1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044 |
- from bs4 import BeautifulSoup, Comment
- import copy
- import sys
- import os
- import time
- import codecs
- sys.setrecursionlimit(1000000)
- sys.path.append(os.path.abspath("../.."))
- sys.path.append(os.path.abspath(".."))
- from BiddingKG.dl.common.Utils import *
- from BiddingKG.dl.interface.Entitys import *
- from BiddingKG.dl.interface.predictor import *
- from BiddingKG.dl.foolnltk import selffool
- from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
- from BiddingKG.dl.time.re_servicetime import extract_servicetime
- from BiddingKG.dl.bidway.re_bidway import extract_bidway
- #
- def tableToText(soup):
- '''
- @param:
- soup:网页html的soup
- @return:处理完表格信息的网页text
- '''
-
- def getTrs(tbody):
- #获取所有的tr
- trs = []
- objs = tbody.find_all(recursive=False)
- for obj in objs:
- if obj.name=="tr":
- trs.append(obj)
- if obj.name=="tbody":
- for tr in obj.find_all("tr",recursive=False):
- trs.append(tr)
- return trs
- def fixSpan(tbody):
- # 处理colspan, rowspan信息补全问题
- #trs = tbody.findChildren('tr', recursive=False)
- trs = getTrs(tbody)
- ths_len = 0
- ths = list()
- trs_set = set()
- #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
- # 遍历每一个tr
- for indtr, tr in enumerate(trs):
- ths_tmp = tr.findChildren('th', recursive=False)
- #不补全含有表格的tr
- if len(tr.findChildren('table'))>0:
- continue
- if len(ths_tmp) > 0:
- ths_len = ths_len + len(ths_tmp)
- for th in ths_tmp:
- ths.append(th)
- trs_set.add(tr)
- # 遍历每行中的element
- tds = tr.findChildren(recursive=False)
- for indtd, td in enumerate(tds):
- # 若有colspan 则补全同一行下一个位置
- if 'colspan' in td.attrs:
- if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
- col = int(re.sub("[^0-9]","",str(td['colspan'])))
- if col<100 and len(td.get_text())<1000:
- td['colspan'] = 1
- for i in range(1, col, 1):
- td.insert_after(copy.copy(td))
- for indtr, tr in enumerate(trs):
- ths_tmp = tr.findChildren('th', recursive=False)
- #不补全含有表格的tr
- if len(tr.findChildren('table'))>0:
- continue
- if len(ths_tmp) > 0:
- ths_len = ths_len + len(ths_tmp)
- for th in ths_tmp:
- ths.append(th)
- trs_set.add(tr)
- # 遍历每行中的element
- tds = tr.findChildren(recursive=False)
- for indtd, td in enumerate(tds):
- # 若有rowspan 则补全下一行同样位置
- if 'rowspan' in td.attrs:
- if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
- row = int(re.sub("[^0-9]","",str(td['rowspan'])))
- td['rowspan'] = 1
- for i in range(1, row, 1):
- # 获取下一行的所有td, 在对应的位置插入
- if indtr+i<len(trs):
- tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
- if len(tds1) >= (indtd) and len(tds1)>0:
- if indtd > 0:
- tds1[indtd - 1].insert_after(copy.copy(td))
- else:
- tds1[0].insert_before(copy.copy(td))
- def getTable(tbody):
- #trs = tbody.findChildren('tr', recursive=False)
- trs = getTrs(tbody)
- inner_table = []
- for tr in trs:
- tr_line = []
- tds = tr.findChildren(['td','th'], recursive=False)
- for td in tds:
- tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
- #tr_line.append([td.get_text(),0])
- inner_table.append(tr_line)
- return inner_table
-
- #处理表格不对齐的问题
- def fixTable(inner_table,fix_value="~~"):
- maxWidth = 0
- for item in inner_table:
- if len(item)>maxWidth:
- maxWidth = len(item)
- for i in range(len(inner_table)):
- if len(inner_table[i])<maxWidth:
- for j in range(maxWidth-len(inner_table[i])):
- inner_table[i].append([fix_value,0])
- return inner_table
-
- def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
- height = len(inner_table)
- width = len(inner_table[0])
- for i in range(height):
- point = ""
- for j in range(width):
- if inner_table[i][j][0]==point and point!="":
- inner_table[i][j][0] = pad_row
- else:
- if inner_table[i][j][0] not in [pad_row,pad_col]:
- point = inner_table[i][j][0]
- for j in range(width):
- point = ""
- for i in range(height):
- if inner_table[i][j][0]==point and point!="":
- inner_table[i][j][0] = pad_col
- else:
- if inner_table[i][j][0] not in [pad_row,pad_col]:
- point = inner_table[i][j][0]
-
- def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
- height = len(inner_table)
- width = len(inner_table[0])
- for i in range(height):
- for j in range(width):
- if inner_table[i][j][0]==pad_row:
- inner_table[i][j][0] = inner_table[i][j-1][0]
- inner_table[i][j][1] = inner_table[i][j-1][1]
- if inner_table[i][j][0]==pad_col:
- inner_table[i][j][0] = inner_table[i-1][j][0]
- inner_table[i][j][1] = inner_table[i-1][j][1]
- def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
- '''
- @summary: 修复表头识别,将明显错误的进行修正
- '''
- def repairNeeded(line):
- first_1 = -1
- last_1 = -1
- first_0 = -1
- last_0 = -1
- count_1 = 0
- count_0 = 0
- for i in range(len(line)):
- if line[i][0]==fix_value:
- continue
- if line[i][1]==1:
- if first_1==-1:
- first_1 = i
- last_1 = i
- count_1 += 1
- if line[i][1]==0:
- if first_0 == -1:
- first_0 = i
- last_0 = i
- count_0 += 1
- if first_1 ==-1 or last_0 == -1:
- return False
- #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
- if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
- return True
- return False
- def getsimilarity(line,line1):
- same_count = 0
- for item,item1 in zip(line,line1):
- if item[1]==item1[1]:
- same_count += 1
- return same_count/len(line)
- def selfrepair(inner_table,index,dye_set,key_set):
- '''
- @summary: 计算每个节点受到的挤压度来判断是否需要染色
- '''
- #print("B",inner_table[index])
- min_presure = 3
- list_dye = []
- first = None
- count = 0
- temp_set = set()
- _index = 0
- for item in inner_table[index]:
- if first is None:
- first = item[1]
- if item[0] not in temp_set:
- count += 1
- temp_set.add(item[0])
- else:
- if first == item[1]:
- if item[0] not in temp_set:
- temp_set.add(item[0])
- count += 1
- else:
- list_dye.append([first,count,_index])
- first = item[1]
- temp_set.add(item[0])
- count = 1
- _index += 1
- list_dye.append([first,count,_index])
- if len(list_dye)>1:
- begin = 0
- end = 0
- for i in range(len(list_dye)):
- end = list_dye[i][2]
- dye_flag = False
- #首尾要求压力减一
- if i==0:
- if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
- dye_flag = True
- dye_type = list_dye[i+1][0]
- elif i==len(list_dye)-1:
- if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
- dye_flag = True
- dye_type = list_dye[i-1][0]
- else:
- if list_dye[i][1]>1:
- if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
- dye_flag = True
- dye_type = list_dye[i+1][0]
- if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
- dye_flag = True
- dye_type = list_dye[i-1][0]
- else:
- if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
- dye_flag = True
- dye_type = list_dye[i+1][0]
- if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
- dye_flag = True
- dye_type = list_dye[i-1][0]
- if dye_flag:
- for h in range(begin,end):
- inner_table[index][h][1] = dye_type
- dye_set.add((inner_table[index][h][0],dye_type))
- key_set.add(inner_table[index][h][0])
- begin = end
- #print("E",inner_table[index])
- def otherrepair(inner_table,index,dye_set,key_set):
- list_provide_repair = []
- if index==0 and len(inner_table)>1:
- list_provide_repair.append(index+1)
- elif index==len(inner_table)-1:
- list_provide_repair.append(index-1)
- else:
- list_provide_repair.append(index+1)
- list_provide_repair.append(index-1)
- for provide_index in list_provide_repair:
- if not repairNeeded(inner_table[provide_index]):
- same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
- if same_prob>=0.8:
- for i in range(len(inner_table[provide_index])):
- if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
- dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
- key_set.add(inner_table[index][i][0])
- inner_table[index][i][1] = inner_table[provide_index][i][1]
- elif same_prob<=0.2:
- for i in range(len(inner_table[provide_index])):
- if inner_table[index][i][1]==inner_table[provide_index][i][1]:
- dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
- key_set.add(inner_table[index][i][0])
- inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
- len_dye_set = len(dye_set)
- height = len(inner_table)
- for i in range(height):
- if repairNeeded(inner_table[i]):
- selfrepair(inner_table,i,dye_set,key_set)
- #otherrepair(inner_table,i,dye_set,key_set)
- for h in range(len(inner_table)):
- for w in range(len(inner_table[0])):
- if inner_table[h][w][0] in key_set:
- for item in dye_set:
- if inner_table[h][w][0]==item[0]:
- inner_table[h][w][1] = item[1]
- #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
- if len(dye_set)!=len(key_set):
- for i in range(height):
- if repairNeeded(inner_table[i]):
- selfrepair(inner_table,i,dye_set,key_set)
- #otherrepair(inner_table,i,dye_set,key_set)
- return
- if len(dye_set)==len_dye_set:
- '''
- for i in range(height):
- if repairNeeded(inner_table[i]):
- otherrepair(inner_table,i,dye_set,key_set)
- '''
- return
- repairTable(inner_table, dye_set, key_set)
- def sliceTable(inner_table,fix_value="~~"):
- #进行分块
- height = len(inner_table)
- width = len(inner_table[0])
- head_list = []
- head_list.append(0)
- last_head = None
- last_is_same_value = False;
- for h in range(height):
- is_all_key = True#是否是全表头行
- is_all_value = True#是否是全属性值
- is_same_with_lastHead = True#和上一行的结构是否相同
- is_same_value=True#一行的item都一样
- #is_same_first_item = True#与上一行的第一项是否相同
- same_value = inner_table[h][0][0]
- for w in range(width):
- if last_head is not None:
- if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
- is_all_key = False
- if inner_table[h][w][0]==1:
- is_all_value = False
- if inner_table[h][w][1]!= inner_table[h-1][w][1]:
- is_same_with_lastHead = False
- if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
- is_same_value = False
- else:
- if re.search("\d+",same_value) is not None:
- is_same_value = False
- if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
- is_same_first_item = False
- last_head = h
- if last_is_same_value:
- last_is_same_value = is_same_value
- continue
- if is_same_value:
- head_list.append(h)
- last_is_same_value = is_same_value
- continue
- if not is_all_key:
- if not is_same_with_lastHead:
- head_list.append(h)
- head_list.append(height)
- return head_list
-
- def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
- set_item = set()
- height = len(inner_table)
- width = len(inner_table[0])
- for i in range(height):
- for j in range(width):
- item = inner_table[i][j][0]
- set_item.add(item)
- list_item = list(set_item)
- x = []
- for item in list_item:
- x.append(getPredictor("form").encode(item))
- predict_y = getPredictor("form").predict(np.array(x),type="item")
- _dict = dict()
-
- for item,values in zip(list_item,list(predict_y)):
- _dict[item] = values[1]
- # print("##",item,values)
- #print(_dict)
- for i in range(height):
- for j in range(width):
- item = inner_table[i][j][0]
- inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
- # print("=====")
- # for item in inner_table:
- # print(item)
- # print("======")
-
- repairTable(inner_table)
- head_list = sliceTable(inner_table)
-
- return inner_table,head_list
- def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
- data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
- predict_y = getPredictor("form").getModel("context").predict(data_x)
- for _position,_y in zip(data_position,predict_y):
- _w = _position[0]
- _h = _position[1]
- if _y[1]>prob_min:
- inner_table[_h][_w][1] = 1
- else:
- inner_table[_h][_w][1] = 0
- # print("=====")
- # for item in inner_table:
- # print(item)
- # print("======")
- repairTable(inner_table)
- head_list = sliceTable(inner_table)
- return inner_table,head_list
-
- #设置表头
- def setHead_inline(inner_table,prob_min=0.64):
- pad_row = "@@"
- pad_col = "##"
- removePadding(inner_table, pad_row, pad_col)
- pad_pattern = re.compile(pad_row+"|"+pad_col)
- height = len(inner_table)
- width = len(inner_table[0])
- head_list = []
- head_list.append(0)
- #行表头
- is_head_last = False
- for i in range(height):
-
- is_head = False
- is_long_value = False
-
- #判断是否是全padding值
- is_same_value = True
- same_value = inner_table[i][0][0]
- for j in range(width):
- if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
- is_same_value = False
- break
-
- #predict is head or not with model
- temp_item = ""
- for j in range(width):
- temp_item += inner_table[i][j][0]+"|"
- temp_item = re.sub(pad_pattern,"",temp_item)
- form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
- if form_prob is not None:
- if form_prob[0][1]>prob_min:
- is_head = True
- else:
- is_head = False
-
- #print(temp_item,form_prob)
- if len(inner_table[i][0][0])>40:
- is_long_value = True
- if is_head or is_long_value or is_same_value:
- #不把连续表头分开
- if not is_head_last:
- head_list.append(i)
- if is_long_value or is_same_value:
- head_list.append(i+1)
- if is_head:
- for j in range(width):
- inner_table[i][j][1] = 1
- is_head_last = is_head
- head_list.append(height)
- #列表头
- for i in range(len(head_list)-1):
- head_begin = head_list[i]
- head_end = head_list[i+1]
- #最后一列不设置为列表头
- for i in range(width-1):
- is_head = False
-
- #predict is head or not with model
- temp_item = ""
- for j in range(head_begin,head_end):
- temp_item += inner_table[j][i][0]+"|"
- temp_item = re.sub(pad_pattern,"",temp_item)
- form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
- if form_prob is not None:
- if form_prob[0][1]>prob_min:
- is_head = True
- else:
- is_head = False
-
- if is_head:
- for j in range(head_begin,head_end):
- inner_table[j][i][1] = 2
- addPadding(inner_table, pad_row, pad_col)
- return inner_table,head_list
-
- #设置表头
- def setHead_withRule(inner_table,pattern,pat_value,count):
- height = len(inner_table)
- width = len(inner_table[0])
- head_list = []
- head_list.append(0)
- #行表头
- is_head_last = False
- for i in range(height):
- set_match = set()
- is_head = False
- is_long_value = False
- is_same_value = True
- same_value = inner_table[i][0][0]
- for j in range(width):
- if inner_table[i][j][0]!=same_value:
- is_same_value = False
- break
- for j in range(width):
- if re.search(pat_value,inner_table[i][j][0]) is not None:
- is_head = False
- break
- str_find = re.findall(pattern,inner_table[i][j][0])
- if len(str_find)>0:
- set_match.add(inner_table[i][j][0])
- if len(set_match)>=count:
- is_head = True
- if len(inner_table[i][0][0])>40:
- is_long_value = True
- if is_head or is_long_value or is_same_value:
- if not is_head_last:
- head_list.append(i)
- if is_head:
- for j in range(width):
- inner_table[i][j][1] = 1
- is_head_last = is_head
- head_list.append(height)
- #列表头
- for i in range(len(head_list)-1):
- head_begin = head_list[i]
- head_end = head_list[i+1]
- #最后一列不设置为列表头
- for i in range(width-1):
- set_match = set()
- is_head = False
- for j in range(head_begin,head_end):
- if re.search(pat_value,inner_table[j][i][0]) is not None:
- is_head = False
- break
- str_find = re.findall(pattern,inner_table[j][i][0])
- if len(str_find)>0:
- set_match.add(inner_table[j][i][0])
- if len(set_match)>=count:
- is_head = True
- if is_head:
- for j in range(head_begin,head_end):
- inner_table[j][i][1] = 2
- return inner_table,head_list
-
- #取得表格的处理方向
- def getDirect(inner_table,begin,end):
- '''
- column_head = set()
- row_head = set()
- widths = len(inner_table[0])
- for height in range(begin,end):
- for width in range(widths):
- if inner_table[height][width][1] ==1:
- row_head.add(height)
- if inner_table[height][width][1] ==2:
- column_head.add(width)
- company_pattern = re.compile("公司")
- if 0 in column_head and begin not in row_head:
- return "column"
- if 0 in column_head and begin in row_head:
- for height in range(begin,end):
- count = 0
- count_flag = True
- for width_index in range(width):
- if inner_table[height][width_index][1]==0:
- if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
- count += 1
- else:
- count_flag = False
- if count_flag and count>=2:
- return "column"
- return "row"
- '''
- count_row_keys = 0
- count_column_keys = 0
- width = len(inner_table[0])
- if begin<end:
- for w in range(len(inner_table[begin])):
- if inner_table[begin][w][1]!=0:
- count_row_keys += 1
- for h in range(begin,end):
- if inner_table[h][0][1]!=0:
- count_column_keys += 1
-
- company_pattern = re.compile("有限(责任)?公司")
- for height in range(begin,end):
- count_set = set()
- count_flag = True
- for width_index in range(width):
- if inner_table[height][width_index][1]==0:
- if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
- count_set.add(inner_table[height][width_index][0])
- else:
- count_flag = False
- if count_flag and len(count_set)>=2:
- return "column"
- if count_column_keys>count_row_keys:
- return "column"
- return "row"
-
-
- #根据表格处理方向生成句子,
- def getTableText(inner_table,head_list,key_direct=False):
- # packPattern = "(标包|[标包][号段名])"
- packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
- rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标)" # 2020/11/23 大网站规则,添加序号为排序
- entityPattern = "(候选|([中投]标|报价)|单位名称|供应商|金额)"
- height = len(inner_table)
- width = len(inner_table[0])
- text = ""
-
- for head_i in range(len(head_list)-1):
-
- head_begin = head_list[head_i]
- head_end = head_list[head_i+1]
-
- direct = getDirect(inner_table, head_begin, head_end)
- #若只有一行,则直接按行读取
- if head_end-head_begin==1:
- text_line = ""
- for i in range(head_begin,head_end):
- for w in range(len(inner_table[i])):
- if inner_table[i][w][1]==1:
- _punctuation = ":"
- else:
- _punctuation = ","
- if w>0:
- if inner_table[i][w][0]!= inner_table[i][w-1][0]:
- text_line += inner_table[i][w][0]+_punctuation
- else:
- text_line += inner_table[i][w][0]+_punctuation
- text_line = text_line+"。" if text_line!="" else text_line
- text += text_line
- else:
- #构建一个共现矩阵
- table_occurence = []
- for i in range(head_begin,head_end):
- line_oc = []
- for j in range(width):
- cell = inner_table[i][j]
- line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":""})
- table_occurence.append(line_oc)
- occu_height = len(table_occurence)
- occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
- #为每个属性值寻找表头
- for i in range(occu_height):
- for j in range(occu_width):
- cell = table_occurence[i][j]
- #是属性值
- if cell["type"]==0 and cell["text"]!="":
- left_head = ""
- top_head = ""
- find_flag = False
- temp_head = ""
- for loop_i in range(1,i+1):
- if not key_direct:
- key_values = [1,2]
- else:
- key_values = [1]
- if table_occurence[i-loop_i][j]["type"] in key_values:
- if find_flag:
- if table_occurence[i-loop_i][j]["text"]!=temp_head:
- top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
- else:
- top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
- find_flag = True
- temp_head = table_occurence[i-loop_i][j]["text"]
- table_occurence[i-loop_i][j]["occu_count"] += 1
- else:
- #找到表头后遇到属性值就返回
- if find_flag:
- break
- cell["top_head"] += top_head
- find_flag = False
- temp_head = ""
- for loop_j in range(1,j+1):
- if not key_direct:
- key_values = [1,2]
- else:
- key_values = [2]
- if table_occurence[i][j-loop_j]["type"] in key_values:
- if find_flag:
- if table_occurence[i][j-loop_j]["text"]!=temp_head:
- left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
- else:
- left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
- find_flag = True
- temp_head = table_occurence[i][j-loop_j]["text"]
- table_occurence[i][j-loop_j]["occu_count"] += 1
- else:
- if find_flag:
- break
- cell["left_head"] += left_head
- if direct=="row":
- for i in range(occu_height):
- pack_text = ""
- rank_text = ""
- entity_text = ""
- text_line = ""
- #在同一句话中重复的可以去掉
- text_set = set()
- for j in range(width):
- cell = table_occurence[i][j]
- if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
- cell = table_occurence[i][j]
- head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
- head += cell["left_head"]
- if str(head+cell["text"]) in text_set:
- continue
- if re.search(packPattern,head) is not None:
- pack_text += head+cell["text"]+","
- elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
- #排名替换为同一种表达
- rank_text += head+cell["text"]+","
- #print(rank_text)
- elif re.search(entityPattern,head) is not None:
- entity_text += head+cell["text"]+","
- #print(entity_text)
- else:
- text_line += head+cell["text"]+","
- text_set.add(str(head+cell["text"]))
- text += pack_text+rank_text+entity_text+text_line
- text = text[:-1]+"。" if len(text)>0 else text
- else:
- for j in range(occu_width):
- pack_text = ""
- rank_text = ""
- entity_text = ""
- text_line = ""
- text_set = set()
- for i in range(occu_height):
- cell = table_occurence[i][j]
- if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
- cell = table_occurence[i][j]
- head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
- head += cell["top_head"]
- if str(head+cell["text"]) in text_set:
- continue
- if re.search(packPattern,head) is not None:
- pack_text += head+cell["text"]+","
- elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
- #排名替换为同一种表达
- rank_text += head+cell["text"]+","
- #print(rank_text)
- elif re.search(entityPattern,head) is not None:
- entity_text += head+cell["text"]+","
- #print(entity_text)
- else:
- text_line += head+cell["text"]+","
- text_set.add(str(head+cell["text"]))
- text += pack_text+rank_text+entity_text+text_line
- text = text[:-1]+"。" if len(text)>0 else text
- # if direct=="row":
- # for i in range(head_begin,head_end):
- # pack_text = ""
- # rank_text = ""
- # entity_text = ""
- # text_line = ""
- # #在同一句话中重复的可以去掉
- # text_set = set()
- # for j in range(width):
- # cell = inner_table[i][j]
- # #是属性值
- # if cell[1]==0 and cell[0]!="":
- # head = ""
- #
- # find_flag = False
- # temp_head = ""
- # for loop_i in range(0,i+1-head_begin):
- # if not key_direct:
- # key_values = [1,2]
- # else:
- # key_values = [1]
- # if inner_table[i-loop_i][j][1] in key_values:
- # if find_flag:
- # if inner_table[i-loop_i][j][0]!=temp_head:
- # head = inner_table[i-loop_i][j][0]+":"+head
- # else:
- # head = inner_table[i-loop_i][j][0]+":"+head
- # find_flag = True
- # temp_head = inner_table[i-loop_i][j][0]
- # else:
- # #找到表头后遇到属性值就返回
- # if find_flag:
- # break
- #
- # find_flag = False
- # temp_head = ""
- #
- #
- #
- # for loop_j in range(1,j+1):
- # if not key_direct:
- # key_values = [1,2]
- # else:
- # key_values = [2]
- # if inner_table[i][j-loop_j][1] in key_values:
- # if find_flag:
- # if inner_table[i][j-loop_j][0]!=temp_head:
- # head = inner_table[i][j-loop_j][0]+":"+head
- # else:
- # head = inner_table[i][j-loop_j][0]+":"+head
- # find_flag = True
- # temp_head = inner_table[i][j-loop_j][0]
- # else:
- # if find_flag:
- # break
- #
- # if str(head+inner_table[i][j][0]) in text_set:
- # continue
- # if re.search(packPattern,head) is not None:
- # pack_text += head+inner_table[i][j][0]+","
- # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
- # #排名替换为同一种表达
- # rank_text += head+inner_table[i][j][0]+","
- # #print(rank_text)
- # elif re.search(entityPattern,head) is not None:
- # entity_text += head+inner_table[i][j][0]+","
- # #print(entity_text)
- # else:
- # text_line += head+inner_table[i][j][0]+","
- # text_set.add(str(head+inner_table[i][j][0]))
- # text += pack_text+rank_text+entity_text+text_line
- # text = text[:-1]+"。" if len(text)>0 else text
- # else:
- # for j in range(width):
- #
- # rank_text = ""
- # entity_text = ""
- # text_line = ""
- # text_set = set()
- # for i in range(head_begin,head_end):
- # cell = inner_table[i][j]
- # #是属性值
- # if cell[1]==0 and cell[0]!="":
- # find_flag = False
- # head = ""
- # temp_head = ""
- #
- # for loop_j in range(1,j+1):
- # if not key_direct:
- # key_values = [1,2]
- # else:
- # key_values = [2]
- # if inner_table[i][j-loop_j][1] in key_values:
- # if find_flag:
- # if inner_table[i][j-loop_j][0]!=temp_head:
- # head = inner_table[i][j-loop_j][0]+":"+head
- # else:
- # head = inner_table[i][j-loop_j][0]+":"+head
- # find_flag = True
- # temp_head = inner_table[i][j-loop_j][0]
- # else:
- # if find_flag:
- # break
- # find_flag = False
- # temp_head = ""
- # for loop_i in range(0,i+1-head_begin):
- # if not key_direct:
- # key_values = [1,2]
- # else:
- # key_values = [1]
- # if inner_table[i-loop_i][j][1] in key_values:
- # if find_flag:
- # if inner_table[i-loop_i][j][0]!=temp_head:
- # head = inner_table[i-loop_i][j][0]+":"+head
- # else:
- # head = inner_table[i-loop_i][j][0]+":"+head
- # find_flag = True
- # temp_head = inner_table[i-loop_i][j][0]
- # else:
- # if find_flag:
- # break
- # if str(head+inner_table[i][j][0]) in text_set:
- # continue
- # if re.search(rankPattern,head) is not None:
- # rank_text += head+inner_table[i][j][0]+","
- # #print(rank_text)
- # elif re.search(entityPattern,head) is not None:
- # entity_text += head+inner_table[i][j][0]+","
- # #print(entity_text)
- # else:
- # text_line += head+inner_table[i][j][0]+","
- # text_set.add(str(head+inner_table[i][j][0]))
- # text += rank_text+entity_text+text_line
- # text = text[:-1]+"。" if len(text)>0 else text
- return text
-
- def removeFix(inner_table,fix_value="~~"):
- height = len(inner_table)
- width = len(inner_table[0])
- for h in range(height):
- for w in range(width):
- if inner_table[h][w][0]==fix_value:
- inner_table[h][w][0] = ""
-
- def trunTable(tbody):
- fixSpan(tbody)
- inner_table = getTable(tbody)
- inner_table = fixTable(inner_table)
- if len(inner_table)>0 and len(inner_table[0])>0:
- #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
- #inner_table,head_list = setHead_inline(inner_table)
- # inner_table,head_list = setHead_initem(inner_table,pat_head)
- inner_table,head_list = setHead_incontext(inner_table,pat_head)
- # print(inner_table)
- # for begin in range(len(head_list[:-1])):
- # for item in inner_table[head_list[begin]:head_list[begin+1]]:
- # print(item)
- # print("====")
- removeFix(inner_table)
-
- # print("----")
- # print(head_list)
- # for item in inner_table:
- # print(item)
- tbody.string = getTableText(inner_table,head_list)
- #print(tbody.string)
- tbody.name = "turntable"
- return inner_table
- return None
-
- pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
- #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
- pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
- list_innerTable = []
- tbodies = soup.find_all('table')
- # 遍历表格中的每个tbody
- #逆序处理嵌套表格
- for tbody_index in range(1,len(tbodies)+1):
- tbody = tbodies[len(tbodies)-tbody_index]
- inner_table = trunTable(tbody)
- list_innerTable.append(inner_table)
- tbodies = soup.find_all('tbody')
- # 遍历表格中的每个tbody
- #逆序处理嵌套表格
- for tbody_index in range(1,len(tbodies)+1):
- tbody = tbodies[len(tbodies)-tbody_index]
- inner_table = trunTable(tbody)
- list_innerTable.append(inner_table)
- return soup
- # return list_innerTable
- #数据清洗
- def segment(soup,final=True):
- # print("==")
- # print(soup)
- # print("====")
- #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
- subspaceList = ["td",'a',"span","p"]
- if soup.name in subspaceList:
- #判断有值叶子节点数
- _count = 0
- for child in soup.find_all(recursive=True):
- if child.get_text().strip()!="" and len(child.find_all())==0:
- _count += 1
- if _count<=1:
- text = soup.get_text()
- # 2020/11/24 大网站规则添加
- if 'title' in soup.attrs:
- if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
- text = soup.attrs['title']
- # _list = []
- # for x in re.split("\s+",text):
- # if x.strip()!="":
- # _list.append(len(x))
- # if len(_list)>0:
- # _minLength = min(_list)
- # if _minLength>2:
- # _substr = ","
- # else:
- # _substr = ""
- # else:
- # _substr = ""
- text = text.replace("\r\n",",").replace("\n",",")
- text = re.sub("\s+","##space##",text)
- return text
- segList = ["title"]
- commaList = ["div","br","td","p"]
- #commaList = []
- spaceList = ["span"]
- tbodies = soup.find_all('tbody')
- if len(tbodies) == 0:
- tbodies = soup.find_all('table')
- # 递归遍历所有节点,插入符号
- for child in soup.find_all(recursive=True):
- if child.name in segList:
- child.insert_after("。")
- if child.name in commaList:
- child.insert_after(",")
- # if child.name in subspaceList:
- # child.insert_before("#subs"+str(child.name)+"#")
- # child.insert_after("#sube"+str(child.name)+"#")
- # if child.name in spaceList:
- # child.insert_after(" ")
- text = str(soup.get_text())
- #替换英文冒号为中文冒号
- text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
- #替换为中文逗号
- text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
- #替换为中文分号
- text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
-
-
- #替换"""为"“",否则导入deepdive出错
- text = text.replace('"',"“").replace("\r","").replace("\n",",")
- text = re.sub("\s{4,}",",",text)
- #替换标点
- #替换连续的标点
- if final:
- text = re.sub("##space##"," ",text)
- punc_pattern = "(?P<del>[。,;::,\s]+)"
- list_punc = re.findall(punc_pattern,text)
- list_punc.sort(key=lambda x:len(x),reverse=True)
- for punc_del in list_punc:
- if len(punc_del)>1:
- text = re.sub(punc_del,punc_del[-1],text)
-
- #将连续的中文句号替换为一个
- text_split = text.split("。")
- text_split = [x for x in text_split if len(x)>0]
- text = "。".join(text_split)
- # #删除标签中的所有空格
- # for subs in subspaceList:
- # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
- # while(True):
- # oneMatch = re.search(re.compile(patten),text)
- # if oneMatch is not None:
- # _match = oneMatch.group(1)
- # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
- # else:
- # break
- # text过大报错
- LOOP_LEN = 10000
- LOOP_BEGIN = 0
- _text = ""
- if len(text)<10000000:
- while(LOOP_BEGIN<len(text)):
- _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
- LOOP_BEGIN += LOOP_LEN
- text = _text
- return text
- '''
- #数据清洗
- def segment(soup):
- segList = ["title"]
- commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
- spaceList = ["span"]
- tbodies = soup.find_all('tbody')
- if len(tbodies) == 0:
- tbodies = soup.find_all('table')
- # 递归遍历所有节点,插入符号
- for child in soup.find_all(recursive=True):
- if child.name == 'br':
- child.insert_before(',')
- child_text = re.sub('\s', '', child.get_text())
- if child_text == '' or child_text[-1] in ['。',',',':',';']:
- continue
- if child.name in segList:
- child.insert_after("。")
- if child.name in commaList:
- if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
- child.insert_after(",")
- elif len(child_text) >=50:
- child.insert_after("。")
- #if child.name in spaceList:
- #child.insert_after(" ")
- text = str(soup.get_text())
- text = re.sub("\s{5,}",",",text)
- text = text.replace('"',"“").replace("\r","").replace("\n",",")
- #替换"""为"“",否则导入deepdive出错
- text = text.replace('"',"“")
- #text = text.replace('"',"“").replace("\r","").replace("\n","")
-
- #删除所有空格
- text = re.sub("\s+","#nbsp#",text)
- text_list = text.split('#nbsp#')
- new_text = ''
- for i in range(len(text_list)-1):
- if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
- new_text += text_list[i]
- elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
- new_text += text_list[i] + '。'
- elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
- new_text += text_list[i] + ';'
- elif text_list[i].isdigit() and text_list[i+1].isdigit():
- new_text += text_list[i] + ' '
- elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
- new_text += text_list[i]
- elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
- new_text += text_list[i] + ','
- else:
- new_text += text_list[i]
- new_text += text_list[-1]
- text = new_text
- #替换英文冒号为中文冒号
- text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
- #替换为中文逗号
- text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
- #替换为中文分号
- text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
-
- #替换标点
- while(True):
- #替换连续的标点
- punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
- if punc is not None:
- text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
-
- punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
- if punc is not None:
- text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
- else:
- #替换标点之后的空格
- punc = re.search("(?P<punc>:|。|,|;)\s+",text)
- if punc is not None:
- text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
- else:
- break
- #将连续的中文句号替换为一个
- text_split = text.split("。")
- text_split = [x for x in text_split if len(x)>0]
- text = "。".join(text_split)
- #替换中文括号为英文括号
- text = re.sub("(","(",text)
- text = re.sub(")",")",text)
- return text
- '''
- #连续实体合并(弃用)
- def union_ner(list_ner):
- result_list = []
- union_index = []
- union_index_set = set()
- for i in range(len(list_ner)-1):
- if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
- if list_ner[i][1]-list_ner[i+1][0]==1:
- union_index_set.add(i)
- union_index_set.add(i+1)
- union_index.append((i,i+1))
- for i in range(len(list_ner)):
- if i not in union_index_set:
- result_list.append(list_ner[i])
- for item in union_index:
- #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
- result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
- return result_list
-
-
- def getTokensAndNers(sentences,MAXAREA = 10000,useselffool=False):
- '''
- @param: sentences:句子数
- @return 限流执行后的分词和实体识别list
- '''
- def getData(tokens,ners,process_data):
- process_sentences = [item[1] for item in process_data]
-
- token_ = selffool.cut(process_sentences)
- if useselffool:
- ner_ = selffool.self_ner(process_sentences)
- else:
- ner_ = selffool.ner(process_sentences)
- for i in range(len(token_)):
- the_index = process_data[i][0]
- tokens[the_index] = token_[i]
- ners[the_index] = ner_[i]
- sents = []
- for i in range(len(sentences)):
- sents.append([i,sentences[i]])
- sents.sort(key=lambda x:len(x[1]),reverse=True)
- index_ = 0
- tokens = [[]for i in range(len(sentences))]
- ners = [[]for i in range(len(sentences))]
-
- while(True):
- width = len(sents[index_][1])
- height = MAXAREA//width+1
- if height>len(sents)-index_:
- height = len(sents)-index_
- process_data = sents[index_:index_+height]
- getData(tokens, ners, process_data)
- index_ += height
- if index_>=len(sents):
- break
- return tokens,ners
- def getTokens(sentences,MAXAREA = 10000,useselffool=True):
- '''
- @param: sentences:句子数
- @return 限流执行后的分词list
- '''
- def getData(tokens,process_data):
- process_sentences = [item[1] for item in process_data]
- token_ = selffool.cut(process_sentences)
- for i in range(len(token_)):
- the_index = process_data[i][0]
- tokens[the_index] = token_[i]
- sents = []
- for i in range(len(sentences)):
- sents.append([i,sentences[i]])
- sents.sort(key=lambda x:len(x[1]),reverse=True)
- index_ = 0
- tokens = [[]for i in range(len(sentences))]
- while(True):
- width = len(sents[index_][1])
- height = MAXAREA//width+1
- if height>len(sents)-index_:
- height = len(sents)-index_
- process_data = sents[index_:index_+height]
- getData(tokens, process_data)
- index_ += height
- if index_>=len(sents):
- break
- return tokens
- def getNers(sentences,MAXAREA = 10000,useselffool=False):
- '''
- @param: sentences:句子数
- @return 限流执行后的实体识别list
- '''
- def getData(ners,process_data):
- process_sentences = [item[1] for item in process_data]
- if useselffool:
- ner_ = selffool.self_ner(process_sentences)
- else:
- ner_ = selffool.ner(process_sentences)
- for i in range(len(ner_)):
- the_index = process_data[i][0]
- ners[the_index] = ner_[i]
- sents = []
- for i in range(len(sentences)):
- sents.append([i,sentences[i]])
- sents.sort(key=lambda x:len(x[1]),reverse=True)
- index_ = 0
- ners = [[]for i in range(len(sentences))]
- while(True):
- width = len(sents[index_][1])
- height = MAXAREA//width+1
- if height>len(sents)-index_:
- height = len(sents)-index_
- process_data = sents[index_:index_+height]
- getData( ners, process_data)
- index_ += height
- if index_>=len(sents):
- break
- return ners
-
- # def get_preprocessed(articles,useselffool=False):
- # '''
- # @summary:预处理步骤,NLP处理、实体识别
- # @param:
- # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
- # @return:list of articles,list of each article of sentences,list of each article of entitys
- # '''
- # list_articles = []
- # list_sentences = []
- # list_entitys = []
- # cost_time = dict()
- # for article in articles:
- # list_sentences_temp = []
- # list_entitys_temp = []
- # doc_id = article[0]
- # sourceContent = article[1]
- # _send_doc_id = article[3]
- # _title = article[4]
- # #表格处理
- # key_preprocess = "tableToText"
- # start_time = time.time()
- # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
- #
- # # log(article_processed)
- #
- # if key_preprocess not in cost_time:
- # cost_time[key_preprocess] = 0
- # cost_time[key_preprocess] += time.time()-start_time
- #
- # #article_processed = article[1]
- # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
- # #nlp处理
- # if article_processed is not None and len(article_processed)!=0:
- # split_patten = "。"
- # sentences = []
- # _begin = 0
- # for _iter in re.finditer(split_patten,article_processed):
- # sentences.append(article_processed[_begin:_iter.span()[1]])
- # _begin = _iter.span()[1]
- # sentences.append(article_processed[_begin:])
- #
- # lemmas = []
- # doc_offsets = []
- # dep_types = []
- # dep_tokens = []
- #
- # time1 = time.time()
- #
- # '''
- # tokens_all = fool.cut(sentences)
- # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
- # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
- # ner_entitys_all = fool.ner(sentences)
- # '''
- # #限流执行
- # key_nerToken = "nerToken"
- # start_time = time.time()
- # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
- # if key_nerToken not in cost_time:
- # cost_time[key_nerToken] = 0
- # cost_time[key_nerToken] += time.time()-start_time
- #
- #
- # for sentence_index in range(len(sentences)):
- #
- #
- #
- # list_sentence_entitys = []
- # sentence_text = sentences[sentence_index]
- # tokens = tokens_all[sentence_index]
- #
- # list_tokenbegin = []
- # begin = 0
- # for i in range(0,len(tokens)):
- # list_tokenbegin.append(begin)
- # begin += len(str(tokens[i]))
- # list_tokenbegin.append(begin+1)
- # #pos_tag = pos_all[sentence_index]
- # pos_tag = ""
- #
- # ner_entitys = ner_entitys_all[sentence_index]
- #
- # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
- #
- # #识别package
- #
- #
- # #识别实体
- # for ner_entity in ner_entitys:
- # begin_index_temp = ner_entity[0]
- # end_index_temp = ner_entity[1]
- # entity_type = ner_entity[2]
- # entity_text = ner_entity[3]
- #
- # for j in range(len(list_tokenbegin)):
- # if list_tokenbegin[j]==begin_index_temp:
- # begin_index = j
- # break
- # elif list_tokenbegin[j]>begin_index_temp:
- # begin_index = j-1
- # break
- # begin_index_temp += len(str(entity_text))
- # for j in range(begin_index,len(list_tokenbegin)):
- # if list_tokenbegin[j]>=begin_index_temp:
- # end_index = j-1
- # break
- # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
- #
- # #去掉标点符号
- # entity_text = re.sub("[,,。:]","",entity_text)
- # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
- #
- #
- # #使用正则识别金额
- # entity_type = "money"
- #
- # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
- #
- # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
- # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
- # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
- # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
- #
- # set_begin = set()
- # for pattern_key in list_money_pattern.keys():
- # pattern = re.compile(list_money_pattern[pattern_key])
- # all_match = re.findall(pattern, sentence_text)
- # index = 0
- # for i in range(len(all_match)):
- # if len(all_match[i][0])>0:
- # # print("===",all_match[i])
- # #print(all_match[i][0])
- # unit = ""
- # entity_text = all_match[i][3]
- # if pattern_key in ["key_word","front_m"]:
- # unit = all_match[i][1]
- # else:
- # unit = all_match[i][4]
- # if entity_text.find("元")>=0:
- # unit = ""
- #
- # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
- #
- # begin_index_temp = index
- # for j in range(len(list_tokenbegin)):
- # if list_tokenbegin[j]==index:
- # begin_index = j
- # break
- # elif list_tokenbegin[j]>index:
- # begin_index = j-1
- # break
- # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
- # end_index_temp = index
- # #index += len(str(all_match[i][0]))
- # for j in range(begin_index,len(list_tokenbegin)):
- # if list_tokenbegin[j]>=index:
- # end_index = j-1
- # break
- # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
- #
- #
- # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
- # if len(unit)>0:
- # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
- # else:
- # entity_text = str(getUnifyMoney(entity_text))
- #
- # _exists = False
- # for item in list_sentence_entitys:
- # if item.entity_id==entity_id and item.entity_type==entity_type:
- # _exists = True
- # if not _exists:
- # if float(entity_text)>10:
- # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
- #
- # else:
- # index += 1
- #
- # list_sentence_entitys.sort(key=lambda x:x.begin_index)
- # list_entitys_temp = list_entitys_temp+list_sentence_entitys
- # list_sentences.append(list_sentences_temp)
- # list_entitys.append(list_entitys_temp)
- # return list_articles,list_sentences,list_entitys,cost_time
- def get_preprocessed(articles,useselffool=False):
- '''
- @summary:预处理步骤,NLP处理、实体识别
- @param:
- articles:待处理的文章list [[id,source,jointime,doc_id,title]]
- @return:list of articles,list of each article of sentences,list of each article of entitys
- '''
- cost_time = dict()
- list_articles = get_preprocessed_article(articles,cost_time)
- list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
- list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
- return list_articles,list_sentences,list_entitys,cost_time
-
- def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
- '''
- :param articles: 待处理的article source html
- :param useselffool: 是否使用selffool
- :return: list_articles
- '''
- list_articles = []
- for article in articles:
- doc_id = article[0]
- sourceContent = article[1]
- _send_doc_id = article[3]
- _title = article[4]
- #表格处理
- key_preprocess = "tableToText"
- start_time = time.time()
- article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
- # log(article_processed)
- if key_preprocess not in cost_time:
- cost_time[key_preprocess] = 0
- cost_time[key_preprocess] += time.time()-start_time
- #article_processed = article[1]
- list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
- return list_articles
- def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
- '''
- :param list_articles: 经过预处理的article text
- :return: list_sentences
- '''
- list_sentences = []
- for article in list_articles:
- list_sentences_temp = []
- list_entitys_temp = []
- doc_id = article.id
- _send_doc_id = article.doc_id
- _title = article.title
- #表格处理
- key_preprocess = "tableToText"
- start_time = time.time()
- article_processed = article.content
- if key_preprocess not in cost_time:
- cost_time[key_preprocess] = 0
- cost_time[key_preprocess] += time.time()-start_time
- #nlp处理
- if article_processed is not None and len(article_processed)!=0:
- split_patten = "。"
- sentences = []
- _begin = 0
- sentences_set = set()
- for _iter in re.finditer(split_patten,article_processed):
- _sen = article_processed[_begin:_iter.span()[1]]
- if len(_sen)>0 and _sen not in sentences_set:
- sentences.append(_sen)
- sentences_set.add(_sen)
- _begin = _iter.span()[1]
- _sen = article_processed[_begin:]
- if len(_sen)>0 and _sen not in sentences_set:
- sentences.append(_sen)
- sentences_set.add(_sen)
- article.content = "".join(sentences)
- # sentences.append(article_processed[_begin:])
- lemmas = []
- doc_offsets = []
- dep_types = []
- dep_tokens = []
- time1 = time.time()
- '''
- tokens_all = fool.cut(sentences)
- #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
- #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
- ner_entitys_all = fool.ner(sentences)
- '''
- #限流执行
- key_nerToken = "nerToken"
- start_time = time.time()
- tokens_all = getTokens(sentences,useselffool=useselffool)
- if key_nerToken not in cost_time:
- cost_time[key_nerToken] = 0
- cost_time[key_nerToken] += time.time()-start_time
- for sentence_index in range(len(sentences)):
- sentence_text = sentences[sentence_index]
- tokens = tokens_all[sentence_index]
- #pos_tag = pos_all[sentence_index]
- pos_tag = ""
- ner_entitys = ""
- list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
- if len(list_sentences_temp)==0:
- list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
- list_sentences.append(list_sentences_temp)
- return list_sentences
- def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
- '''
- :param list_sentences:分局情况
- :param cost_time:
- :return: list_entitys
- '''
- list_entitys = []
- for list_sentence in list_sentences:
- sentences = []
- list_entitys_temp = []
- for _sentence in list_sentence:
- sentences.append(_sentence.sentence_text)
- lemmas = []
- doc_offsets = []
- dep_types = []
- dep_tokens = []
- time1 = time.time()
- '''
- tokens_all = fool.cut(sentences)
- #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
- #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
- ner_entitys_all = fool.ner(sentences)
- '''
- #限流执行
- key_nerToken = "nerToken"
- start_time = time.time()
- ner_entitys_all = getNers(sentences,useselffool=useselffool)
- if key_nerToken not in cost_time:
- cost_time[key_nerToken] = 0
- cost_time[key_nerToken] += time.time()-start_time
- for sentence_index in range(len(list_sentence)):
- list_sentence_entitys = []
- sentence_text = list_sentence[sentence_index].sentence_text
- tokens = list_sentence[sentence_index].tokens
- doc_id = list_sentence[sentence_index].doc_id
- list_tokenbegin = []
- begin = 0
- for i in range(0,len(tokens)):
- list_tokenbegin.append(begin)
- begin += len(str(tokens[i]))
- list_tokenbegin.append(begin+1)
- #pos_tag = pos_all[sentence_index]
- pos_tag = ""
- ner_entitys = ner_entitys_all[sentence_index]
- #识别package
- #识别实体
- for ner_entity in ner_entitys:
- begin_index_temp = ner_entity[0]
- end_index_temp = ner_entity[1]
- entity_type = ner_entity[2]
- entity_text = ner_entity[3]
- for j in range(len(list_tokenbegin)):
- if list_tokenbegin[j]==begin_index_temp:
- begin_index = j
- break
- elif list_tokenbegin[j]>begin_index_temp:
- begin_index = j-1
- break
- begin_index_temp += len(str(entity_text))
- for j in range(begin_index,len(list_tokenbegin)):
- if list_tokenbegin[j]>=begin_index_temp:
- end_index = j-1
- break
- entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
- #去掉标点符号
- entity_text = re.sub("[,,。:]","",entity_text)
- list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
- #使用正则识别金额
- entity_type = "money"
- #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
- list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
- "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
- "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
- "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
- pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
- set_begin = set()
- # for pattern_key in list_money_pattern.keys():
- # for pattern_key in ["cn","key_word","behind_m","front_m"]:
- # # pattern = re.compile(list_money_pattern[pattern_key])
- # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
- # all_match = re.findall(pattern, sentence_text)
- # index = 0
- # for i in range(len(all_match)):
- # if len(all_match[i][0])>0:
- # print("===",all_match[i])
- # #print(all_match[i][0])
- # unit = ""
- # entity_text = all_match[i][3]
- # if pattern_key in ["key_word","front_m"]:
- # unit = all_match[i][1]
- # if pattern_key=="key_word":
- # if all_match[i][1]=="" and all_match[i][4]!="":
- # unit = all_match[i][4]
- # else:
- # unit = all_match[i][4]
- # if entity_text.find("元")>=0:
- # unit = ""
- #
- # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
- # begin_index_temp = index
- # for j in range(len(list_tokenbegin)):
- # if list_tokenbegin[j]==index:
- # begin_index = j
- # break
- # elif list_tokenbegin[j]>index:
- # begin_index = j-1
- # break
- # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
- # end_index_temp = index
- # #index += len(str(all_match[i][0]))
- # for j in range(begin_index,len(list_tokenbegin)):
- # if list_tokenbegin[j]>=index:
- # end_index = j-1
- # break
- # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
- #
- # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
- # if len(unit)>0:
- # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
- # else:
- # entity_text = str(getUnifyMoney(entity_text))
- #
- # _exists = False
- # for item in list_sentence_entitys:
- # if item.entity_id==entity_id and item.entity_type==entity_type:
- # _exists = True
- # if not _exists:
- # if float(entity_text)>1:
- # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
- #
- # else:
- # index += 1
- all_match = re.finditer(pattern_money, sentence_text)
- index = 0
- for _match in all_match:
- if len(_match.group())>0:
- # print("===",_match.group())
- # print(_match.groupdict())
- unit = ""
- entity_text = ""
- text_beforeMoney = ""
- filter = ""
- filter_unit = False
- for k,v in _match.groupdict().items():
- if v!="" and v is not None:
- if k.split("_")[0]=="money":
- entity_text = v
- if k.split("_")[0]=="unit":
- unit = v
- if k.split("_")[0]=="text":
- text_beforeMoney = v
- if k.split("_")[0]=="filter":
- filter = v
- if re.search("filter_unit",k) is not None:
- filter_unit = True
- if entity_text.find("元")>=0:
- unit = ""
- else:
- if filter_unit:
- continue
- if filter!="":
- continue
- index = _match.span()[0]+len(text_beforeMoney)
- begin_index_temp = index
- for j in range(len(list_tokenbegin)):
- if list_tokenbegin[j]==index:
- begin_index = j
- break
- elif list_tokenbegin[j]>index:
- begin_index = j-1
- break
- index = _match.span()[1]
- end_index_temp = index
- #index += len(str(all_match[i][0]))
- for j in range(begin_index,len(list_tokenbegin)):
- if list_tokenbegin[j]>=index:
- end_index = j-1
- break
- entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
- entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
- if len(unit)>0:
- entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
- else:
- entity_text = str(getUnifyMoney(entity_text))
- if float(entity_text)<100 or float(entity_text)>100000000000:
- continue
- _exists = False
- for item in list_sentence_entitys:
- if item.entity_id==entity_id and item.entity_type==entity_type:
- _exists = True
- if not _exists:
- if float(entity_text)>1:
- list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
- else:
- index += 1
- # 资金来源提取 2020/12/30 新增
- list_moneySource = extract_moneySource(sentence_text)
- entity_type = "moneysource"
- for moneySource in list_moneySource:
- begin_index_temp = moneySource['begin_index']
- for j in range(len(list_tokenbegin)):
- if list_tokenbegin[j] == begin_index_temp:
- begin_index = j
- break
- elif list_tokenbegin[j] > begin_index_temp:
- begin_index = j - 1
- break
- index = moneySource['end_index']
- end_index_temp = index
- for j in range(begin_index, len(list_tokenbegin)):
- if list_tokenbegin[j] >= index:
- end_index = j - 1
- break
- entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
- entity_text = moneySource['body']
- list_sentence_entitys.append(
- Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
- begin_index_temp, end_index_temp))
- # 服务期限提取 2020/12/30 新增
- list_servicetime = extract_servicetime(sentence_text)
- entity_type = "serviceTime"
- for servicetime in list_servicetime:
- begin_index_temp = servicetime['begin_index']
- for j in range(len(list_tokenbegin)):
- if list_tokenbegin[j] == begin_index_temp:
- begin_index = j
- break
- elif list_tokenbegin[j] > begin_index_temp:
- begin_index = j - 1
- break
- index = servicetime['end_index']
- end_index_temp = index
- for j in range(begin_index, len(list_tokenbegin)):
- if list_tokenbegin[j] >= index:
- end_index = j - 1
- break
- entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
- entity_text = servicetime['body']
- list_sentence_entitys.append(
- Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
- begin_index_temp, end_index_temp))
- # 招标方式提取 2020/12/30 新增
- list_bidway = extract_bidway(sentence_text)
- entity_type = "bidway"
- for bidway in list_bidway:
- begin_index_temp = bidway['begin_index']
- end_index_temp = bidway['end_index']
- begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
- end_index = changeIndexFromWordToWords(tokens, end_index_temp)
- entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
- entity_text = bidway['body']
- list_sentence_entitys.append(
- Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
- begin_index_temp, end_index_temp))
- list_sentence_entitys.sort(key=lambda x:x.begin_index)
- list_entitys_temp = list_entitys_temp+list_sentence_entitys
- list_entitys.append(list_entitys_temp)
- return list_entitys
-
- def union_result(codeName,prem):
- '''
- @summary:模型的结果拼成字典
- @param:
- codeName:编号名称模型的结果字典
- prem:拿到属性的角色的字典
- @return:拼接起来的字典
- '''
- result = []
- assert len(codeName)==len(prem)
- for item_code,item_prem in zip(codeName,prem):
- result.append(dict(item_code,**item_prem))
- return result
- def persistenceData(data):
- '''
- @summary:将中间结果保存到数据库-线上生产的时候不需要执行
- '''
- import psycopg2
- conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
- cursor = conn.cursor()
- for item_index in range(len(data)):
- item = data[item_index]
- doc_id = item[0]
- dic = item[1]
- code = dic['code']
- name = dic['name']
- prem = dic['prem']
- if len(code)==0:
- code_insert = ""
- else:
- code_insert = ";".join(code)
- prem_insert = ""
- for item in prem:
- for x in item:
- if isinstance(x, list):
- if len(x)>0:
- for x1 in x:
- prem_insert+="/".join(x1)+","
- prem_insert+="$"
- else:
- prem_insert+=str(x)+"$"
- prem_insert+=";"
- sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
- cursor.execute(sql)
- conn.commit()
- conn.close()
-
- def persistenceData1(list_entitys,list_sentences):
- '''
- @summary:将中间结果保存到数据库-线上生产的时候不需要执行
- '''
- import psycopg2
- conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
- cursor = conn.cursor()
- for list_entity in list_entitys:
- for entity in list_entity:
- if entity.values is not None:
- sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
- else:
- sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
- cursor.execute(sql)
- for list_sentence in list_sentences:
- for sentence in list_sentence:
- str_tokens = "["
- for item in sentence.tokens:
- str_tokens += "'"
- if item=="'":
- str_tokens += "''"
- else:
- str_tokens += item
- str_tokens += "',"
- str_tokens = str_tokens[:-1]+"]"
- sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
- cursor.execute(sql)
- conn.commit()
- conn.close()
- def _handle(item,result_queue):
- dochtml = item["dochtml"]
- docid = item["docid"]
- list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
- flag = False
- if list_innerTable:
- flag = True
- for table in list_innerTable:
- result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
- def getPredictTable():
- filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
- import pandas as pd
- import json
- from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
- df = pd.read_csv(filename)
- df_data = {"json_table":[],"docid":[]}
- _count = 0
- _sum = len(df["docid"])
- task_queue = Queue()
- result_queue = Queue()
- _index = 0
- for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
- task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
- _index += 1
- mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
- mh.run()
- while True:
- try:
- item = result_queue.get(block=True,timeout=1)
- df_data["docid"].append(item["docid"])
- df_data["json_table"].append(item["json_table"])
- except Exception as e:
- print(e)
- break
- df_1 = pd.DataFrame(df_data)
- df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
- if __name__=="__main__":
- '''
- import glob
- for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
- file_txt = str(file).replace("html","txt")
- with codecs.open(file_txt,"a+",encoding="utf8") as f:
- f.write("\n================\n")
- content = codecs.open(file,"r",encoding="utf8").read()
- f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
- '''
- # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
- # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
- getPredictTable()
-
-
|