):
  2020. if last.wordOffset_begin - second2last.wordOffset_end < 6 and len(sentence_text) - last.wordOffset_end<6:
  2021. last.is_tail = True
  2022. second2last.is_tail = True
  2023. #使用正则识别金额
  2024. entity_type = "money"
  2025. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  2026. # list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  2027. # "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  2028. # "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  2029. # "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  2030. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  2031. "key_word": "((?P<text_key_word>(?:[¥¥]+,?|[单报标限总]价|金额|成交报?价|价格|预算|(监理|设计|勘察)(服务)?费|标的基本情况|CNY|成交结果|成交额|中标额)(?:[,,(\(]*\s*(人民币)?(?P<unit_key_word_before>[万亿]?元?(?P<filter_unit2>[台个只吨]*))\s*(/?费率)?(人民币)?[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元编号时间]{,8}?))(第[123一二三]名[::])?(\d+(\*\d+%)+=)?(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]{,1})(?:[(\(]?(?P<filter_>[%])*\s*(单位[::])?(?P<unit_key_word_behind>[万亿]?元?(?P<filter_unit1>[台只吨斤棵株页亩方条天]*))\s*[)\)]?))",
  2032. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万亿]?元)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]*)())",
  2033. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]*)(人民币)?[\((]?(?P<unit_behind_m>[万亿]?元(?P<filter_unit3>[台个只吨斤棵株页亩方条米]*))[\))]?)"}
  2034. # 2021/7/19 调整金额,单位提取正则,修复部分金额因为单位提取失败被过滤问题。
  2035. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  2036. set_begin = set()
  2037. # for pattern_key in list_money_pattern.keys():
  2038. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  2039. # # pattern = re.compile(list_money_pattern[pattern_key])
  2040. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  2041. # all_match = re.findall(pattern, sentence_text)
  2042. # index = 0
  2043. # for i in range(len(all_match)):
  2044. # if len(all_match[i][0])>0:
  2045. # print("===",all_match[i])
  2046. # #print(all_match[i][0])
  2047. # unit = ""
  2048. # entity_text = all_match[i][3]
  2049. # if pattern_key in ["key_word","front_m"]:
  2050. # unit = all_match[i][1]
  2051. # if pattern_key=="key_word":
  2052. # if all_match[i][1]=="" and all_match[i][4]!="":
  2053. # unit = all_match[i][4]
  2054. # else:
  2055. # unit = all_match[i][4]
  2056. # if entity_text.find("元")>=0:
  2057. # unit = ""
  2058. #
  2059. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  2060. # begin_index_temp = index
  2061. # for j in range(len(list_tokenbegin)):
  2062. # if list_tokenbegin[j]==index:
  2063. # begin_index = j
  2064. # break
  2065. # elif list_tokenbegin[j]>index:
  2066. # begin_index = j-1
  2067. # break
  2068. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  2069. # end_index_temp = index
  2070. # #index += len(str(all_match[i][0]))
  2071. # for j in range(begin_index,len(list_tokenbegin)):
  2072. # if list_tokenbegin[j]>=index:
  2073. # end_index = j-1
  2074. # break
  2075. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  2076. #
  2077. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  2078. # if len(unit)>0:
  2079. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  2080. # else:
  2081. # entity_text = str(getUnifyMoney(entity_text))
  2082. #
  2083. # _exists = False
  2084. # for item in list_sentence_entitys:
  2085. # if item.entity_id==entity_id and item.entity_type==entity_type:
  2086. # _exists = True
  2087. # if not _exists:
  2088. # if float(entity_text)>1:
  2089. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  2090. #
  2091. # else:
  2092. # index += 1
  2093. # if re.search('评标结果|候选人公示', sentence_text):
  2094. # found_pingbiao = True
  2095. if re.search('业绩', sentence_text):
  2096. found_yeji += 1
  2097. if found_yeji >= 2: # 过滤掉业绩后面的所有金额
  2098. all_match = []
  2099. else:
  2100. all_match = re.finditer(pattern_money, sentence_text)
  2101. index = 0
  2102. for _match in all_match:
  2103. if len(_match.group())>0:
  2104. # print("===",_match.group())
  2105. # # print(_match.groupdict())
  2106. notes = '' # 2021/7/20 新增备注金额大写或金额单位 if 金额大写 notes=大写 elif 单位 notes=单位
  2107. unit = ""
  2108. entity_text = ""
  2109. text_beforeMoney = ""
  2110. filter = ""
  2111. filter_unit = False
  2112. notSure = False
  2113. if re.search('业绩', sentence_text[:_match.span()[0]]): # 2021/7/21过滤掉业绩后面金额
  2114. # print('金额在业绩后面: ', _match.group(0))
  2115. found_yeji += 1
  2116. break
  2117. for k,v in _match.groupdict().items():
  2118. if v!="" and v is not None:
  2119. if k=='text_key_word':
  2120. notSure = True
  2121. if k.split("_")[0]=="money":
  2122. entity_text = v
  2123. if k.split("_")[0]=="unit":
  2124. unit = v
  2125. if k.split("_")[0]=="text":
  2126. text_beforeMoney = v
  2127. if k.split("_")[0]=="filter":
  2128. filter = v
  2129. if re.search("filter_unit",k) is not None:
  2130. filter_unit = True
  2131. # print(_match.group())
  2132. # print(entity_text,unit,text_beforeMoney,filter,filter_unit)
  2133. if re.search('(^\d{2,},\d{4,}万?$)|(^\d{2,},\d{2}万?$)', entity_text.strip()): # 2021/7/19 修正OCR识别小数点为逗号
  2134. if re.search('[幢栋号楼层]', sentence_text[max(0, _match.span()[0]-2):_match.span()[0]]):
  2135. entity_text = re.sub('\d+,', '', entity_text)
  2136. else:
  2137. entity_text = entity_text.replace(',', '.')
  2138. # print(' 修正OCR识别小数点为逗号')
  2139. if entity_text.find("元")>=0:
  2140. unit = ""
  2141. if unit == "": #2021/7/21 有明显金额特征的补充单位,避免被过滤
  2142. if ('¥' in text_beforeMoney or '¥' in text_beforeMoney):
  2143. unit = '元'
  2144. # print('明显金额特征补充单位 元')
  2145. elif re.search('[单报标限]价|金额|价格|(监理|设计|勘察)(服务)?费[::为]+$', text_beforeMoney.strip()) and \
  2146. re.search('\d{5,}',entity_text) and re.search('^0|1[3|4|5|6|7|8|9]\d{9}',entity_text)==None:
  2147. unit = '元'
  2148. # print('明显金额特征补充单位 元')
  2149. elif re.search('(^\d{,3}(,?\d{3})+(\.\d{2,7},?)$)|(^\d{,3}(,\d{3})+,?$)',entity_text):
  2150. unit = '元'
  2151. # print('明显金额特征补充单位 元')
  2152. if unit.find("万") >= 0 and entity_text.find("万") >= 0: #2021/7/19修改为金额文本有万,不计算单位
  2153. # print('修正金额及单位都有万, 金额:',entity_text, '单位:',unit)
  2154. unit = "元"
  2155. if re.search('.*万元万元', entity_text): #2021/7/19 修正两个万元
  2156. # print(' 修正两个万元',entity_text)
  2157. entity_text = entity_text.replace('万元万元','万元')
  2158. else:
  2159. if filter_unit:
  2160. continue
  2161. if filter!="":
  2162. continue
  2163. index = _match.span()[0]+len(text_beforeMoney)
  2164. begin_index_temp = index
  2165. for j in range(len(list_tokenbegin)):
  2166. if list_tokenbegin[j]==index:
  2167. begin_index = j
  2168. break
  2169. elif list_tokenbegin[j]>index:
  2170. begin_index = j-1
  2171. break
  2172. index = _match.span()[1]
  2173. end_index_temp = index
  2174. #index += len(str(all_match[i][0]))
  2175. for j in range(begin_index,len(list_tokenbegin)):
  2176. if list_tokenbegin[j]>=index:
  2177. end_index = j-1
  2178. break
  2179. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  2180. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  2181. # print('转换前金额:', entity_text, '单位:', unit, '备注:',notes, 'text_beforeMoney:',text_beforeMoney)
  2182. if re.search('总投资|投资总额|总预算|总概算|投资规模', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/8/5过滤掉总投资金额
  2183. # print('总投资金额: ', _match.group(0))
  2184. notes = '总投资'
  2185. elif re.search('投资', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/11/18 投资金额不作为招标金额
  2186. notes = '投资'
  2187. elif re.search('工程造价', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/12/20 工程造价不作为招标金额
  2188. notes = '工程造价'
  2189. elif (re.search('保证金', sentence_text[max(0, _match.span()[0] - 5):_match.span()[1]])
  2190. or re.search('保证金的?(缴纳)?(金额|金\?|额|\?)?[\((]*(万?元|为?人民币|大写|调整|变更|已?修改|更改|更正)?[\))]*[::为]',
  2191. sentence_text[max(0, _match.span()[0] - 10):_match.span()[1]])
  2192. or re.search('保证金由[\d.,]+.{,3}(变更|修改|更改|更正|调整?)为',
  2193. sentence_text[max(0, _match.span()[0] - 15):_match.span()[1]])):
  2194. notes = '保证金'
  2195. # print('保证金信息:', sentence_text[max(0, _match.span()[0] - 15):_match.span()[1]])
  2196. elif re.search('成本(警戒|预警)(线|价|值)[^0-9元]{,10}',
  2197. sentence_text[max(0, _match.span()[0] - 10):_match.span()[0]]):
  2198. notes = '成本警戒线'
  2199. elif re.search('(监理|设计|勘察)(服务)?费(报价)?[约为:]', sentence_text[_match.span()[0]:_match.span()[1]]):
  2200. cost_re = re.search('(监理|设计|勘察)(服务)?费', sentence_text[_match.span()[0]:_match.span()[1]])
  2201. notes = cost_re.group(1)
  2202. elif re.search('单价|总金额', sentence_text[_match.span()[0]:_match.span()[1]]):
  2203. notes = '单价'
  2204. elif re.search('[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆]', entity_text) != None:
  2205. notes = '大写'
  2206. if entity_text[0] == "拾": # 2021/12/16 修正大写金额省略了数字转换错误问题
  2207. entity_text = "壹"+entity_text
  2208. # print("补充备注:notes = 大写")
  2209. if len(unit)>0:
  2210. if unit.find('万')>=0 and len(entity_text.split('.')[0])>=8: # 2021/7/19 修正万元金额过大的情况
  2211. # print('修正单位万元金额过大的情况 金额:', entity_text, '单位:', unit)
  2212. entity_text = str(getUnifyMoney(entity_text) * getMultipleFactor(unit[0])/10000)
  2213. unit = '元' # 修正金额后单位 重置为元
  2214. else:
  2215. # print('str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0])):')
  2216. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  2217. else:
  2218. if entity_text.find('万')>=0 and entity_text.split('.')[0].isdigit() and len(entity_text.split('.')[0])>=8:
  2219. entity_text = str(getUnifyMoney(entity_text)/10000)
  2220. # print('修正金额字段含万 过大的情况')
  2221. else:
  2222. entity_text = str(getUnifyMoney(entity_text))
  2223. if float(entity_text)>100000000000: # float(entity_text)<100 or 2022/3/4 取消最小金额限制
  2224. # print('过滤掉金额:float(entity_text)<100 or float(entity_text)>100000000000', entity_text, unit)
  2225. continue
  2226. if notSure and unit=="" and float(entity_text)>100*10000:
  2227. # print('过滤掉金额 notSure and unit=="" and float(entity_text)>100*10000:', entity_text, unit)
  2228. continue
  2229. _exists = False
  2230. for item in list_sentence_entitys:
  2231. if item.entity_id==entity_id and item.entity_type==entity_type:
  2232. _exists = True
  2233. if (begin_index >=item.begin_index and begin_index<=item.end_index) or (end_index>=item.begin_index and end_index<=item.end_index):
  2234. _exists = True
  2235. if not _exists:
  2236. if float(entity_text)>1:
  2237. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp,in_attachment=in_attachment))
  2238. list_sentence_entitys[-1].notes = notes # 2021/7/20 新增金额备注
  2239. list_sentence_entitys[-1].money_unit = unit # 2021/7/20 新增金额备注
  2240. # print('预处理中的 金额:%s, 单位:%s'%(entity_text,unit))
  2241. # print(entity_text,unit,notes)
  2242. else:
  2243. index += 1
  2244. # "联系人"正则补充提取 2021/11/15 新增
  2245. list_person_text = [entity.entity_text for entity in list_sentence_entitys if entity.entity_type=='person']
  2246. error_text = ['交易','机构','教育','项目','公司','中标','开标','截标','监督','政府','国家','中国','技术','投标','传真','网址','电子邮',
  2247. '联系','联系电','联系地','采购代','邮政编','邮政','电话','手机','手机号','联系人','地址','地点','邮箱','邮编','联系方','招标','招标人','代理',
  2248. '代理人','采购','附件','注意','登录','报名','踏勘']
  2249. list_person_text = set(list_person_text + error_text)
  2250. re_person = re.compile("联系人[::]([\u4e00-\u9fa5]工)|"
  2251. "联系人[::]([\u4e00-\u9fa5]{2,3})(?=联系)|"
  2252. "联系人[::]([\u4e00-\u9fa5]{2,3})")
  2253. list_person = []
  2254. for match_result in re_person.finditer(sentence_text):
  2255. match_text = match_result.group()
  2256. entity_text = match_text[4:]
  2257. wordOffset_begin = match_result.start() + 4
  2258. wordOffset_end = match_result.end()
  2259. # print(text[wordOffset_begin:wordOffset_end])
  2260. # 排除一些不为人名的实体
  2261. if re.search("^[\u4e00-\u9fa5]{7,}([,。]|$)",sentence_text[wordOffset_begin:wordOffset_begin+20]):
  2262. continue
  2263. if entity_text not in list_person_text and entity_text[:2] not in list_person_text:
  2264. _person = dict()
  2265. _person['body'] = entity_text
  2266. _person['begin_index'] = wordOffset_begin
  2267. _person['end_index'] = wordOffset_end
  2268. list_person.append(_person)
  2269. entity_type = "person"
  2270. for person in list_person:
  2271. begin_index_temp = person['begin_index']
  2272. for j in range(len(list_tokenbegin)):
  2273. if list_tokenbegin[j] == begin_index_temp:
  2274. begin_index = j
  2275. break
  2276. elif list_tokenbegin[j] > begin_index_temp:
  2277. begin_index = j - 1
  2278. break
  2279. index = person['end_index']
  2280. end_index_temp = index
  2281. for j in range(begin_index, len(list_tokenbegin)):
  2282. if list_tokenbegin[j] >= index:
  2283. end_index = j - 1
  2284. break
  2285. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2286. entity_text = person['body']
  2287. list_sentence_entitys.append(
  2288. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2289. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2290. # 资金来源提取 2020/12/30 新增
  2291. list_moneySource = extract_moneySource(sentence_text)
  2292. entity_type = "moneysource"
  2293. for moneySource in list_moneySource:
  2294. begin_index_temp = moneySource['begin_index']
  2295. for j in range(len(list_tokenbegin)):
  2296. if list_tokenbegin[j] == begin_index_temp:
  2297. begin_index = j
  2298. break
  2299. elif list_tokenbegin[j] > begin_index_temp:
  2300. begin_index = j - 1
  2301. break
  2302. index = moneySource['end_index']
  2303. end_index_temp = index
  2304. for j in range(begin_index, len(list_tokenbegin)):
  2305. if list_tokenbegin[j] >= index:
  2306. end_index = j - 1
  2307. break
  2308. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2309. entity_text = moneySource['body']
  2310. list_sentence_entitys.append(
  2311. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2312. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2313. # 电子邮箱提取 2021/11/04 新增
  2314. list_email = extract_email(sentence_text)
  2315. entity_type = "email" # 电子邮箱
  2316. for email in list_email:
  2317. begin_index_temp = email['begin_index']
  2318. for j in range(len(list_tokenbegin)):
  2319. if list_tokenbegin[j] == begin_index_temp:
  2320. begin_index = j
  2321. break
  2322. elif list_tokenbegin[j] > begin_index_temp:
  2323. begin_index = j - 1
  2324. break
  2325. index = email['end_index']
  2326. end_index_temp = index
  2327. for j in range(begin_index, len(list_tokenbegin)):
  2328. if list_tokenbegin[j] >= index:
  2329. end_index = j - 1
  2330. break
  2331. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2332. entity_text = email['body']
  2333. list_sentence_entitys.append(
  2334. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2335. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2336. # 服务期限提取 2020/12/30 新增
  2337. list_servicetime = extract_servicetime(sentence_text)
  2338. entity_type = "serviceTime"
  2339. for servicetime in list_servicetime:
  2340. begin_index_temp = servicetime['begin_index']
  2341. for j in range(len(list_tokenbegin)):
  2342. if list_tokenbegin[j] == begin_index_temp:
  2343. begin_index = j
  2344. break
  2345. elif list_tokenbegin[j] > begin_index_temp:
  2346. begin_index = j - 1
  2347. break
  2348. index = servicetime['end_index']
  2349. end_index_temp = index
  2350. for j in range(begin_index, len(list_tokenbegin)):
  2351. if list_tokenbegin[j] >= index:
  2352. end_index = j - 1
  2353. break
  2354. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2355. entity_text = servicetime['body']
  2356. list_sentence_entitys.append(
  2357. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2358. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2359. # 招标方式提取 2020/12/30 新增
  2360. # list_bidway = extract_bidway(sentence_text, )
  2361. # entity_type = "bidway"
  2362. # for bidway in list_bidway:
  2363. # begin_index_temp = bidway['begin_index']
  2364. # end_index_temp = bidway['end_index']
  2365. # begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  2366. # end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  2367. # if begin_index is None or end_index is None:
  2368. # continue
  2369. # print(begin_index_temp,end_index_temp,begin_index,end_index)
  2370. # entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2371. # entity_text = bidway['body']
  2372. # list_sentence_entitys.append(
  2373. # Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2374. # begin_index_temp, end_index_temp))
  2375. # 2021/12/29 新增比率提取
  2376. list_ratio = extract_ratio(sentence_text)
  2377. entity_type = "ratio"
  2378. for ratio in list_ratio:
  2379. # print("ratio", ratio)
  2380. begin_index_temp = ratio['begin_index']
  2381. for j in range(len(list_tokenbegin)):
  2382. if list_tokenbegin[j] == begin_index_temp:
  2383. begin_index = j
  2384. break
  2385. elif list_tokenbegin[j] > begin_index_temp:
  2386. begin_index = j - 1
  2387. break
  2388. index = ratio['end_index']
  2389. end_index_temp = index
  2390. for j in range(begin_index, len(list_tokenbegin)):
  2391. if list_tokenbegin[j] >= index:
  2392. end_index = j - 1
  2393. break
  2394. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  2395. entity_text = ratio['body']
  2396. list_sentence_entitys.append(
  2397. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  2398. begin_index_temp, end_index_temp,in_attachment=in_attachment))
  2399. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  2400. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  2401. # 补充ner模型未识别全的company/org实体
  2402. for sentence_index in range(len(list_sentence)):
  2403. sentence_text = list_sentence[sentence_index].sentence_text
  2404. tokens = list_sentence[sentence_index].tokens
  2405. doc_id = list_sentence[sentence_index].doc_id
  2406. in_attachment = list_sentence[sentence_index].in_attachment
  2407. list_tokenbegin = []
  2408. begin = 0
  2409. for i in range(0, len(tokens)):
  2410. list_tokenbegin.append(begin)
  2411. begin += len(str(tokens[i]))
  2412. list_tokenbegin.append(begin + 1)
  2413. add_sentence_entitys = []
  2414. company_dict = sorted(list(company_dict),key=lambda x:len(x[1]),reverse=True)
  2415. for company_type,company_text in company_dict:
  2416. begin_index_list = findAllIndex(company_text,sentence_text)
  2417. for begin_index in begin_index_list:
  2418. is_continue = False
  2419. for t_begin,t_end in list(company_index[sentence_index]):
  2420. if begin_index>=t_begin and begin_index+len(company_text)<=t_end:
  2421. is_continue = True
  2422. break
  2423. if not is_continue:
  2424. add_sentence_entitys.append((begin_index,begin_index+len(company_text),company_type,company_text))
  2425. company_index[sentence_index].add((begin_index,begin_index+len(company_text)))
  2426. else:
  2427. continue
  2428. for ner_entity in add_sentence_entitys:
  2429. begin_index_temp = ner_entity[0]
  2430. end_index_temp = ner_entity[1]
  2431. entity_type = ner_entity[2]
  2432. entity_text = ner_entity[3]
  2433. if entity_type in ["org","company"] and not isLegalEnterprise(entity_text):
  2434. continue
  2435. for j in range(len(list_tokenbegin)):
  2436. if list_tokenbegin[j]==begin_index_temp:
  2437. begin_index = j
  2438. break
  2439. elif list_tokenbegin[j]>begin_index_temp:
  2440. begin_index = j-1
  2441. break
  2442. begin_index_temp += len(str(entity_text))
  2443. for j in range(begin_index,len(list_tokenbegin)):
  2444. if list_tokenbegin[j]>=begin_index_temp:
  2445. end_index = j-1
  2446. break
  2447. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  2448. #去掉标点符号
  2449. entity_text = re.sub("[,,。:!&@$\*]","",entity_text)
  2450. entity_text = entity_text.replace("(","(").replace(")",")") if isinstance(entity_text,str) else entity_text
  2451. list_entitys_temp.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1],in_attachment=in_attachment))
  2452. list_entitys_temp.sort(key=lambda x:(x.sentence_index,x.begin_index))
  2453. list_entitys.append(list_entitys_temp)
  2454. return list_entitys
  2455. def union_result(codeName,prem):
  2456. '''
  2457. @summary:模型的结果拼成字典
  2458. @param:
  2459. codeName:编号名称模型的结果字典
  2460. prem:拿到属性的角色的字典
  2461. @return:拼接起来的字典
  2462. '''
  2463. result = []
  2464. assert len(codeName)==len(prem)
  2465. for item_code,item_prem in zip(codeName,prem):
  2466. result.append(dict(item_code,**item_prem))
  2467. return result
  2468. def persistenceData(data):
  2469. '''
  2470. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  2471. '''
  2472. import psycopg2
  2473. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  2474. cursor = conn.cursor()
  2475. for item_index in range(len(data)):
  2476. item = data[item_index]
  2477. doc_id = item[0]
  2478. dic = item[1]
  2479. code = dic['code']
  2480. name = dic['name']
  2481. prem = dic['prem']
  2482. if len(code)==0:
  2483. code_insert = ""
  2484. else:
  2485. code_insert = ";".join(code)
  2486. prem_insert = ""
  2487. for item in prem:
  2488. for x in item:
  2489. if isinstance(x, list):
  2490. if len(x)>0:
  2491. for x1 in x:
  2492. prem_insert+="/".join(x1)+","
  2493. prem_insert+="$"
  2494. else:
  2495. prem_insert+=str(x)+"$"
  2496. prem_insert+=";"
  2497. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  2498. cursor.execute(sql)
  2499. conn.commit()
  2500. conn.close()
  2501. def persistenceData1(list_entitys,list_sentences):
  2502. '''
  2503. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  2504. '''
  2505. import psycopg2
  2506. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  2507. cursor = conn.cursor()
  2508. for list_entity in list_entitys:
  2509. for entity in list_entity:
  2510. if entity.values is not None:
  2511. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  2512. else:
  2513. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  2514. cursor.execute(sql)
  2515. for list_sentence in list_sentences:
  2516. for sentence in list_sentence:
  2517. str_tokens = "["
  2518. for item in sentence.tokens:
  2519. str_tokens += "'"
  2520. if item=="'":
  2521. str_tokens += "''"
  2522. else:
  2523. str_tokens += item
  2524. str_tokens += "',"
  2525. str_tokens = str_tokens[:-1]+"]"
  2526. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  2527. cursor.execute(sql)
  2528. conn.commit()
  2529. conn.close()
  2530. def _handle(item,result_queue):
  2531. dochtml = item["dochtml"]
  2532. docid = item["docid"]
  2533. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  2534. flag = False
  2535. if list_innerTable:
  2536. flag = True
  2537. for table in list_innerTable:
  2538. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  2539. def getPredictTable():
  2540. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  2541. import pandas as pd
  2542. import json
  2543. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  2544. df = pd.read_csv(filename)
  2545. df_data = {"json_table":[],"docid":[]}
  2546. _count = 0
  2547. _sum = len(df["docid"])
  2548. task_queue = Queue()
  2549. result_queue = Queue()
  2550. _index = 0
  2551. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  2552. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  2553. _index += 1
  2554. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  2555. mh.run()
  2556. while True:
  2557. try:
  2558. item = result_queue.get(block=True,timeout=1)
  2559. df_data["docid"].append(item["docid"])
  2560. df_data["json_table"].append(item["json_table"])
  2561. except Exception as e:
  2562. print(e)
  2563. break
  2564. df_1 = pd.DataFrame(df_data)
  2565. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  2566. if __name__=="__main__":
  2567. '''
  2568. import glob
  2569. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  2570. file_txt = str(file).replace("html","txt")
  2571. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  2572. f.write("\n================\n")
  2573. content = codecs.open(file,"r",encoding="utf8").read()
  2574. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  2575. '''
  2576. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  2577. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  2578. # getPredictTable()
  2579. with open('D:/138786703.html', 'r', encoding='utf-8') as f:
  2580. sourceContent = f.read()
  2581. # article_processed = segment(tableToText(BeautifulSoup(sourceContent, "lxml")))
  2582. # print(article_processed)
  2583. list_articles, list_sentences, list_entitys, _cost_time = get_preprocessed([['doc_id', sourceContent, "", "", '', '2021-02-01']], useselffool=True)
  2584. for entity in list_entitys[0]:
  2585. print(entity.entity_type, entity.entity_text)