documentMerge.py 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. #coding:UTF8
  2. from odps.udf import annotate
  3. from odps.distcache import get_cache_archive
  4. from odps.distcache import get_cache_file
  5. from odps.udf import BaseUDTF,BaseUDAF
  6. import threading
  7. import logging
  8. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  9. import time
  10. import json
  11. def log(msg):
  12. logging.info(msg)
  13. # 配置pandas依赖包
  14. def include_package_path(res_name):
  15. import os, sys
  16. archive_files = get_cache_archive(res_name)
  17. dir_names = sorted([os.path.dirname(os.path.normpath(f.name)) for f in archive_files
  18. if '.dist_info' not in f.name], key=lambda v: len(v))
  19. _path = dir_names[0].split(".zip/files")[0]+".zip/files"
  20. log("add path:%s"%(_path))
  21. sys.path.append(_path)
  22. return os.path.dirname(dir_names[0])
  23. # 可能出现类似RuntimeError: xxx has been blocked by sandbox
  24. # 这是因为包含C的库,会被沙盘block,可设置set odps.isolation.session.enable = true
  25. def include_file(file_name):
  26. import os, sys
  27. so_file = get_cache_file(file_name)
  28. sys.path.append(os.path.dirname(os.path.abspath(so_file.name)))
  29. def include_so(file_name):
  30. import os, sys
  31. so_file = get_cache_file(file_name)
  32. with open(so_file.name, 'rb') as fp:
  33. content=fp.read()
  34. so = open(file_name, "wb")
  35. so.write(content)
  36. so.flush()
  37. so.close()
  38. #初始化业务数据包,由于上传限制,python版本以及archive解压包不统一等各种问题,需要手动导入
  39. def init_env(list_files,package_name):
  40. import os,sys
  41. if len(list_files)==1:
  42. so_file = get_cache_file(list_files[0])
  43. cmd_line = os.path.abspath(so_file.name)
  44. os.system("unzip -o %s -d %s"%(cmd_line,package_name))
  45. elif len(list_files)>1:
  46. cmd_line = "cat"
  47. for _file in list_files:
  48. so_file = get_cache_file(_file)
  49. cmd_line += " "+os.path.abspath(so_file.name)
  50. cmd_line += " > temp.zip"
  51. os.system(cmd_line)
  52. os.system("unzip -o temp.zip -d %s"%(package_name))
  53. # os.system("rm -rf %s/*.dist-info"%(package_name))
  54. # return os.listdir(os.path.abspath("local_package"))
  55. # os.system("echo export LD_LIBRARY_PATH=%s >> ~/.bashrc"%(os.path.abspath("local_package")))
  56. # os.system("source ~/.bashrc")
  57. sys.path.insert(0,os.path.abspath(package_name))
  58. # sys.path.append(os.path.join(os.path.abspath("local_package"),"interface_real"))
  59. import platform
  60. def getSet(list_dict,key):
  61. _set = set()
  62. for item in list_dict:
  63. if key in item:
  64. if item[key]!='' and item[key] is not None:
  65. if re.search("^[\d\.]+$",item[key]) is not None:
  66. _set.add(str(float(item[key])))
  67. else:
  68. _set.add(str(item[key]))
  69. return _set
  70. def split_with_time(list_dict,sort_key,timedelta=86400*120):
  71. if len(list_dict)>0:
  72. if sort_key in list_dict[0]:
  73. list_dict.sort(key=lambda x:x[sort_key])
  74. list_group = []
  75. _begin = 0
  76. for i in range(len(list_dict)-1):
  77. if abs(list_dict[i][sort_key]-list_dict[i+1][sort_key])<timedelta:
  78. continue
  79. else:
  80. _group = []
  81. for j in range(_begin,i+1):
  82. _group.append(list_dict[j])
  83. if len(_group)>1:
  84. list_group.append(_group)
  85. _begin = i + 1
  86. if len(list_dict)>1:
  87. _group = []
  88. for j in range(_begin,len(list_dict)):
  89. _group.append(list_dict[j])
  90. if len(_group)>1:
  91. list_group.append(_group)
  92. return list_group
  93. return [list_dict]
  94. @annotate('bigint,bigint,string,string,string,string,string,string,bigint->string')
  95. class f_merge_rule_limit_num_contain_greater(BaseUDAF):
  96. '''
  97. 项目编号、中标单位、len(项目编号)>7、中标单位<> ""、合并后非空招标单位数<2、合并后同公告类型非空金额相同
  98. '''
  99. def __init__(self):
  100. import logging
  101. import json,re
  102. global json,logging,re
  103. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  104. def new_buffer(self):
  105. return [list()]
  106. def iterate(self, buffer,docid,page_time_stamp,set_limit_column1,set_limit_column2,set_limit_column3,set_limit_column4,contain_column,greater_column,MAX_NUM):
  107. buffer[0].append({"docid":docid,"page_time_stamp":page_time_stamp,"set_limit_column1":set_limit_column1,
  108. "set_limit_column2":set_limit_column2,"set_limit_column3":set_limit_column3,"set_limit_column4":set_limit_column4,
  109. "contain_column":contain_column,"greater_column":greater_column,"MAX_NUM":MAX_NUM})
  110. def merge(self, buffer, pbuffer):
  111. buffer[0].extend(pbuffer[0])
  112. def terminate(self, buffer):
  113. MAX_NUM = 5
  114. if len(buffer[0])>0:
  115. MAX_NUM = buffer[0][0]["MAX_NUM"]
  116. list_split = split_with_time(buffer[0],"page_time_stamp")
  117. list_group = []
  118. for _split in list_split:
  119. flag = True
  120. keys = ["set_limit_column1","set_limit_column2","set_limit_column3","set_limit_column4"]
  121. dict_set = {}
  122. for _key in keys:
  123. dict_set[_key] = set()
  124. if len(_split)>MAX_NUM:
  125. flag = False
  126. else:
  127. for _key in keys:
  128. logging.info(_key+str(getSet(_split,_key)))
  129. if len(getSet(_split,_key))>1:
  130. flag = False
  131. break
  132. MAX_CONTAIN_COLUMN = None
  133. #判断组内每条公告是否包含
  134. if flag:
  135. for _d in _split:
  136. contain_column = _d["contain_column"]
  137. if contain_column is not None and contain_column !="":
  138. if MAX_CONTAIN_COLUMN is None:
  139. MAX_CONTAIN_COLUMN = contain_column
  140. else:
  141. if len(MAX_CONTAIN_COLUMN)<len(contain_column):
  142. if contain_column.find(MAX_CONTAIN_COLUMN)==-1:
  143. flag = False
  144. break
  145. MAX_CONTAIN_COLUMN = contain_column
  146. else:
  147. if MAX_CONTAIN_COLUMN.find(contain_column)==-1:
  148. flag = False
  149. break
  150. if len(getSet(_split,"greater_column"))==1:
  151. flag = False
  152. break
  153. if flag:
  154. _set_docid = set()
  155. for item in _split:
  156. _set_docid.add(item["docid"])
  157. if len(_set_docid)>1:
  158. list_group.append(list(_set_docid))
  159. return json.dumps(list_group)
  160. def getDiffIndex(list_dict,key):
  161. _set = set()
  162. for _i in range(len(list_dict)):
  163. item = list_dict[_i]
  164. if key in item:
  165. if item[key]!='' and item[key] is not None:
  166. if re.search("^\d[\d\.]*$",item[key]) is not None:
  167. _set.add(str(float(item[key])))
  168. else:
  169. _set.add(str(item[key]))
  170. if len(_set)>1:
  171. return _i
  172. return len(list_dict)
  173. @annotate('bigint,bigint,string,string,string,string,string,string,string,bigint->string')
  174. class f_remege_limit_num_contain(BaseUDAF):
  175. '''
  176. 项目编号、中标单位、len(项目编号)>7、中标单位<> ""、合并后非空招标单位数<2、合并后同公告类型非空金额相同
  177. '''
  178. def __init__(self):
  179. import logging
  180. import json,re
  181. global json,logging,re
  182. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  183. def new_buffer(self):
  184. return [list()]
  185. def iterate(self, buffer,docid,page_time_stamp,set_limit_column1,set_limit_column2,set_limit_column3,set_limit_column4,contain_column1,contain_column2,notLike_column,confidence):
  186. buffer[0].append({"docid":docid,"page_time_stamp":page_time_stamp,"set_limit_column1":set_limit_column1,
  187. "set_limit_column2":set_limit_column2,"set_limit_column3":set_limit_column3,"set_limit_column4":set_limit_column4,
  188. "contain_column1":contain_column1,"contain_column2":contain_column2,"notLike_column":notLike_column,"confidence":confidence})
  189. def merge(self, buffer, pbuffer):
  190. buffer[0].extend(pbuffer[0])
  191. def getNotLikeSet(self,_dict,column_name):
  192. column_value = _dict.get(column_name,None)
  193. _set = set()
  194. if column_value is not None:
  195. for _i in range(1,len(column_value)):
  196. _set.add(column_value[_i-1:_i+1])
  197. _dict["notLike_set"] = _set
  198. def getSimilarity(self,_set1,_set2):
  199. _sum = max([1,min([len(_set1),len(_set2)])])
  200. return len(_set1&_set2)/_sum
  201. def terminate(self, buffer):
  202. list_group = []
  203. the_group = buffer[0]
  204. SIM_PROB = 0.6
  205. for _d in the_group:
  206. self.getNotLikeSet(_d,"notLike_column")
  207. #判断多个值与否
  208. keys = ["set_limit_column1","set_limit_column2","set_limit_column3","set_limit_column4"]
  209. re_merge = False
  210. for _key in keys:
  211. if len(getSet(the_group,_key))>1:
  212. re_merge = True
  213. break
  214. #判断是否相似而不相同
  215. re_merge_sim = False
  216. for _i1 in range(0,len(the_group)):
  217. for _j1 in range(_i1+1,len(the_group)):
  218. _set1 = the_group[_i1]["notLike_set"]
  219. _set2 = the_group[_j1]["notLike_set"]
  220. _sim = self.getSimilarity(_set1,_set2)
  221. if _sim>SIM_PROB and _sim<1:
  222. re_merge_sim = True
  223. break
  224. contain_keys = ["contain_column1","contain_column2"]
  225. logging.info(the_group)
  226. logging.info(str(re_merge)+str(re_merge_sim))
  227. if re_merge or re_merge_sim:
  228. the_group.sort(key=lambda x:x["confidence"],reverse=True)
  229. the_group.sort(key=lambda x:x["page_time_stamp"])
  230. #重新成组
  231. dict_docid_doc = {}
  232. for _doc in the_group:
  233. dict_docid_doc[_doc["docid"]] = _doc
  234. for _doc in the_group:
  235. merge_flag = False
  236. for _index in range(len(list_group)):
  237. _g = list_group[_index]
  238. hit_count = 0
  239. dict_temp = dict()
  240. #多个值的异常
  241. if re_merge:
  242. for _c_key in contain_keys:
  243. dict_temp[_c_key] = _g[_c_key]
  244. if _g[_c_key] is not None and _doc[_c_key] is not None:
  245. if len(_g[_c_key])>len(_doc[_c_key]):
  246. if str(_g[_c_key]).find(str(_doc[_c_key]))>=0:
  247. dict_temp[_c_key] = _g[_c_key]
  248. hit_count += 1
  249. else:
  250. if str(_doc[_c_key]).find(str(_g[_c_key]))>=0:
  251. dict_temp[_c_key] = _doc[_c_key]
  252. _g[_c_key] = _doc[_c_key]
  253. hit_count += 1
  254. else:
  255. hit_count = 1
  256. # if hit_count==len(contain_keys):
  257. if hit_count>0:
  258. _flag_sim = False
  259. #相似而不相同的异常
  260. if re_merge_sim:
  261. for _docid in _g["docid"]:
  262. tmp_d = dict_docid_doc[_docid]
  263. _sim = self.getSimilarity(tmp_d["notLike_set"],_doc["notLike_set"])
  264. if _sim>SIM_PROB and _sim<1:
  265. _flag_sim = True
  266. if not _flag_sim:
  267. for _c_key in dict_temp.keys():
  268. _g[_c_key] = dict_temp[_c_key]
  269. _g["docid"].append(_doc["docid"])
  270. merge_flag = True
  271. break
  272. if not merge_flag:
  273. _dict = dict()
  274. _dict["docid"] = [_doc["docid"]]
  275. for _c_key in contain_keys:
  276. _dict[_c_key] = _doc[_c_key]
  277. list_group.append(_dict)
  278. final_group = []
  279. #判断是否符合一个值
  280. for _group in list_group:
  281. _split = []
  282. for _docid in _group["docid"]:
  283. _split.append(dict_docid_doc[_docid])
  284. #通过置信度排序,尽可能保留组
  285. _split.sort(key=lambda x:x["confidence"],reverse=True)
  286. #置信度
  287. list_key_index = []
  288. for _k in keys:
  289. list_key_index.append(getDiffIndex(_split,_k))
  290. _index = min(list_key_index)
  291. final_group.append([_c["docid"] for _c in _split[:_index]])
  292. for _c in _split[_index:]:
  293. final_group.append([_c["docid"]])
  294. #若是找到两个以上,则全部单独成组,否则成一组
  295. # _flag = True
  296. # for _key in keys:
  297. # if len(getSet(_split,_key))>1:
  298. # _flag = False
  299. # break
  300. # if not _flag:
  301. # for _docid in _group["docid"]:
  302. # final_group.append([_docid])
  303. # else:
  304. # final_group.append(list(set(_group["docid"])))
  305. else:
  306. final_group = [list(set([item["docid"] for item in the_group]))]
  307. log(str(final_group))
  308. return json.dumps(final_group)
  309. @annotate('string -> string')
  310. class f_get_remerge_group(BaseUDTF):
  311. '''
  312. 将多个组拆解成多条记录
  313. '''
  314. def __init__(self):
  315. import logging
  316. import json
  317. global json,logging
  318. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  319. def process(self,json_remerge):
  320. if json_remerge is not None:
  321. list_group = json.loads(json_remerge)
  322. for _group in list_group:
  323. l_g = list(set(_group))
  324. l_g.sort(key=lambda x:x)
  325. list_docid = [str(_docid) for _docid in l_g]
  326. self.forward(",".join(list_docid))
  327. @annotate('bigint,bigint,string->string')
  328. class f_merge_probability(BaseUDAF):
  329. '''
  330. 合并组为一条记录
  331. '''
  332. def __init__(self):
  333. import json
  334. global json
  335. def new_buffer(self):
  336. return [[]]
  337. def iterate(self, buffer,docid,page_time_stamp,_type):
  338. buffer[0].append({"docid":docid,"page_time_stamp":page_time_stamp,"type":_type})
  339. def merge(self, buffer, pbuffer):
  340. buffer[0].extend(pbuffer[0])
  341. def terminate(self, buffer):
  342. list_dict = buffer[0]
  343. list_dict = list_dict[:10000]
  344. list_group = split_with_time(list_dict,sort_key="page_time_stamp",timedelta=86400*120)
  345. return json.dumps(list_group)
  346. @annotate('string -> bigint,bigint,bigint,bigint,string')
  347. class f_split_merge_probability(BaseUDTF):
  348. def __init__(self):
  349. import logging
  350. import json
  351. global logging,json
  352. logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  353. def process(self,list_group_str):
  354. logging.info("0")
  355. logging.info(list_group_str)
  356. if list_group_str is not None:
  357. logging.info("1")
  358. try:
  359. list_group = json.loads(list_group_str)
  360. logging.info("2")
  361. for _group in list_group:
  362. if len(_group)>0:
  363. _type = _group[0].get("type","")
  364. logging.info("3%d"%len(list_group))
  365. # _group.sort(key=lambda x:x["page_time_stamp"])
  366. _len = min(100,len(_group))
  367. for _index_i in range(_len):
  368. _count = 0
  369. for _index_j in range(_index_i+1,_len):
  370. if abs(_group[_index_j]["page_time_stamp"]-_group[_index_i]["page_time_stamp"])>86400*120:
  371. break
  372. _count += 1
  373. _docid1 = _group[_index_i]["docid"]
  374. _docid2 = _group[_index_j]["docid"]
  375. if _docid1<_docid2:
  376. self.forward(_docid1,_docid2,1,_len,_type)
  377. else:
  378. self.forward(_docid2,_docid1,1,_len,_type)
  379. except Exception as e:
  380. logging(str(e))
  381. @annotate('bigint,bigint,string->string')
  382. class f_merge_groupPairs(BaseUDAF):
  383. '''
  384. 合并组为一条记录
  385. '''
  386. def __init__(self):
  387. import json
  388. global json
  389. def new_buffer(self):
  390. return [[]]
  391. def iterate(self, buffer,is_exists,counts,_type):
  392. buffer[0].append({"is_exists":is_exists,"counts":counts,"_type":_type})
  393. def merge(self, buffer, pbuffer):
  394. buffer[0].extend(pbuffer[0])
  395. def terminate(self, buffer):
  396. list_dict = buffer[0]
  397. list_dict = list_dict[:10000]
  398. return json.dumps(list_dict)
  399. @annotate("string -> bigint,bigint,bigint")
  400. class f_merge_getLabel(BaseUDTF):
  401. def __init__(self):
  402. import logging
  403. import json
  404. global logging,json
  405. def process(self,str_docids):
  406. if str_docids is not None:
  407. list_docids = [int(i) for i in str_docids.split(",")]
  408. list_docids.sort(key=lambda x:x)
  409. _len = min(100,len(list_docids))
  410. for index_i in range(_len):
  411. docid_less = list_docids[index_i]
  412. for index_j in range(index_i+1,_len):
  413. docid_greater = list_docids[index_j]
  414. self.forward(docid_less,docid_greater,1)
  415. def getSimilarityOfString(str1,str2):
  416. _set1 = set()
  417. _set2 = set()
  418. if str1 is not None:
  419. for i in range(1,len(str1)):
  420. _set1.add(str1[i-1:i+1])
  421. if str2 is not None:
  422. for i in range(1,len(str2)):
  423. _set2.add(str2[i-1:i+1])
  424. _len = max(1,min(len(_set1),len(_set2)))
  425. return len(_set1&_set2)/_len
  426. def check_columns(tenderee_less,tenderee_greater,
  427. agency_less,agency_greater,project_code_less,project_code_greater,project_name_less,project_name_greater,
  428. win_tenderer_less,win_tenderer_greater,win_bid_price_less,win_bid_price_greater,
  429. bidding_budget_less,bidding_budget_greater,doctitle_refine_less,doctitle_refine_greater):
  430. flag = True
  431. _set_tenderee = set()
  432. if tenderee_less is not None and tenderee_less!="":
  433. _set_tenderee.add(tenderee_less)
  434. if tenderee_greater is not None and tenderee_greater!="":
  435. _set_tenderee.add(tenderee_greater)
  436. if len(_set_tenderee)>1:
  437. return False
  438. code_sim = getSimilarityOfString(project_code_less,project_code_greater)
  439. if code_sim>0.6 and code_sim<1:
  440. return False
  441. #同批次不同编号
  442. if getLength(project_code_less)>0 and getLength(project_code_greater)>0:
  443. _split_code_less = project_code_less.split("-")
  444. _split_code_greater = project_code_greater.split("-")
  445. if len(_split_code_less)>1 and len(_split_code_greater)>1:
  446. if _split_code_less[0]==_split_code_greater[0] and project_code_less!=project_code_greater:
  447. return False
  448. _set_win_tenderer = set()
  449. if win_tenderer_less is not None and win_tenderer_less!="":
  450. _set_win_tenderer.add(win_tenderer_less)
  451. if win_tenderer_greater is not None and win_tenderer_greater!="":
  452. _set_win_tenderer.add(win_tenderer_greater)
  453. if len(_set_win_tenderer)>1:
  454. return False
  455. _set_win_bid_price = set()
  456. if win_bid_price_less is not None and win_bid_price_less!="":
  457. _set_win_bid_price.add(float(win_bid_price_less))
  458. if win_bid_price_greater is not None and win_bid_price_greater!="":
  459. _set_win_bid_price.add(float(win_bid_price_greater))
  460. if len(_set_win_bid_price)>1:
  461. return False
  462. _set_bidding_budget = set()
  463. if bidding_budget_less is not None and bidding_budget_less!="":
  464. _set_bidding_budget.add(float(bidding_budget_less))
  465. if bidding_budget_greater is not None and bidding_budget_greater!="":
  466. _set_bidding_budget.add(float(bidding_budget_greater))
  467. if len(_set_bidding_budget)>1:
  468. return False
  469. return True
  470. def getSimLevel(str1,str2):
  471. str1_null = False
  472. str2_null = False
  473. _v = 0
  474. if str1 is None or str1=="":
  475. str1_null = True
  476. if str2 is None or str2=="":
  477. str2_null = True
  478. if str1_null and str2_null:
  479. _v = 2
  480. elif str1_null and not str2_null:
  481. _v = 4
  482. elif not str1_null and str2_null:
  483. _v = 6
  484. elif not str1_null and not str2_null:
  485. if str1==str2:
  486. _v = 10
  487. else:
  488. _v = 0
  489. return _v
  490. import math
  491. def featurnCount(_count,max_count=100):
  492. return max(0,min(1,_count))*(1/math.sqrt(max(1,_count-1)))
  493. def getLength(_str):
  494. return len(_str if _str is not None else "")
  495. @annotate("string->bigint")
  496. class f_get_min_counts(object):
  497. def evaluate(self,json_context):
  498. _context = json.loads(json_context)
  499. min_counts = 100
  500. for item in _context:
  501. if item["counts"]<min_counts:
  502. min_counts = item["counts"]
  503. return min_counts
  504. @annotate("string,string,string,string,string,string,string,string,string,string,string,string,string,string,string,string,string->string,double")
  505. class f_merge_featureMatrix(BaseUDTF):
  506. def __init__(self):
  507. import logging
  508. import json
  509. global logging,json
  510. def process(self,json_context,tenderee_less,tenderee_greater,
  511. agency_less,agency_greater,project_code_less,project_code_greater,project_name_less,project_name_greater,
  512. win_tenderer_less,win_tenderer_greater,win_bid_price_less,win_bid_price_greater,
  513. bidding_budget_less,bidding_budget_greater,doctitle_refine_less,doctitle_refine_greater):
  514. if not check_columns(tenderee_less,tenderee_greater,
  515. agency_less,agency_greater,project_code_less,project_code_greater,project_name_less,project_name_greater,
  516. win_tenderer_less,win_tenderer_greater,win_bid_price_less,win_bid_price_greater,
  517. bidding_budget_less,bidding_budget_greater,doctitle_refine_less,doctitle_refine_greater):
  518. return
  519. _context = json.loads(json_context)
  520. min_counts = 100
  521. dict_context = {}
  522. for item in _context:
  523. if item["counts"]<min_counts:
  524. min_counts = item["counts"]
  525. dict_context[item["_type"]] = [item["is_exists"],item["counts"]]
  526. context_key = ["tenderee","agency","project_code","project_name","win_tenderer","win_bid_price","bidding_budget","doctitle_refine"]
  527. list_matrix = []
  528. for index_i in range(len(context_key)):
  529. for index_j in range(index_i+1,len(context_key)):
  530. _key = "%s&%s"%(context_key[index_i],context_key[index_j])
  531. _v = featurnCount(dict_context.get(_key,[0,0])[1])
  532. list_matrix.append(_v)
  533. context3_key = ["tenderee","agency","win_tenderer","win_bid_price","bidding_budget"]
  534. for index_i in range(len(context3_key)):
  535. for index_j in range(index_i+1,len(context3_key)):
  536. for index_k in range(index_j+1,len(context3_key)):
  537. _key = "%s&%s&%s"%(context3_key[index_i],context3_key[index_j],context3_key[index_k])
  538. _v = featurnCount(dict_context.get(_key,[0,0])[1])
  539. list_matrix.append(_v)
  540. list_matrix.append(getSimLevel(tenderee_less,tenderee_greater)/10)
  541. list_matrix.append(getSimLevel(agency_less,agency_greater)/10)
  542. list_matrix.append(getSimilarityOfString(project_code_less,project_code_greater))
  543. list_matrix.append(getSimilarityOfString(project_name_less,project_name_greater))
  544. list_matrix.append(getSimLevel(win_tenderer_less,win_tenderer_greater)/10)
  545. list_matrix.append(getSimLevel(win_bid_price_less,win_bid_price_greater)/10)
  546. list_matrix.append(getSimLevel(bidding_budget_less,bidding_budget_greater)/10)
  547. list_matrix.append(getSimilarityOfString(doctitle_refine_less,doctitle_refine_greater))
  548. # set_tenderer = set()
  549. # if tenderee_less is not None and tenderee_less!="":
  550. # set_tenderer.add(tenderee_less)
  551. # if tenderee_greater is not None and tenderee_greater!="":
  552. # set_tenderer.add(tenderee_greater)
  553. #
  554. # set_win_tenderer = set()
  555. # if win_tenderer_less is not None and win_tenderer_less!="":
  556. # set_win_tenderer.add(win_tenderer_less)
  557. # if win_tenderer_greater is not None and win_tenderer_greater!="":
  558. # set_win_tenderer.add(win_tenderer_greater)
  559. #
  560. # set_bidding_budget = set()
  561. # if bidding_budget_less is not None and bidding_budget_less!="":
  562. # set_bidding_budget.add(bidding_budget_less)
  563. # if bidding_budget_greater is not None and bidding_budget_greater!="":
  564. # set_bidding_budget.add(bidding_budget_greater)
  565. #
  566. # set_win_bid_price = set()
  567. # if win_bid_price_less is not None and win_bid_price_less!="":
  568. # set_win_bid_price.add(win_bid_price_less)
  569. # if win_bid_price_greater is not None and win_bid_price_greater!="":
  570. # set_win_bid_price.add(win_bid_price_greater)
  571. json_matrix = json.dumps(list_matrix)
  572. same_project_code = False
  573. if project_code_less==project_code_greater and getLength(project_code_less)>0:
  574. same_project_code = True
  575. same_project_name = False
  576. if project_name_less==project_name_greater and getLength(project_name_less)>0:
  577. same_project_name = True
  578. same_doctitle_refine = False
  579. if doctitle_refine_less==doctitle_refine_greater and getLength(doctitle_refine_less)>0:
  580. same_doctitle_refine = True
  581. same_tenderee = False
  582. if tenderee_less==tenderee_greater and getLength(tenderee_less)>0:
  583. same_tenderee = True
  584. same_agency = False
  585. if agency_less==agency_greater and getLength(agency_less)>0:
  586. same_agency = True
  587. same_bidding_budget = False
  588. if bidding_budget_less==bidding_budget_greater and getLength(bidding_budget_less)>0:
  589. same_bidding_budget = True
  590. same_win_tenderer = False
  591. if win_tenderer_less==win_tenderer_greater and getLength(win_tenderer_less)>0:
  592. same_win_tenderer = True
  593. same_win_bid_price = False
  594. if win_bid_price_less==win_bid_price_greater and getLength(win_bid_price_less)>0:
  595. same_win_bid_price = True
  596. contain_doctitle = False
  597. if getLength(doctitle_refine_less)>0 and getLength(doctitle_refine_greater)>0 and (doctitle_refine_less in doctitle_refine_greater or doctitle_refine_greater in doctitle_refine_less):
  598. contain_doctitle = True
  599. contain_project_name = False
  600. if getLength(project_name_less)>0 and getLength(project_name_greater)>0 and (project_name_less in project_name_greater or project_name_greater in project_name_less):
  601. contain_project_name = True
  602. total_money_less = 0 if getLength(bidding_budget_less)==0 else float(bidding_budget_less)+0 if getLength(win_bid_price_less)==0 else float(win_bid_price_less)
  603. total_money_greater = 0 if getLength(bidding_budget_greater)==0 else float(bidding_budget_greater) +0 if getLength(win_bid_price_greater)==0 else float(win_bid_price_greater)
  604. if min_counts<10:
  605. _prob = 0.9
  606. if same_project_code and same_win_tenderer and same_tenderee:
  607. self.forward(json_matrix,_prob)
  608. return
  609. if same_tenderee and same_project_name and same_win_tenderer:
  610. self.forward(json_matrix,_prob)
  611. return
  612. if same_tenderee and same_doctitle_refine and same_win_tenderer:
  613. self.forward(json_matrix,_prob)
  614. return
  615. if same_tenderee and same_win_bid_price and same_win_tenderer:
  616. self.forward(json_matrix,_prob)
  617. return
  618. if same_project_code and same_win_bid_price and same_win_tenderer:
  619. self.forward(json_matrix,_prob)
  620. return
  621. if same_project_name and same_win_bid_price and same_win_tenderer:
  622. self.forward(json_matrix,_prob)
  623. return
  624. if same_doctitle_refine and same_win_bid_price and same_win_tenderer:
  625. self.forward(json_matrix,_prob)
  626. return
  627. if same_doctitle_refine and same_bidding_budget and same_win_tenderer:
  628. self.forward(json_matrix,_prob)
  629. return
  630. if same_tenderee and same_doctitle_refine and same_win_tenderer:
  631. self.forward(json_matrix,_prob)
  632. return
  633. if same_tenderee and same_project_code and same_project_name:
  634. self.forward(json_matrix,_prob)
  635. return
  636. if same_tenderee and same_project_code and same_doctitle_refine:
  637. self.forward(json_matrix,_prob)
  638. return
  639. if same_tenderee and same_bidding_budget and same_project_code:
  640. self.forward(json_matrix,_prob)
  641. return
  642. if same_tenderee and same_bidding_budget and same_doctitle_refine:
  643. self.forward(json_matrix,_prob)
  644. return
  645. if same_tenderee and same_bidding_budget and same_project_name:
  646. self.forward(json_matrix,_prob)
  647. return
  648. if same_doctitle_refine and same_project_code and same_project_name:
  649. self.forward(json_matrix,_prob)
  650. return
  651. if min_counts<=5:
  652. _prob = 0.8
  653. if same_project_code and same_tenderee:
  654. self.forward(json_matrix,_prob)
  655. return
  656. if same_project_code and same_win_tenderer:
  657. self.forward(json_matrix,_prob)
  658. return
  659. if same_project_name and same_project_code:
  660. self.forward(json_matrix,_prob)
  661. return
  662. if same_project_code and same_doctitle_refine:
  663. self.forward(json_matrix,_prob)
  664. return
  665. if total_money_less==total_money_greater and total_money_less>100000:
  666. if same_win_tenderer and (same_win_bid_price or same_bidding_budget):
  667. self.forward(json_matrix,_prob)
  668. return
  669. if same_project_code and same_bidding_budget:
  670. self.forward(json_matrix,_prob)
  671. return
  672. if same_project_code and same_win_bid_price:
  673. self.forward(json_matrix,_prob)
  674. return
  675. if same_bidding_budget and same_win_bid_price and (contain_project_name or contain_doctitle):
  676. self.forward(json_matrix,_prob)
  677. return
  678. if min_counts<=3:
  679. _prob = 0.7
  680. if same_project_name or same_project_code or same_doctitle_refine or contain_doctitle or contain_project_name:
  681. self.forward(json_matrix,_prob)
  682. return
  683. self.forward(json_matrix,0)
  684. class MergePredictor():
  685. def __init__(self):
  686. self.input_size = 46
  687. self.output_size = 2
  688. self.matrix = np.array([[-5.817399024963379, 3.367797374725342], [-18.3098201751709, 17.649206161499023], [-7.115952014923096, 9.236002922058105], [-5.054129123687744, 1.8316771984100342], [6.391637325286865, -7.57396125793457], [-2.8721542358398438, 6.826520919799805], [-5.426159858703613, 10.235260009765625], [-4.240962982177734, -0.32092899084091187], [-0.6378090381622314, 0.4834124445915222], [-1.7574478387832642, -0.17846578359603882], [4.325063228607178, -2.345501661300659], [0.6086963415145874, 0.8325914740562439], [2.5674285888671875, 1.8432368040084839], [-11.195490837097168, 17.4630184173584], [-11.334247589111328, 10.294097900390625], [2.639320135116577, -8.072785377502441], [-2.2689898014068604, -3.6194612979888916], [-11.129570960998535, 18.907018661499023], [4.526485919952393, 4.57423210144043], [-3.170452356338501, -1.3847776651382446], [-0.03280467540025711, -3.0471489429473877], [-6.601675510406494, -10.05613899230957], [-2.9116673469543457, 4.819308280944824], [1.4398306608200073, -0.6549674272537231], [7.091512203216553, -0.142232745885849], [-0.14478975534439087, 0.06628061085939407], [-6.775437831878662, 9.279582023620605], [-0.006781991105526686, 1.6472798585891724], [3.83730149269104, 1.4072834253311157], [1.2229349613189697, -2.1653425693511963], [1.445560336112976, -0.8397432565689087], [-11.325132369995117, 11.231744766235352], [2.3229124546051025, -4.623719215393066], [0.38562265038490295, -1.2645516395568848], [-1.3670002222061157, 2.4323790073394775], [-3.6994268894195557, 0.7515658736228943], [-0.11617227643728256, -0.820703387260437], [4.089913368225098, -4.693605422973633], [-0.4959050714969635, 1.5272167921066284], [-2.7135870456695557, -0.5120691657066345], [0.573157548904419, -1.9375460147857666], [-4.262857437133789, 0.6375582814216614], [-1.8825865983963013, 2.427532911300659], [-4.565115451812744, 4.0269083976745605], [-4.339804649353027, 6.754288196563721], [-4.31907320022583, 0.28193211555480957]])
  689. self.bias = np.array([16.79706382751465, -13.713337898254395])
  690. # self.model = load_model("model/merge.h5",custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  691. def activation(self,vec,_type):
  692. if _type=="relu":
  693. _vec = np.array(vec)
  694. return _vec*(_vec>0)
  695. if _type=="tanh":
  696. return np.tanh(vec)
  697. if _type=="softmax":
  698. _vec = np.array(vec)
  699. _exp = np.exp(_vec)
  700. return _exp/np.sum(_exp)
  701. def predict(self,input):
  702. _out = self.activation(self.activation(np.matmul(np.array(input).reshape(-1,self.input_size),self.matrix)+self.bias,"tanh"),"softmax")
  703. # print(self.model.predict(np.array(input).reshape(-1,46)))
  704. return _out
  705. @annotate('string,double -> double')
  706. class f_getMergeProb(BaseUDTF):
  707. def __init__(self):
  708. import json
  709. include_package_path("numpy-1.18.zip")
  710. import numpy as np
  711. global json,np
  712. self.mp = MergePredictor()
  713. def process(self,json_matrix,pre_prob):
  714. if not pre_prob>0.5:
  715. _matrix = json.loads(json_matrix)
  716. _prob = self.mp.predict(_matrix)[0][1]
  717. else:
  718. _prob = pre_prob
  719. if _prob>0.5:
  720. self.forward(float(_prob))
  721. @annotate('string -> bigint,bigint')
  722. class f_check_remerge(BaseUDTF):
  723. '''
  724. 将多个组拆解成多条记录
  725. '''
  726. def __init__(self):
  727. import logging
  728. import json
  729. global json,logging
  730. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  731. def process(self,json_remerge):
  732. if json_remerge is not None:
  733. list_group = json.loads(json_remerge)
  734. for _group in list_group:
  735. for _docid in _group:
  736. self.forward(_group[-1],_docid)
  737. def getConfidence(rule_id):
  738. if rule_id >=1 and rule_id <=20:
  739. return 30
  740. elif rule_id>=31 and rule_id<=50:
  741. return 20
  742. else:
  743. return 10
  744. @annotate('string,bigint -> bigint,bigint,bigint')
  745. class f_arrange_group_single(BaseUDTF):
  746. '''
  747. 将多个组拆解成多条记录
  748. '''
  749. def __init__(self):
  750. import logging
  751. import json
  752. global json,logging
  753. logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  754. def process(self,json_set_docid,rule_id):
  755. if json_set_docid is not None:
  756. list_group = json.loads(json_set_docid)
  757. for _group in list_group:
  758. for index_i in range(len(_group)):
  759. for index_j in range(len(_group)):
  760. # if index_i!=index_j and _group[index_i]!=_group[index_j]:
  761. if index_i!=index_j:
  762. self.forward(_group[index_i],_group[index_j],getConfidence(rule_id))
  763. @annotate('bigint,bigint->string')
  764. class f_get_merge_docids(BaseUDAF):
  765. '''
  766. 合并组为一条记录
  767. '''
  768. def __init__(self):
  769. import json
  770. global json
  771. def new_buffer(self):
  772. return [set()]
  773. def iterate(self, buffer,docid1,docid2):
  774. buffer[0].add(docid1)
  775. buffer[0].add(docid2)
  776. def merge(self, buffer, pbuffer):
  777. buffer[0] |= pbuffer[0]
  778. def terminate(self, buffer):
  779. set_docid = buffer[0]
  780. list_docid = list(set_docid)
  781. list_docid.sort(key=lambda x:x)
  782. list_docid_str = []
  783. for _docid in list_docid:
  784. list_docid_str.append(str(_docid))
  785. return ",".join(list_docid_str)