Preprocessing.py 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import *
  13. from BiddingKG.dl.foolnltk import selffool
  14. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  15. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  16. from BiddingKG.dl.bidway.re_bidway import extract_bidway
  17. #
  18. def tableToText(soup):
  19. '''
  20. @param:
  21. soup:网页html的soup
  22. @return:处理完表格信息的网页text
  23. '''
  24. def getTrs(tbody):
  25. #获取所有的tr
  26. trs = []
  27. objs = tbody.find_all(recursive=False)
  28. for obj in objs:
  29. if obj.name=="tr":
  30. trs.append(obj)
  31. if obj.name=="tbody":
  32. for tr in obj.find_all("tr",recursive=False):
  33. trs.append(tr)
  34. return trs
  35. def fixSpan(tbody):
  36. # 处理colspan, rowspan信息补全问题
  37. #trs = tbody.findChildren('tr', recursive=False)
  38. trs = getTrs(tbody)
  39. ths_len = 0
  40. ths = list()
  41. trs_set = set()
  42. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  43. # 遍历每一个tr
  44. for indtr, tr in enumerate(trs):
  45. ths_tmp = tr.findChildren('th', recursive=False)
  46. #不补全含有表格的tr
  47. if len(tr.findChildren('table'))>0:
  48. continue
  49. if len(ths_tmp) > 0:
  50. ths_len = ths_len + len(ths_tmp)
  51. for th in ths_tmp:
  52. ths.append(th)
  53. trs_set.add(tr)
  54. # 遍历每行中的element
  55. tds = tr.findChildren(recursive=False)
  56. for indtd, td in enumerate(tds):
  57. # 若有colspan 则补全同一行下一个位置
  58. if 'colspan' in td.attrs:
  59. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  60. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  61. if col<100 and len(td.get_text())<1000:
  62. td['colspan'] = 1
  63. for i in range(1, col, 1):
  64. td.insert_after(copy.copy(td))
  65. for indtr, tr in enumerate(trs):
  66. ths_tmp = tr.findChildren('th', recursive=False)
  67. #不补全含有表格的tr
  68. if len(tr.findChildren('table'))>0:
  69. continue
  70. if len(ths_tmp) > 0:
  71. ths_len = ths_len + len(ths_tmp)
  72. for th in ths_tmp:
  73. ths.append(th)
  74. trs_set.add(tr)
  75. # 遍历每行中的element
  76. tds = tr.findChildren(recursive=False)
  77. for indtd, td in enumerate(tds):
  78. # 若有rowspan 则补全下一行同样位置
  79. if 'rowspan' in td.attrs:
  80. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  81. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  82. td['rowspan'] = 1
  83. for i in range(1, row, 1):
  84. # 获取下一行的所有td, 在对应的位置插入
  85. if indtr+i<len(trs):
  86. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  87. if len(tds1) >= (indtd) and len(tds1)>0:
  88. if indtd > 0:
  89. tds1[indtd - 1].insert_after(copy.copy(td))
  90. else:
  91. tds1[0].insert_before(copy.copy(td))
  92. def getTable(tbody):
  93. #trs = tbody.findChildren('tr', recursive=False)
  94. trs = getTrs(tbody)
  95. inner_table = []
  96. for tr in trs:
  97. tr_line = []
  98. tds = tr.findChildren(['td','th'], recursive=False)
  99. for td in tds:
  100. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  101. #tr_line.append([td.get_text(),0])
  102. inner_table.append(tr_line)
  103. return inner_table
  104. #处理表格不对齐的问题
  105. def fixTable(inner_table,fix_value="~~"):
  106. maxWidth = 0
  107. for item in inner_table:
  108. if len(item)>maxWidth:
  109. maxWidth = len(item)
  110. for i in range(len(inner_table)):
  111. if len(inner_table[i])<maxWidth:
  112. for j in range(maxWidth-len(inner_table[i])):
  113. inner_table[i].append([fix_value,0])
  114. return inner_table
  115. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  116. height = len(inner_table)
  117. width = len(inner_table[0])
  118. for i in range(height):
  119. point = ""
  120. for j in range(width):
  121. if inner_table[i][j][0]==point and point!="":
  122. inner_table[i][j][0] = pad_row
  123. else:
  124. if inner_table[i][j][0] not in [pad_row,pad_col]:
  125. point = inner_table[i][j][0]
  126. for j in range(width):
  127. point = ""
  128. for i in range(height):
  129. if inner_table[i][j][0]==point and point!="":
  130. inner_table[i][j][0] = pad_col
  131. else:
  132. if inner_table[i][j][0] not in [pad_row,pad_col]:
  133. point = inner_table[i][j][0]
  134. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  135. height = len(inner_table)
  136. width = len(inner_table[0])
  137. for i in range(height):
  138. for j in range(width):
  139. if inner_table[i][j][0]==pad_row:
  140. inner_table[i][j][0] = inner_table[i][j-1][0]
  141. inner_table[i][j][1] = inner_table[i][j-1][1]
  142. if inner_table[i][j][0]==pad_col:
  143. inner_table[i][j][0] = inner_table[i-1][j][0]
  144. inner_table[i][j][1] = inner_table[i-1][j][1]
  145. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  146. '''
  147. @summary: 修复表头识别,将明显错误的进行修正
  148. '''
  149. def repairNeeded(line):
  150. first_1 = -1
  151. last_1 = -1
  152. first_0 = -1
  153. last_0 = -1
  154. count_1 = 0
  155. count_0 = 0
  156. for i in range(len(line)):
  157. if line[i][0]==fix_value:
  158. continue
  159. if line[i][1]==1:
  160. if first_1==-1:
  161. first_1 = i
  162. last_1 = i
  163. count_1 += 1
  164. if line[i][1]==0:
  165. if first_0 == -1:
  166. first_0 = i
  167. last_0 = i
  168. count_0 += 1
  169. if first_1 ==-1 or last_0 == -1:
  170. return False
  171. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  172. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  173. return True
  174. return False
  175. def getsimilarity(line,line1):
  176. same_count = 0
  177. for item,item1 in zip(line,line1):
  178. if item[1]==item1[1]:
  179. same_count += 1
  180. return same_count/len(line)
  181. def selfrepair(inner_table,index,dye_set,key_set):
  182. '''
  183. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  184. '''
  185. #print("B",inner_table[index])
  186. min_presure = 3
  187. list_dye = []
  188. first = None
  189. count = 0
  190. temp_set = set()
  191. _index = 0
  192. for item in inner_table[index]:
  193. if first is None:
  194. first = item[1]
  195. if item[0] not in temp_set:
  196. count += 1
  197. temp_set.add(item[0])
  198. else:
  199. if first == item[1]:
  200. if item[0] not in temp_set:
  201. temp_set.add(item[0])
  202. count += 1
  203. else:
  204. list_dye.append([first,count,_index])
  205. first = item[1]
  206. temp_set.add(item[0])
  207. count = 1
  208. _index += 1
  209. list_dye.append([first,count,_index])
  210. if len(list_dye)>1:
  211. begin = 0
  212. end = 0
  213. for i in range(len(list_dye)):
  214. end = list_dye[i][2]
  215. dye_flag = False
  216. #首尾要求压力减一
  217. if i==0:
  218. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  219. dye_flag = True
  220. dye_type = list_dye[i+1][0]
  221. elif i==len(list_dye)-1:
  222. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  223. dye_flag = True
  224. dye_type = list_dye[i-1][0]
  225. else:
  226. if list_dye[i][1]>1:
  227. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  228. dye_flag = True
  229. dye_type = list_dye[i+1][0]
  230. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  231. dye_flag = True
  232. dye_type = list_dye[i-1][0]
  233. else:
  234. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  235. dye_flag = True
  236. dye_type = list_dye[i+1][0]
  237. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  238. dye_flag = True
  239. dye_type = list_dye[i-1][0]
  240. if dye_flag:
  241. for h in range(begin,end):
  242. inner_table[index][h][1] = dye_type
  243. dye_set.add((inner_table[index][h][0],dye_type))
  244. key_set.add(inner_table[index][h][0])
  245. begin = end
  246. #print("E",inner_table[index])
  247. def otherrepair(inner_table,index,dye_set,key_set):
  248. list_provide_repair = []
  249. if index==0 and len(inner_table)>1:
  250. list_provide_repair.append(index+1)
  251. elif index==len(inner_table)-1:
  252. list_provide_repair.append(index-1)
  253. else:
  254. list_provide_repair.append(index+1)
  255. list_provide_repair.append(index-1)
  256. for provide_index in list_provide_repair:
  257. if not repairNeeded(inner_table[provide_index]):
  258. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  259. if same_prob>=0.8:
  260. for i in range(len(inner_table[provide_index])):
  261. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  262. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  263. key_set.add(inner_table[index][i][0])
  264. inner_table[index][i][1] = inner_table[provide_index][i][1]
  265. elif same_prob<=0.2:
  266. for i in range(len(inner_table[provide_index])):
  267. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  268. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  269. key_set.add(inner_table[index][i][0])
  270. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  271. len_dye_set = len(dye_set)
  272. height = len(inner_table)
  273. for i in range(height):
  274. if repairNeeded(inner_table[i]):
  275. selfrepair(inner_table,i,dye_set,key_set)
  276. #otherrepair(inner_table,i,dye_set,key_set)
  277. for h in range(len(inner_table)):
  278. for w in range(len(inner_table[0])):
  279. if inner_table[h][w][0] in key_set:
  280. for item in dye_set:
  281. if inner_table[h][w][0]==item[0]:
  282. inner_table[h][w][1] = item[1]
  283. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  284. if len(dye_set)!=len(key_set):
  285. for i in range(height):
  286. if repairNeeded(inner_table[i]):
  287. selfrepair(inner_table,i,dye_set,key_set)
  288. #otherrepair(inner_table,i,dye_set,key_set)
  289. return
  290. if len(dye_set)==len_dye_set:
  291. '''
  292. for i in range(height):
  293. if repairNeeded(inner_table[i]):
  294. otherrepair(inner_table,i,dye_set,key_set)
  295. '''
  296. return
  297. repairTable(inner_table, dye_set, key_set)
  298. def sliceTable(inner_table,fix_value="~~"):
  299. #进行分块
  300. height = len(inner_table)
  301. width = len(inner_table[0])
  302. head_list = []
  303. head_list.append(0)
  304. last_head = None
  305. last_is_same_value = False;
  306. for h in range(height):
  307. is_all_key = True#是否是全表头行
  308. is_all_value = True#是否是全属性值
  309. is_same_with_lastHead = True#和上一行的结构是否相同
  310. is_same_value=True#一行的item都一样
  311. #is_same_first_item = True#与上一行的第一项是否相同
  312. same_value = inner_table[h][0][0]
  313. for w in range(width):
  314. if last_head is not None:
  315. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  316. is_all_key = False
  317. if inner_table[h][w][0]==1:
  318. is_all_value = False
  319. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  320. is_same_with_lastHead = False
  321. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  322. is_same_value = False
  323. else:
  324. if re.search("\d+",same_value) is not None:
  325. is_same_value = False
  326. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  327. is_same_first_item = False
  328. last_head = h
  329. if last_is_same_value:
  330. last_is_same_value = is_same_value
  331. continue
  332. if is_same_value:
  333. head_list.append(h)
  334. last_is_same_value = is_same_value
  335. continue
  336. if not is_all_key:
  337. if not is_same_with_lastHead:
  338. head_list.append(h)
  339. head_list.append(height)
  340. return head_list
  341. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  342. set_item = set()
  343. height = len(inner_table)
  344. width = len(inner_table[0])
  345. for i in range(height):
  346. for j in range(width):
  347. item = inner_table[i][j][0]
  348. set_item.add(item)
  349. list_item = list(set_item)
  350. x = []
  351. for item in list_item:
  352. x.append(getPredictor("form").encode(item))
  353. predict_y = getPredictor("form").predict(np.array(x),type="item")
  354. _dict = dict()
  355. for item,values in zip(list_item,list(predict_y)):
  356. _dict[item] = values[1]
  357. # print("##",item,values)
  358. #print(_dict)
  359. for i in range(height):
  360. for j in range(width):
  361. item = inner_table[i][j][0]
  362. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  363. # print("=====")
  364. # for item in inner_table:
  365. # print(item)
  366. # print("======")
  367. repairTable(inner_table)
  368. head_list = sliceTable(inner_table)
  369. return inner_table,head_list
  370. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  371. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  372. predict_y = getPredictor("form").getModel("context").predict(data_x)
  373. for _position,_y in zip(data_position,predict_y):
  374. _w = _position[0]
  375. _h = _position[1]
  376. if _y[1]>prob_min:
  377. inner_table[_h][_w][1] = 1
  378. else:
  379. inner_table[_h][_w][1] = 0
  380. # print("=====")
  381. # for item in inner_table:
  382. # print(item)
  383. # print("======")
  384. repairTable(inner_table)
  385. head_list = sliceTable(inner_table)
  386. return inner_table,head_list
  387. #设置表头
  388. def setHead_inline(inner_table,prob_min=0.64):
  389. pad_row = "@@"
  390. pad_col = "##"
  391. removePadding(inner_table, pad_row, pad_col)
  392. pad_pattern = re.compile(pad_row+"|"+pad_col)
  393. height = len(inner_table)
  394. width = len(inner_table[0])
  395. head_list = []
  396. head_list.append(0)
  397. #行表头
  398. is_head_last = False
  399. for i in range(height):
  400. is_head = False
  401. is_long_value = False
  402. #判断是否是全padding值
  403. is_same_value = True
  404. same_value = inner_table[i][0][0]
  405. for j in range(width):
  406. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  407. is_same_value = False
  408. break
  409. #predict is head or not with model
  410. temp_item = ""
  411. for j in range(width):
  412. temp_item += inner_table[i][j][0]+"|"
  413. temp_item = re.sub(pad_pattern,"",temp_item)
  414. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  415. if form_prob is not None:
  416. if form_prob[0][1]>prob_min:
  417. is_head = True
  418. else:
  419. is_head = False
  420. #print(temp_item,form_prob)
  421. if len(inner_table[i][0][0])>40:
  422. is_long_value = True
  423. if is_head or is_long_value or is_same_value:
  424. #不把连续表头分开
  425. if not is_head_last:
  426. head_list.append(i)
  427. if is_long_value or is_same_value:
  428. head_list.append(i+1)
  429. if is_head:
  430. for j in range(width):
  431. inner_table[i][j][1] = 1
  432. is_head_last = is_head
  433. head_list.append(height)
  434. #列表头
  435. for i in range(len(head_list)-1):
  436. head_begin = head_list[i]
  437. head_end = head_list[i+1]
  438. #最后一列不设置为列表头
  439. for i in range(width-1):
  440. is_head = False
  441. #predict is head or not with model
  442. temp_item = ""
  443. for j in range(head_begin,head_end):
  444. temp_item += inner_table[j][i][0]+"|"
  445. temp_item = re.sub(pad_pattern,"",temp_item)
  446. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  447. if form_prob is not None:
  448. if form_prob[0][1]>prob_min:
  449. is_head = True
  450. else:
  451. is_head = False
  452. if is_head:
  453. for j in range(head_begin,head_end):
  454. inner_table[j][i][1] = 2
  455. addPadding(inner_table, pad_row, pad_col)
  456. return inner_table,head_list
  457. #设置表头
  458. def setHead_withRule(inner_table,pattern,pat_value,count):
  459. height = len(inner_table)
  460. width = len(inner_table[0])
  461. head_list = []
  462. head_list.append(0)
  463. #行表头
  464. is_head_last = False
  465. for i in range(height):
  466. set_match = set()
  467. is_head = False
  468. is_long_value = False
  469. is_same_value = True
  470. same_value = inner_table[i][0][0]
  471. for j in range(width):
  472. if inner_table[i][j][0]!=same_value:
  473. is_same_value = False
  474. break
  475. for j in range(width):
  476. if re.search(pat_value,inner_table[i][j][0]) is not None:
  477. is_head = False
  478. break
  479. str_find = re.findall(pattern,inner_table[i][j][0])
  480. if len(str_find)>0:
  481. set_match.add(inner_table[i][j][0])
  482. if len(set_match)>=count:
  483. is_head = True
  484. if len(inner_table[i][0][0])>40:
  485. is_long_value = True
  486. if is_head or is_long_value or is_same_value:
  487. if not is_head_last:
  488. head_list.append(i)
  489. if is_head:
  490. for j in range(width):
  491. inner_table[i][j][1] = 1
  492. is_head_last = is_head
  493. head_list.append(height)
  494. #列表头
  495. for i in range(len(head_list)-1):
  496. head_begin = head_list[i]
  497. head_end = head_list[i+1]
  498. #最后一列不设置为列表头
  499. for i in range(width-1):
  500. set_match = set()
  501. is_head = False
  502. for j in range(head_begin,head_end):
  503. if re.search(pat_value,inner_table[j][i][0]) is not None:
  504. is_head = False
  505. break
  506. str_find = re.findall(pattern,inner_table[j][i][0])
  507. if len(str_find)>0:
  508. set_match.add(inner_table[j][i][0])
  509. if len(set_match)>=count:
  510. is_head = True
  511. if is_head:
  512. for j in range(head_begin,head_end):
  513. inner_table[j][i][1] = 2
  514. return inner_table,head_list
  515. #取得表格的处理方向
  516. def getDirect(inner_table,begin,end):
  517. '''
  518. column_head = set()
  519. row_head = set()
  520. widths = len(inner_table[0])
  521. for height in range(begin,end):
  522. for width in range(widths):
  523. if inner_table[height][width][1] ==1:
  524. row_head.add(height)
  525. if inner_table[height][width][1] ==2:
  526. column_head.add(width)
  527. company_pattern = re.compile("公司")
  528. if 0 in column_head and begin not in row_head:
  529. return "column"
  530. if 0 in column_head and begin in row_head:
  531. for height in range(begin,end):
  532. count = 0
  533. count_flag = True
  534. for width_index in range(width):
  535. if inner_table[height][width_index][1]==0:
  536. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  537. count += 1
  538. else:
  539. count_flag = False
  540. if count_flag and count>=2:
  541. return "column"
  542. return "row"
  543. '''
  544. count_row_keys = 0
  545. count_column_keys = 0
  546. width = len(inner_table[0])
  547. if begin<end:
  548. for w in range(len(inner_table[begin])):
  549. if inner_table[begin][w][1]!=0:
  550. count_row_keys += 1
  551. for h in range(begin,end):
  552. if inner_table[h][0][1]!=0:
  553. count_column_keys += 1
  554. company_pattern = re.compile("有限(责任)?公司")
  555. for height in range(begin,end):
  556. count_set = set()
  557. count_flag = True
  558. for width_index in range(width):
  559. if inner_table[height][width_index][1]==0:
  560. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  561. count_set.add(inner_table[height][width_index][0])
  562. else:
  563. count_flag = False
  564. if count_flag and len(count_set)>=2:
  565. return "column"
  566. if count_column_keys>count_row_keys:
  567. return "column"
  568. return "row"
  569. #根据表格处理方向生成句子,
  570. def getTableText(inner_table,head_list,key_direct=False):
  571. # packPattern = "(标包|[标包][号段名])"
  572. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  573. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标)" # 2020/11/23 大网站规则,添加序号为排序
  574. entityPattern = "(候选|([中投]标|报价)|单位名称|供应商|金额)"
  575. height = len(inner_table)
  576. width = len(inner_table[0])
  577. text = ""
  578. for head_i in range(len(head_list)-1):
  579. head_begin = head_list[head_i]
  580. head_end = head_list[head_i+1]
  581. direct = getDirect(inner_table, head_begin, head_end)
  582. #若只有一行,则直接按行读取
  583. if head_end-head_begin==1:
  584. text_line = ""
  585. for i in range(head_begin,head_end):
  586. for w in range(len(inner_table[i])):
  587. if inner_table[i][w][1]==1:
  588. _punctuation = ":"
  589. else:
  590. _punctuation = ","
  591. if w>0:
  592. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  593. text_line += inner_table[i][w][0]+_punctuation
  594. else:
  595. text_line += inner_table[i][w][0]+_punctuation
  596. text_line = text_line+"。" if text_line!="" else text_line
  597. text += text_line
  598. else:
  599. #构建一个共现矩阵
  600. table_occurence = []
  601. for i in range(head_begin,head_end):
  602. line_oc = []
  603. for j in range(width):
  604. cell = inner_table[i][j]
  605. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":""})
  606. table_occurence.append(line_oc)
  607. occu_height = len(table_occurence)
  608. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  609. #为每个属性值寻找表头
  610. for i in range(occu_height):
  611. for j in range(occu_width):
  612. cell = table_occurence[i][j]
  613. #是属性值
  614. if cell["type"]==0 and cell["text"]!="":
  615. left_head = ""
  616. top_head = ""
  617. find_flag = False
  618. temp_head = ""
  619. for loop_i in range(1,i+1):
  620. if not key_direct:
  621. key_values = [1,2]
  622. else:
  623. key_values = [1]
  624. if table_occurence[i-loop_i][j]["type"] in key_values:
  625. if find_flag:
  626. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  627. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  628. else:
  629. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  630. find_flag = True
  631. temp_head = table_occurence[i-loop_i][j]["text"]
  632. table_occurence[i-loop_i][j]["occu_count"] += 1
  633. else:
  634. #找到表头后遇到属性值就返回
  635. if find_flag:
  636. break
  637. cell["top_head"] += top_head
  638. find_flag = False
  639. temp_head = ""
  640. for loop_j in range(1,j+1):
  641. if not key_direct:
  642. key_values = [1,2]
  643. else:
  644. key_values = [2]
  645. if table_occurence[i][j-loop_j]["type"] in key_values:
  646. if find_flag:
  647. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  648. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  649. else:
  650. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  651. find_flag = True
  652. temp_head = table_occurence[i][j-loop_j]["text"]
  653. table_occurence[i][j-loop_j]["occu_count"] += 1
  654. else:
  655. if find_flag:
  656. break
  657. cell["left_head"] += left_head
  658. if direct=="row":
  659. for i in range(occu_height):
  660. pack_text = ""
  661. rank_text = ""
  662. entity_text = ""
  663. text_line = ""
  664. #在同一句话中重复的可以去掉
  665. text_set = set()
  666. for j in range(width):
  667. cell = table_occurence[i][j]
  668. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  669. cell = table_occurence[i][j]
  670. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  671. head += cell["left_head"]
  672. if str(head+cell["text"]) in text_set:
  673. continue
  674. if re.search(packPattern,head) is not None:
  675. pack_text += head+cell["text"]+","
  676. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  677. #排名替换为同一种表达
  678. rank_text += head+cell["text"]+","
  679. #print(rank_text)
  680. elif re.search(entityPattern,head) is not None:
  681. entity_text += head+cell["text"]+","
  682. #print(entity_text)
  683. else:
  684. text_line += head+cell["text"]+","
  685. text_set.add(str(head+cell["text"]))
  686. text += pack_text+rank_text+entity_text+text_line
  687. text = text[:-1]+"。" if len(text)>0 else text
  688. else:
  689. for j in range(occu_width):
  690. pack_text = ""
  691. rank_text = ""
  692. entity_text = ""
  693. text_line = ""
  694. text_set = set()
  695. for i in range(occu_height):
  696. cell = table_occurence[i][j]
  697. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  698. cell = table_occurence[i][j]
  699. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  700. head += cell["top_head"]
  701. if str(head+cell["text"]) in text_set:
  702. continue
  703. if re.search(packPattern,head) is not None:
  704. pack_text += head+cell["text"]+","
  705. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  706. #排名替换为同一种表达
  707. rank_text += head+cell["text"]+","
  708. #print(rank_text)
  709. elif re.search(entityPattern,head) is not None:
  710. entity_text += head+cell["text"]+","
  711. #print(entity_text)
  712. else:
  713. text_line += head+cell["text"]+","
  714. text_set.add(str(head+cell["text"]))
  715. text += pack_text+rank_text+entity_text+text_line
  716. text = text[:-1]+"。" if len(text)>0 else text
  717. # if direct=="row":
  718. # for i in range(head_begin,head_end):
  719. # pack_text = ""
  720. # rank_text = ""
  721. # entity_text = ""
  722. # text_line = ""
  723. # #在同一句话中重复的可以去掉
  724. # text_set = set()
  725. # for j in range(width):
  726. # cell = inner_table[i][j]
  727. # #是属性值
  728. # if cell[1]==0 and cell[0]!="":
  729. # head = ""
  730. #
  731. # find_flag = False
  732. # temp_head = ""
  733. # for loop_i in range(0,i+1-head_begin):
  734. # if not key_direct:
  735. # key_values = [1,2]
  736. # else:
  737. # key_values = [1]
  738. # if inner_table[i-loop_i][j][1] in key_values:
  739. # if find_flag:
  740. # if inner_table[i-loop_i][j][0]!=temp_head:
  741. # head = inner_table[i-loop_i][j][0]+":"+head
  742. # else:
  743. # head = inner_table[i-loop_i][j][0]+":"+head
  744. # find_flag = True
  745. # temp_head = inner_table[i-loop_i][j][0]
  746. # else:
  747. # #找到表头后遇到属性值就返回
  748. # if find_flag:
  749. # break
  750. #
  751. # find_flag = False
  752. # temp_head = ""
  753. #
  754. #
  755. #
  756. # for loop_j in range(1,j+1):
  757. # if not key_direct:
  758. # key_values = [1,2]
  759. # else:
  760. # key_values = [2]
  761. # if inner_table[i][j-loop_j][1] in key_values:
  762. # if find_flag:
  763. # if inner_table[i][j-loop_j][0]!=temp_head:
  764. # head = inner_table[i][j-loop_j][0]+":"+head
  765. # else:
  766. # head = inner_table[i][j-loop_j][0]+":"+head
  767. # find_flag = True
  768. # temp_head = inner_table[i][j-loop_j][0]
  769. # else:
  770. # if find_flag:
  771. # break
  772. #
  773. # if str(head+inner_table[i][j][0]) in text_set:
  774. # continue
  775. # if re.search(packPattern,head) is not None:
  776. # pack_text += head+inner_table[i][j][0]+","
  777. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  778. # #排名替换为同一种表达
  779. # rank_text += head+inner_table[i][j][0]+","
  780. # #print(rank_text)
  781. # elif re.search(entityPattern,head) is not None:
  782. # entity_text += head+inner_table[i][j][0]+","
  783. # #print(entity_text)
  784. # else:
  785. # text_line += head+inner_table[i][j][0]+","
  786. # text_set.add(str(head+inner_table[i][j][0]))
  787. # text += pack_text+rank_text+entity_text+text_line
  788. # text = text[:-1]+"。" if len(text)>0 else text
  789. # else:
  790. # for j in range(width):
  791. #
  792. # rank_text = ""
  793. # entity_text = ""
  794. # text_line = ""
  795. # text_set = set()
  796. # for i in range(head_begin,head_end):
  797. # cell = inner_table[i][j]
  798. # #是属性值
  799. # if cell[1]==0 and cell[0]!="":
  800. # find_flag = False
  801. # head = ""
  802. # temp_head = ""
  803. #
  804. # for loop_j in range(1,j+1):
  805. # if not key_direct:
  806. # key_values = [1,2]
  807. # else:
  808. # key_values = [2]
  809. # if inner_table[i][j-loop_j][1] in key_values:
  810. # if find_flag:
  811. # if inner_table[i][j-loop_j][0]!=temp_head:
  812. # head = inner_table[i][j-loop_j][0]+":"+head
  813. # else:
  814. # head = inner_table[i][j-loop_j][0]+":"+head
  815. # find_flag = True
  816. # temp_head = inner_table[i][j-loop_j][0]
  817. # else:
  818. # if find_flag:
  819. # break
  820. # find_flag = False
  821. # temp_head = ""
  822. # for loop_i in range(0,i+1-head_begin):
  823. # if not key_direct:
  824. # key_values = [1,2]
  825. # else:
  826. # key_values = [1]
  827. # if inner_table[i-loop_i][j][1] in key_values:
  828. # if find_flag:
  829. # if inner_table[i-loop_i][j][0]!=temp_head:
  830. # head = inner_table[i-loop_i][j][0]+":"+head
  831. # else:
  832. # head = inner_table[i-loop_i][j][0]+":"+head
  833. # find_flag = True
  834. # temp_head = inner_table[i-loop_i][j][0]
  835. # else:
  836. # if find_flag:
  837. # break
  838. # if str(head+inner_table[i][j][0]) in text_set:
  839. # continue
  840. # if re.search(rankPattern,head) is not None:
  841. # rank_text += head+inner_table[i][j][0]+","
  842. # #print(rank_text)
  843. # elif re.search(entityPattern,head) is not None:
  844. # entity_text += head+inner_table[i][j][0]+","
  845. # #print(entity_text)
  846. # else:
  847. # text_line += head+inner_table[i][j][0]+","
  848. # text_set.add(str(head+inner_table[i][j][0]))
  849. # text += rank_text+entity_text+text_line
  850. # text = text[:-1]+"。" if len(text)>0 else text
  851. return text
  852. def removeFix(inner_table,fix_value="~~"):
  853. height = len(inner_table)
  854. width = len(inner_table[0])
  855. for h in range(height):
  856. for w in range(width):
  857. if inner_table[h][w][0]==fix_value:
  858. inner_table[h][w][0] = ""
  859. def trunTable(tbody):
  860. fixSpan(tbody)
  861. inner_table = getTable(tbody)
  862. inner_table = fixTable(inner_table)
  863. if len(inner_table)>0 and len(inner_table[0])>0:
  864. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  865. #inner_table,head_list = setHead_inline(inner_table)
  866. # inner_table,head_list = setHead_initem(inner_table,pat_head)
  867. inner_table,head_list = setHead_incontext(inner_table,pat_head)
  868. # print(inner_table)
  869. # for begin in range(len(head_list[:-1])):
  870. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  871. # print(item)
  872. # print("====")
  873. removeFix(inner_table)
  874. # print("----")
  875. # print(head_list)
  876. # for item in inner_table:
  877. # print(item)
  878. tbody.string = getTableText(inner_table,head_list)
  879. #print(tbody.string)
  880. tbody.name = "turntable"
  881. return inner_table
  882. return None
  883. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  884. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  885. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  886. list_innerTable = []
  887. tbodies = soup.find_all('table')
  888. # 遍历表格中的每个tbody
  889. #逆序处理嵌套表格
  890. for tbody_index in range(1,len(tbodies)+1):
  891. tbody = tbodies[len(tbodies)-tbody_index]
  892. inner_table = trunTable(tbody)
  893. list_innerTable.append(inner_table)
  894. tbodies = soup.find_all('tbody')
  895. # 遍历表格中的每个tbody
  896. #逆序处理嵌套表格
  897. for tbody_index in range(1,len(tbodies)+1):
  898. tbody = tbodies[len(tbodies)-tbody_index]
  899. inner_table = trunTable(tbody)
  900. list_innerTable.append(inner_table)
  901. return soup
  902. # return list_innerTable
  903. #数据清洗
  904. def segment(soup,final=True):
  905. # print("==")
  906. # print(soup)
  907. # print("====")
  908. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  909. subspaceList = ["td",'a',"span","p"]
  910. if soup.name in subspaceList:
  911. #判断有值叶子节点数
  912. _count = 0
  913. for child in soup.find_all(recursive=True):
  914. if child.get_text().strip()!="" and len(child.find_all())==0:
  915. _count += 1
  916. if _count<=1:
  917. text = soup.get_text()
  918. # 2020/11/24 大网站规则添加
  919. if 'title' in soup.attrs:
  920. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  921. text = soup.attrs['title']
  922. # _list = []
  923. # for x in re.split("\s+",text):
  924. # if x.strip()!="":
  925. # _list.append(len(x))
  926. # if len(_list)>0:
  927. # _minLength = min(_list)
  928. # if _minLength>2:
  929. # _substr = ","
  930. # else:
  931. # _substr = ""
  932. # else:
  933. # _substr = ""
  934. text = text.replace("\r\n",",").replace("\n",",")
  935. text = re.sub("\s+","##space##",text)
  936. return text
  937. segList = ["title"]
  938. commaList = ["div","br","td","p"]
  939. #commaList = []
  940. spaceList = ["span"]
  941. tbodies = soup.find_all('tbody')
  942. if len(tbodies) == 0:
  943. tbodies = soup.find_all('table')
  944. # 递归遍历所有节点,插入符号
  945. for child in soup.find_all(recursive=True):
  946. if child.name in segList:
  947. child.insert_after("。")
  948. if child.name in commaList:
  949. child.insert_after(",")
  950. # if child.name in subspaceList:
  951. # child.insert_before("#subs"+str(child.name)+"#")
  952. # child.insert_after("#sube"+str(child.name)+"#")
  953. # if child.name in spaceList:
  954. # child.insert_after(" ")
  955. text = str(soup.get_text())
  956. #替换英文冒号为中文冒号
  957. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  958. #替换为中文逗号
  959. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  960. #替换为中文分号
  961. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  962. #替换"""为"“",否则导入deepdive出错
  963. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  964. text = re.sub("\s{4,}",",",text)
  965. #替换标点
  966. #替换连续的标点
  967. if final:
  968. text = re.sub("##space##"," ",text)
  969. punc_pattern = "(?P<del>[。,;::,\s]+)"
  970. list_punc = re.findall(punc_pattern,text)
  971. list_punc.sort(key=lambda x:len(x),reverse=True)
  972. for punc_del in list_punc:
  973. if len(punc_del)>1:
  974. text = re.sub(punc_del,punc_del[-1],text)
  975. #将连续的中文句号替换为一个
  976. text_split = text.split("。")
  977. text_split = [x for x in text_split if len(x)>0]
  978. text = "。".join(text_split)
  979. # #删除标签中的所有空格
  980. # for subs in subspaceList:
  981. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  982. # while(True):
  983. # oneMatch = re.search(re.compile(patten),text)
  984. # if oneMatch is not None:
  985. # _match = oneMatch.group(1)
  986. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  987. # else:
  988. # break
  989. # text过大报错
  990. LOOP_LEN = 10000
  991. LOOP_BEGIN = 0
  992. _text = ""
  993. if len(text)<10000000:
  994. while(LOOP_BEGIN<len(text)):
  995. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  996. LOOP_BEGIN += LOOP_LEN
  997. text = _text
  998. return text
  999. '''
  1000. #数据清洗
  1001. def segment(soup):
  1002. segList = ["title"]
  1003. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1004. spaceList = ["span"]
  1005. tbodies = soup.find_all('tbody')
  1006. if len(tbodies) == 0:
  1007. tbodies = soup.find_all('table')
  1008. # 递归遍历所有节点,插入符号
  1009. for child in soup.find_all(recursive=True):
  1010. if child.name == 'br':
  1011. child.insert_before(',')
  1012. child_text = re.sub('\s', '', child.get_text())
  1013. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1014. continue
  1015. if child.name in segList:
  1016. child.insert_after("。")
  1017. if child.name in commaList:
  1018. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1019. child.insert_after(",")
  1020. elif len(child_text) >=50:
  1021. child.insert_after("。")
  1022. #if child.name in spaceList:
  1023. #child.insert_after(" ")
  1024. text = str(soup.get_text())
  1025. text = re.sub("\s{5,}",",",text)
  1026. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1027. #替换"""为"“",否则导入deepdive出错
  1028. text = text.replace('"',"“")
  1029. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1030. #删除所有空格
  1031. text = re.sub("\s+","#nbsp#",text)
  1032. text_list = text.split('#nbsp#')
  1033. new_text = ''
  1034. for i in range(len(text_list)-1):
  1035. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1036. new_text += text_list[i]
  1037. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1038. new_text += text_list[i] + '。'
  1039. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1040. new_text += text_list[i] + ';'
  1041. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1042. new_text += text_list[i] + ' '
  1043. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1044. new_text += text_list[i]
  1045. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1046. new_text += text_list[i] + ','
  1047. else:
  1048. new_text += text_list[i]
  1049. new_text += text_list[-1]
  1050. text = new_text
  1051. #替换英文冒号为中文冒号
  1052. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1053. #替换为中文逗号
  1054. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1055. #替换为中文分号
  1056. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1057. #替换标点
  1058. while(True):
  1059. #替换连续的标点
  1060. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1061. if punc is not None:
  1062. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1063. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1064. if punc is not None:
  1065. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1066. else:
  1067. #替换标点之后的空格
  1068. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1069. if punc is not None:
  1070. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1071. else:
  1072. break
  1073. #将连续的中文句号替换为一个
  1074. text_split = text.split("。")
  1075. text_split = [x for x in text_split if len(x)>0]
  1076. text = "。".join(text_split)
  1077. #替换中文括号为英文括号
  1078. text = re.sub("(","(",text)
  1079. text = re.sub(")",")",text)
  1080. return text
  1081. '''
  1082. #连续实体合并(弃用)
  1083. def union_ner(list_ner):
  1084. result_list = []
  1085. union_index = []
  1086. union_index_set = set()
  1087. for i in range(len(list_ner)-1):
  1088. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1089. if list_ner[i][1]-list_ner[i+1][0]==1:
  1090. union_index_set.add(i)
  1091. union_index_set.add(i+1)
  1092. union_index.append((i,i+1))
  1093. for i in range(len(list_ner)):
  1094. if i not in union_index_set:
  1095. result_list.append(list_ner[i])
  1096. for item in union_index:
  1097. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1098. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1099. return result_list
  1100. def getTokensAndNers(sentences,MAXAREA = 10000,useselffool=False):
  1101. '''
  1102. @param: sentences:句子数
  1103. @return 限流执行后的分词和实体识别list
  1104. '''
  1105. def getData(tokens,ners,process_data):
  1106. process_sentences = [item[1] for item in process_data]
  1107. token_ = selffool.cut(process_sentences)
  1108. if useselffool:
  1109. ner_ = selffool.self_ner(process_sentences)
  1110. else:
  1111. ner_ = selffool.ner(process_sentences)
  1112. for i in range(len(token_)):
  1113. the_index = process_data[i][0]
  1114. tokens[the_index] = token_[i]
  1115. ners[the_index] = ner_[i]
  1116. sents = []
  1117. for i in range(len(sentences)):
  1118. sents.append([i,sentences[i]])
  1119. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1120. index_ = 0
  1121. tokens = [[]for i in range(len(sentences))]
  1122. ners = [[]for i in range(len(sentences))]
  1123. while(True):
  1124. width = len(sents[index_][1])
  1125. height = MAXAREA//width+1
  1126. if height>len(sents)-index_:
  1127. height = len(sents)-index_
  1128. process_data = sents[index_:index_+height]
  1129. getData(tokens, ners, process_data)
  1130. index_ += height
  1131. if index_>=len(sents):
  1132. break
  1133. return tokens,ners
  1134. def getTokens(sentences,MAXAREA = 10000,useselffool=True):
  1135. '''
  1136. @param: sentences:句子数
  1137. @return 限流执行后的分词list
  1138. '''
  1139. def getData(tokens,process_data):
  1140. process_sentences = [item[1] for item in process_data]
  1141. token_ = selffool.cut(process_sentences)
  1142. for i in range(len(token_)):
  1143. the_index = process_data[i][0]
  1144. tokens[the_index] = token_[i]
  1145. sents = []
  1146. for i in range(len(sentences)):
  1147. sents.append([i,sentences[i]])
  1148. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1149. index_ = 0
  1150. tokens = [[]for i in range(len(sentences))]
  1151. while(True):
  1152. width = len(sents[index_][1])
  1153. height = MAXAREA//width+1
  1154. if height>len(sents)-index_:
  1155. height = len(sents)-index_
  1156. process_data = sents[index_:index_+height]
  1157. getData(tokens, process_data)
  1158. index_ += height
  1159. if index_>=len(sents):
  1160. break
  1161. return tokens
  1162. def getNers(sentences,MAXAREA = 10000,useselffool=False):
  1163. '''
  1164. @param: sentences:句子数
  1165. @return 限流执行后的实体识别list
  1166. '''
  1167. def getData(ners,process_data):
  1168. process_sentences = [item[1] for item in process_data]
  1169. if useselffool:
  1170. ner_ = selffool.self_ner(process_sentences)
  1171. else:
  1172. ner_ = selffool.ner(process_sentences)
  1173. for i in range(len(ner_)):
  1174. the_index = process_data[i][0]
  1175. ners[the_index] = ner_[i]
  1176. sents = []
  1177. for i in range(len(sentences)):
  1178. sents.append([i,sentences[i]])
  1179. sents.sort(key=lambda x:len(x[1]),reverse=True)
  1180. index_ = 0
  1181. ners = [[]for i in range(len(sentences))]
  1182. while(True):
  1183. width = len(sents[index_][1])
  1184. height = MAXAREA//width+1
  1185. if height>len(sents)-index_:
  1186. height = len(sents)-index_
  1187. process_data = sents[index_:index_+height]
  1188. getData( ners, process_data)
  1189. index_ += height
  1190. if index_>=len(sents):
  1191. break
  1192. return ners
  1193. # def get_preprocessed(articles,useselffool=False):
  1194. # '''
  1195. # @summary:预处理步骤,NLP处理、实体识别
  1196. # @param:
  1197. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1198. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1199. # '''
  1200. # list_articles = []
  1201. # list_sentences = []
  1202. # list_entitys = []
  1203. # cost_time = dict()
  1204. # for article in articles:
  1205. # list_sentences_temp = []
  1206. # list_entitys_temp = []
  1207. # doc_id = article[0]
  1208. # sourceContent = article[1]
  1209. # _send_doc_id = article[3]
  1210. # _title = article[4]
  1211. # #表格处理
  1212. # key_preprocess = "tableToText"
  1213. # start_time = time.time()
  1214. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1215. #
  1216. # # log(article_processed)
  1217. #
  1218. # if key_preprocess not in cost_time:
  1219. # cost_time[key_preprocess] = 0
  1220. # cost_time[key_preprocess] += time.time()-start_time
  1221. #
  1222. # #article_processed = article[1]
  1223. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1224. # #nlp处理
  1225. # if article_processed is not None and len(article_processed)!=0:
  1226. # split_patten = "。"
  1227. # sentences = []
  1228. # _begin = 0
  1229. # for _iter in re.finditer(split_patten,article_processed):
  1230. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1231. # _begin = _iter.span()[1]
  1232. # sentences.append(article_processed[_begin:])
  1233. #
  1234. # lemmas = []
  1235. # doc_offsets = []
  1236. # dep_types = []
  1237. # dep_tokens = []
  1238. #
  1239. # time1 = time.time()
  1240. #
  1241. # '''
  1242. # tokens_all = fool.cut(sentences)
  1243. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1244. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1245. # ner_entitys_all = fool.ner(sentences)
  1246. # '''
  1247. # #限流执行
  1248. # key_nerToken = "nerToken"
  1249. # start_time = time.time()
  1250. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1251. # if key_nerToken not in cost_time:
  1252. # cost_time[key_nerToken] = 0
  1253. # cost_time[key_nerToken] += time.time()-start_time
  1254. #
  1255. #
  1256. # for sentence_index in range(len(sentences)):
  1257. #
  1258. #
  1259. #
  1260. # list_sentence_entitys = []
  1261. # sentence_text = sentences[sentence_index]
  1262. # tokens = tokens_all[sentence_index]
  1263. #
  1264. # list_tokenbegin = []
  1265. # begin = 0
  1266. # for i in range(0,len(tokens)):
  1267. # list_tokenbegin.append(begin)
  1268. # begin += len(str(tokens[i]))
  1269. # list_tokenbegin.append(begin+1)
  1270. # #pos_tag = pos_all[sentence_index]
  1271. # pos_tag = ""
  1272. #
  1273. # ner_entitys = ner_entitys_all[sentence_index]
  1274. #
  1275. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1276. #
  1277. # #识别package
  1278. #
  1279. #
  1280. # #识别实体
  1281. # for ner_entity in ner_entitys:
  1282. # begin_index_temp = ner_entity[0]
  1283. # end_index_temp = ner_entity[1]
  1284. # entity_type = ner_entity[2]
  1285. # entity_text = ner_entity[3]
  1286. #
  1287. # for j in range(len(list_tokenbegin)):
  1288. # if list_tokenbegin[j]==begin_index_temp:
  1289. # begin_index = j
  1290. # break
  1291. # elif list_tokenbegin[j]>begin_index_temp:
  1292. # begin_index = j-1
  1293. # break
  1294. # begin_index_temp += len(str(entity_text))
  1295. # for j in range(begin_index,len(list_tokenbegin)):
  1296. # if list_tokenbegin[j]>=begin_index_temp:
  1297. # end_index = j-1
  1298. # break
  1299. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1300. #
  1301. # #去掉标点符号
  1302. # entity_text = re.sub("[,,。:]","",entity_text)
  1303. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1304. #
  1305. #
  1306. # #使用正则识别金额
  1307. # entity_type = "money"
  1308. #
  1309. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1310. #
  1311. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1312. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1313. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1314. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1315. #
  1316. # set_begin = set()
  1317. # for pattern_key in list_money_pattern.keys():
  1318. # pattern = re.compile(list_money_pattern[pattern_key])
  1319. # all_match = re.findall(pattern, sentence_text)
  1320. # index = 0
  1321. # for i in range(len(all_match)):
  1322. # if len(all_match[i][0])>0:
  1323. # # print("===",all_match[i])
  1324. # #print(all_match[i][0])
  1325. # unit = ""
  1326. # entity_text = all_match[i][3]
  1327. # if pattern_key in ["key_word","front_m"]:
  1328. # unit = all_match[i][1]
  1329. # else:
  1330. # unit = all_match[i][4]
  1331. # if entity_text.find("元")>=0:
  1332. # unit = ""
  1333. #
  1334. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1335. #
  1336. # begin_index_temp = index
  1337. # for j in range(len(list_tokenbegin)):
  1338. # if list_tokenbegin[j]==index:
  1339. # begin_index = j
  1340. # break
  1341. # elif list_tokenbegin[j]>index:
  1342. # begin_index = j-1
  1343. # break
  1344. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1345. # end_index_temp = index
  1346. # #index += len(str(all_match[i][0]))
  1347. # for j in range(begin_index,len(list_tokenbegin)):
  1348. # if list_tokenbegin[j]>=index:
  1349. # end_index = j-1
  1350. # break
  1351. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1352. #
  1353. #
  1354. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1355. # if len(unit)>0:
  1356. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1357. # else:
  1358. # entity_text = str(getUnifyMoney(entity_text))
  1359. #
  1360. # _exists = False
  1361. # for item in list_sentence_entitys:
  1362. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1363. # _exists = True
  1364. # if not _exists:
  1365. # if float(entity_text)>10:
  1366. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1367. #
  1368. # else:
  1369. # index += 1
  1370. #
  1371. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1372. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1373. # list_sentences.append(list_sentences_temp)
  1374. # list_entitys.append(list_entitys_temp)
  1375. # return list_articles,list_sentences,list_entitys,cost_time
  1376. def get_preprocessed(articles,useselffool=False):
  1377. '''
  1378. @summary:预处理步骤,NLP处理、实体识别
  1379. @param:
  1380. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1381. @return:list of articles,list of each article of sentences,list of each article of entitys
  1382. '''
  1383. cost_time = dict()
  1384. list_articles = get_preprocessed_article(articles,cost_time)
  1385. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1386. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1387. return list_articles,list_sentences,list_entitys,cost_time
  1388. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1389. '''
  1390. :param articles: 待处理的article source html
  1391. :param useselffool: 是否使用selffool
  1392. :return: list_articles
  1393. '''
  1394. list_articles = []
  1395. for article in articles:
  1396. doc_id = article[0]
  1397. sourceContent = article[1]
  1398. _send_doc_id = article[3]
  1399. _title = article[4]
  1400. #表格处理
  1401. key_preprocess = "tableToText"
  1402. start_time = time.time()
  1403. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1404. # log(article_processed)
  1405. if key_preprocess not in cost_time:
  1406. cost_time[key_preprocess] = 0
  1407. cost_time[key_preprocess] += time.time()-start_time
  1408. #article_processed = article[1]
  1409. list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1410. return list_articles
  1411. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1412. '''
  1413. :param list_articles: 经过预处理的article text
  1414. :return: list_sentences
  1415. '''
  1416. list_sentences = []
  1417. for article in list_articles:
  1418. list_sentences_temp = []
  1419. list_entitys_temp = []
  1420. doc_id = article.id
  1421. _send_doc_id = article.doc_id
  1422. _title = article.title
  1423. #表格处理
  1424. key_preprocess = "tableToText"
  1425. start_time = time.time()
  1426. article_processed = article.content
  1427. if key_preprocess not in cost_time:
  1428. cost_time[key_preprocess] = 0
  1429. cost_time[key_preprocess] += time.time()-start_time
  1430. #nlp处理
  1431. if article_processed is not None and len(article_processed)!=0:
  1432. split_patten = "。"
  1433. sentences = []
  1434. _begin = 0
  1435. sentences_set = set()
  1436. for _iter in re.finditer(split_patten,article_processed):
  1437. _sen = article_processed[_begin:_iter.span()[1]]
  1438. if len(_sen)>0 and _sen not in sentences_set:
  1439. sentences.append(_sen)
  1440. sentences_set.add(_sen)
  1441. _begin = _iter.span()[1]
  1442. _sen = article_processed[_begin:]
  1443. if len(_sen)>0 and _sen not in sentences_set:
  1444. sentences.append(_sen)
  1445. sentences_set.add(_sen)
  1446. article.content = "".join(sentences)
  1447. # sentences.append(article_processed[_begin:])
  1448. lemmas = []
  1449. doc_offsets = []
  1450. dep_types = []
  1451. dep_tokens = []
  1452. time1 = time.time()
  1453. '''
  1454. tokens_all = fool.cut(sentences)
  1455. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1456. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1457. ner_entitys_all = fool.ner(sentences)
  1458. '''
  1459. #限流执行
  1460. key_nerToken = "nerToken"
  1461. start_time = time.time()
  1462. tokens_all = getTokens(sentences,useselffool=useselffool)
  1463. if key_nerToken not in cost_time:
  1464. cost_time[key_nerToken] = 0
  1465. cost_time[key_nerToken] += time.time()-start_time
  1466. for sentence_index in range(len(sentences)):
  1467. sentence_text = sentences[sentence_index]
  1468. tokens = tokens_all[sentence_index]
  1469. #pos_tag = pos_all[sentence_index]
  1470. pos_tag = ""
  1471. ner_entitys = ""
  1472. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1473. if len(list_sentences_temp)==0:
  1474. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1475. list_sentences.append(list_sentences_temp)
  1476. return list_sentences
  1477. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1478. '''
  1479. :param list_sentences:分局情况
  1480. :param cost_time:
  1481. :return: list_entitys
  1482. '''
  1483. list_entitys = []
  1484. for list_sentence in list_sentences:
  1485. sentences = []
  1486. list_entitys_temp = []
  1487. for _sentence in list_sentence:
  1488. sentences.append(_sentence.sentence_text)
  1489. lemmas = []
  1490. doc_offsets = []
  1491. dep_types = []
  1492. dep_tokens = []
  1493. time1 = time.time()
  1494. '''
  1495. tokens_all = fool.cut(sentences)
  1496. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1497. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1498. ner_entitys_all = fool.ner(sentences)
  1499. '''
  1500. #限流执行
  1501. key_nerToken = "nerToken"
  1502. start_time = time.time()
  1503. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1504. if key_nerToken not in cost_time:
  1505. cost_time[key_nerToken] = 0
  1506. cost_time[key_nerToken] += time.time()-start_time
  1507. for sentence_index in range(len(list_sentence)):
  1508. list_sentence_entitys = []
  1509. sentence_text = list_sentence[sentence_index].sentence_text
  1510. tokens = list_sentence[sentence_index].tokens
  1511. doc_id = list_sentence[sentence_index].doc_id
  1512. list_tokenbegin = []
  1513. begin = 0
  1514. for i in range(0,len(tokens)):
  1515. list_tokenbegin.append(begin)
  1516. begin += len(str(tokens[i]))
  1517. list_tokenbegin.append(begin+1)
  1518. #pos_tag = pos_all[sentence_index]
  1519. pos_tag = ""
  1520. ner_entitys = ner_entitys_all[sentence_index]
  1521. #识别package
  1522. #识别实体
  1523. for ner_entity in ner_entitys:
  1524. begin_index_temp = ner_entity[0]
  1525. end_index_temp = ner_entity[1]
  1526. entity_type = ner_entity[2]
  1527. entity_text = ner_entity[3]
  1528. for j in range(len(list_tokenbegin)):
  1529. if list_tokenbegin[j]==begin_index_temp:
  1530. begin_index = j
  1531. break
  1532. elif list_tokenbegin[j]>begin_index_temp:
  1533. begin_index = j-1
  1534. break
  1535. begin_index_temp += len(str(entity_text))
  1536. for j in range(begin_index,len(list_tokenbegin)):
  1537. if list_tokenbegin[j]>=begin_index_temp:
  1538. end_index = j-1
  1539. break
  1540. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1541. #去掉标点符号
  1542. entity_text = re.sub("[,,。:]","",entity_text)
  1543. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1544. #使用正则识别金额
  1545. entity_type = "money"
  1546. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1547. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1548. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1549. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1550. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1551. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1552. set_begin = set()
  1553. # for pattern_key in list_money_pattern.keys():
  1554. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1555. # # pattern = re.compile(list_money_pattern[pattern_key])
  1556. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1557. # all_match = re.findall(pattern, sentence_text)
  1558. # index = 0
  1559. # for i in range(len(all_match)):
  1560. # if len(all_match[i][0])>0:
  1561. # print("===",all_match[i])
  1562. # #print(all_match[i][0])
  1563. # unit = ""
  1564. # entity_text = all_match[i][3]
  1565. # if pattern_key in ["key_word","front_m"]:
  1566. # unit = all_match[i][1]
  1567. # if pattern_key=="key_word":
  1568. # if all_match[i][1]=="" and all_match[i][4]!="":
  1569. # unit = all_match[i][4]
  1570. # else:
  1571. # unit = all_match[i][4]
  1572. # if entity_text.find("元")>=0:
  1573. # unit = ""
  1574. #
  1575. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1576. # begin_index_temp = index
  1577. # for j in range(len(list_tokenbegin)):
  1578. # if list_tokenbegin[j]==index:
  1579. # begin_index = j
  1580. # break
  1581. # elif list_tokenbegin[j]>index:
  1582. # begin_index = j-1
  1583. # break
  1584. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1585. # end_index_temp = index
  1586. # #index += len(str(all_match[i][0]))
  1587. # for j in range(begin_index,len(list_tokenbegin)):
  1588. # if list_tokenbegin[j]>=index:
  1589. # end_index = j-1
  1590. # break
  1591. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1592. #
  1593. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1594. # if len(unit)>0:
  1595. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1596. # else:
  1597. # entity_text = str(getUnifyMoney(entity_text))
  1598. #
  1599. # _exists = False
  1600. # for item in list_sentence_entitys:
  1601. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1602. # _exists = True
  1603. # if not _exists:
  1604. # if float(entity_text)>1:
  1605. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1606. #
  1607. # else:
  1608. # index += 1
  1609. all_match = re.finditer(pattern_money, sentence_text)
  1610. index = 0
  1611. for _match in all_match:
  1612. if len(_match.group())>0:
  1613. # print("===",_match.group())
  1614. # print(_match.groupdict())
  1615. unit = ""
  1616. entity_text = ""
  1617. text_beforeMoney = ""
  1618. filter = ""
  1619. filter_unit = False
  1620. for k,v in _match.groupdict().items():
  1621. if v!="" and v is not None:
  1622. if k.split("_")[0]=="money":
  1623. entity_text = v
  1624. if k.split("_")[0]=="unit":
  1625. unit = v
  1626. if k.split("_")[0]=="text":
  1627. text_beforeMoney = v
  1628. if k.split("_")[0]=="filter":
  1629. filter = v
  1630. if re.search("filter_unit",k) is not None:
  1631. filter_unit = True
  1632. if entity_text.find("元")>=0:
  1633. unit = ""
  1634. else:
  1635. if filter_unit:
  1636. continue
  1637. if filter!="":
  1638. continue
  1639. index = _match.span()[0]+len(text_beforeMoney)
  1640. begin_index_temp = index
  1641. for j in range(len(list_tokenbegin)):
  1642. if list_tokenbegin[j]==index:
  1643. begin_index = j
  1644. break
  1645. elif list_tokenbegin[j]>index:
  1646. begin_index = j-1
  1647. break
  1648. index = _match.span()[1]
  1649. end_index_temp = index
  1650. #index += len(str(all_match[i][0]))
  1651. for j in range(begin_index,len(list_tokenbegin)):
  1652. if list_tokenbegin[j]>=index:
  1653. end_index = j-1
  1654. break
  1655. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1656. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1657. if len(unit)>0:
  1658. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1659. else:
  1660. entity_text = str(getUnifyMoney(entity_text))
  1661. if float(entity_text)<100 or float(entity_text)>100000000000:
  1662. continue
  1663. _exists = False
  1664. for item in list_sentence_entitys:
  1665. if item.entity_id==entity_id and item.entity_type==entity_type:
  1666. _exists = True
  1667. if not _exists:
  1668. if float(entity_text)>1:
  1669. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1670. else:
  1671. index += 1
  1672. # 资金来源提取 2020/12/30 新增
  1673. list_moneySource = extract_moneySource(sentence_text)
  1674. entity_type = "moneysource"
  1675. for moneySource in list_moneySource:
  1676. begin_index_temp = moneySource['begin_index']
  1677. for j in range(len(list_tokenbegin)):
  1678. if list_tokenbegin[j] == begin_index_temp:
  1679. begin_index = j
  1680. break
  1681. elif list_tokenbegin[j] > begin_index_temp:
  1682. begin_index = j - 1
  1683. break
  1684. index = moneySource['end_index']
  1685. end_index_temp = index
  1686. for j in range(begin_index, len(list_tokenbegin)):
  1687. if list_tokenbegin[j] >= index:
  1688. end_index = j - 1
  1689. break
  1690. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1691. entity_text = moneySource['body']
  1692. list_sentence_entitys.append(
  1693. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1694. begin_index_temp, end_index_temp))
  1695. # 服务期限提取 2020/12/30 新增
  1696. list_servicetime = extract_servicetime(sentence_text)
  1697. entity_type = "serviceTime"
  1698. for servicetime in list_servicetime:
  1699. begin_index_temp = servicetime['begin_index']
  1700. for j in range(len(list_tokenbegin)):
  1701. if list_tokenbegin[j] == begin_index_temp:
  1702. begin_index = j
  1703. break
  1704. elif list_tokenbegin[j] > begin_index_temp:
  1705. begin_index = j - 1
  1706. break
  1707. index = servicetime['end_index']
  1708. end_index_temp = index
  1709. for j in range(begin_index, len(list_tokenbegin)):
  1710. if list_tokenbegin[j] >= index:
  1711. end_index = j - 1
  1712. break
  1713. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1714. entity_text = servicetime['body']
  1715. list_sentence_entitys.append(
  1716. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1717. begin_index_temp, end_index_temp))
  1718. # 招标方式提取 2020/12/30 新增
  1719. list_bidway = extract_bidway(sentence_text)
  1720. entity_type = "bidway"
  1721. for bidway in list_bidway:
  1722. begin_index_temp = bidway['begin_index']
  1723. end_index_temp = bidway['end_index']
  1724. begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  1725. end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  1726. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1727. entity_text = bidway['body']
  1728. list_sentence_entitys.append(
  1729. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1730. begin_index_temp, end_index_temp))
  1731. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1732. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1733. list_entitys.append(list_entitys_temp)
  1734. return list_entitys
  1735. def union_result(codeName,prem):
  1736. '''
  1737. @summary:模型的结果拼成字典
  1738. @param:
  1739. codeName:编号名称模型的结果字典
  1740. prem:拿到属性的角色的字典
  1741. @return:拼接起来的字典
  1742. '''
  1743. result = []
  1744. assert len(codeName)==len(prem)
  1745. for item_code,item_prem in zip(codeName,prem):
  1746. result.append(dict(item_code,**item_prem))
  1747. return result
  1748. def persistenceData(data):
  1749. '''
  1750. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1751. '''
  1752. import psycopg2
  1753. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1754. cursor = conn.cursor()
  1755. for item_index in range(len(data)):
  1756. item = data[item_index]
  1757. doc_id = item[0]
  1758. dic = item[1]
  1759. code = dic['code']
  1760. name = dic['name']
  1761. prem = dic['prem']
  1762. if len(code)==0:
  1763. code_insert = ""
  1764. else:
  1765. code_insert = ";".join(code)
  1766. prem_insert = ""
  1767. for item in prem:
  1768. for x in item:
  1769. if isinstance(x, list):
  1770. if len(x)>0:
  1771. for x1 in x:
  1772. prem_insert+="/".join(x1)+","
  1773. prem_insert+="$"
  1774. else:
  1775. prem_insert+=str(x)+"$"
  1776. prem_insert+=";"
  1777. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1778. cursor.execute(sql)
  1779. conn.commit()
  1780. conn.close()
  1781. def persistenceData1(list_entitys,list_sentences):
  1782. '''
  1783. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1784. '''
  1785. import psycopg2
  1786. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1787. cursor = conn.cursor()
  1788. for list_entity in list_entitys:
  1789. for entity in list_entity:
  1790. if entity.values is not None:
  1791. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1792. else:
  1793. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1794. cursor.execute(sql)
  1795. for list_sentence in list_sentences:
  1796. for sentence in list_sentence:
  1797. str_tokens = "["
  1798. for item in sentence.tokens:
  1799. str_tokens += "'"
  1800. if item=="'":
  1801. str_tokens += "''"
  1802. else:
  1803. str_tokens += item
  1804. str_tokens += "',"
  1805. str_tokens = str_tokens[:-1]+"]"
  1806. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1807. cursor.execute(sql)
  1808. conn.commit()
  1809. conn.close()
  1810. def _handle(item,result_queue):
  1811. dochtml = item["dochtml"]
  1812. docid = item["docid"]
  1813. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1814. flag = False
  1815. if list_innerTable:
  1816. flag = True
  1817. for table in list_innerTable:
  1818. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1819. def getPredictTable():
  1820. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1821. import pandas as pd
  1822. import json
  1823. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1824. df = pd.read_csv(filename)
  1825. df_data = {"json_table":[],"docid":[]}
  1826. _count = 0
  1827. _sum = len(df["docid"])
  1828. task_queue = Queue()
  1829. result_queue = Queue()
  1830. _index = 0
  1831. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1832. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1833. _index += 1
  1834. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1835. mh.run()
  1836. while True:
  1837. try:
  1838. item = result_queue.get(block=True,timeout=1)
  1839. df_data["docid"].append(item["docid"])
  1840. df_data["json_table"].append(item["json_table"])
  1841. except Exception as e:
  1842. print(e)
  1843. break
  1844. df_1 = pd.DataFrame(df_data)
  1845. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1846. if __name__=="__main__":
  1847. '''
  1848. import glob
  1849. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1850. file_txt = str(file).replace("html","txt")
  1851. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1852. f.write("\n================\n")
  1853. content = codecs.open(file,"r",encoding="utf8").read()
  1854. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1855. '''
  1856. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1857. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1858. getPredictTable()