extract.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. '''
  2. Created on 2019年1月4日
  3. @author: User
  4. '''
  5. from bs4 import BeautifulSoup, Comment
  6. import copy
  7. import re
  8. import sys
  9. import os
  10. import codecs
  11. import requests
  12. import time
  13. _time1 = time.time()
  14. sys.path.append(os.path.abspath("../.."))
  15. from BiddingKG.dl.common.Utils import *
  16. import BiddingKG.dl.interface.predictor as predictor
  17. import BiddingKG.dl.interface.Preprocessing as Preprocessing
  18. import BiddingKG.dl.interface.getAttributes as getAttributes
  19. import BiddingKG.dl.entityLink.entityLink as entityLink
  20. import BiddingKG.dl.complaint.punish_predictor as punish_rule
  21. import json
  22. ''''''
  23. codeNamePredict = predictor.CodeNamePredict()
  24. premPredict = predictor.PREMPredict()
  25. epcPredict = predictor.EPCPredict()
  26. roleRulePredict = predictor.RoleRulePredictor()
  27. timePredict = predictor.TimePredictor()
  28. punish = punish_rule.Punish_Extract()
  29. productPredict = predictor.ProductPredictor()
  30. #自定义jsonEncoder
  31. class MyEncoder(json.JSONEncoder):
  32. def default(self, obj):
  33. if isinstance(obj, np.ndarray):
  34. return obj.tolist()
  35. elif isinstance(obj, bytes):
  36. return str(obj, encoding='utf-8')
  37. elif isinstance(obj, (np.float_, np.float16, np.float32,
  38. np.float64)):
  39. return float(obj)
  40. elif isinstance(obj,str):
  41. return obj
  42. return json.JSONEncoder.default(self, obj)
  43. def predict(doc_id,text,title=""):
  44. list_articles,list_sentences,list_entitys,_ = Preprocessing.get_preprocessed([[doc_id,text,"","",title]],useselffool=True)
  45. codeName = codeNamePredict.predict(list_sentences,list_entitys=list_entitys)
  46. premPredict.predict(list_sentences,list_entitys)
  47. productPredict.predict(list_sentences,list_entitys)
  48. roleRulePredict.predict(list_articles,list_sentences, list_entitys,codeName)
  49. epcPredict.predict(list_sentences,list_entitys)
  50. timePredict.predict(list_sentences, list_entitys)
  51. entityLink.link_entitys(list_entitys)
  52. prem = getAttributes.getPREMs(list_sentences,list_entitys,list_articles)
  53. list_punish_dic = punish.get_punish_extracts(list_articles,list_sentences, list_entitys)
  54. return json.dumps(Preprocessing.union_result(Preprocessing.union_result(codeName, prem),list_punish_dic)[0],cls=MyEncoder,sort_keys=True,indent=4,ensure_ascii=False)
  55. def test(name,content):
  56. user = {
  57. "content": content,
  58. "id":name
  59. }
  60. myheaders = {'Content-Type': 'application/json'}
  61. _resp = requests.post("http://192.168.2.101:15015" + '/article_extract', json=user, headers=myheaders, verify=True)
  62. resp_json = _resp.content.decode("utf-8")
  63. print(resp_json)
  64. return resp_json
  65. if __name__=="__main__":
  66. pass