modelFactory.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. '''
  2. Created on 2019年5月16日
  3. @author: User
  4. '''
  5. import os
  6. import sys
  7. sys.path.append(os.path.abspath("../.."))
  8. from keras import models
  9. from keras import layers
  10. # from keras_contrib.layers import CRF
  11. from keras.preprocessing.sequence import pad_sequences
  12. from keras import optimizers,losses,metrics
  13. from BiddingKG.dl.common.Utils import *
  14. import tensorflow as tf
  15. import json
  16. class Model_role_classify():
  17. def __init__(self,lazyLoad=getLazyLoad()):
  18. #self.model_role_file = os.path.abspath("../role/models/model_role.model.hdf5")
  19. self.model_role_file = os.path.dirname(__file__)+"/../role/log/new_biLSTM-ep012-loss0.028-val_loss0.040-f10.954.h5"
  20. self.model_role = None
  21. self.graph = tf.get_default_graph()
  22. if not lazyLoad:
  23. self.getModel()
  24. def getModel(self):
  25. if self.model_role is None:
  26. self.model_role = models.load_model(self.model_role_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  27. return self.model_role
  28. def encode(self,tokens,begin_index,end_index,**kwargs):
  29. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  30. def predict(self,x):
  31. x = np.transpose(np.array(x),(1,0,2,3))
  32. with self.graph.as_default():
  33. return self.getModel().predict([x[0],x[1]])
  34. class Model_role_classify_word():
  35. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  36. if USE_PAI_EAS:
  37. lazyLoad = True
  38. #self.model_role_file = os.path.abspath("../role/log/ep071-loss0.107-val_loss0.122-f10.956.h5")
  39. # self.model_role_file = os.path.dirname(__file__)+"/../role/models/ep038-loss0.140-val_loss0.149-f10.947.h5"
  40. #self.model_role_file = os.path.abspath("../role/log/textcnn_ep017-loss0.088-val_loss0.125-f10.955.h5")
  41. self.model_role = None
  42. self.sess_role = tf.Session(graph=tf.Graph(),config=config)
  43. if not lazyLoad:
  44. self.getModel()
  45. def getModel(self):
  46. if self.model_role is None:
  47. with self.sess_role.as_default() as sess:
  48. with self.sess_role.graph.as_default():
  49. meta_graph_def = tf.saved_model.loader.load(sess=self.sess_role, tags=["serve"], export_dir=os.path.dirname(__file__)+"/role_savedmodel")
  50. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  51. signature_def = meta_graph_def.signature_def
  52. input0 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  53. input1 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  54. # input2 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  55. output = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  56. self.model_role = [[input0,input1],output] #,input2
  57. return self.model_role
  58. '''
  59. def load_weights(self):
  60. model = self.getModel()
  61. model.load_weights(self.model_role_file)
  62. '''
  63. def encode(self,tokens,begin_index,end_index,entity_text,**kwargs):
  64. _span = spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20,center_include=False,word_flag=True,text=entity_text) #size=12 center_include=True
  65. # print(_span)
  66. _encode_span = encodeInput(_span, word_len=20, word_flag=True,userFool=False) # word_len=20
  67. # print(_encode_span)
  68. return _encode_span
  69. def fix_digit_eng(self, text):
  70. '''
  71. 处理数字及英文编号等
  72. :param text:
  73. :return:
  74. '''
  75. text = re.sub('第[一二三1-3]([条项章]|中学|医院|附属)|第三方(服务机构)?', 'xxx', text)
  76. text = re.sub('第01(中标|成交)?候选人', '第一中标候选人', text)
  77. text = re.sub('(标[段的包项]|品目)[一二三1-3]', '标段', text)
  78. text = re.sub('第?[一二三1-3](标段?|[分子标]?包)', 'd标段', text)
  79. text = re.sub('[a-zA-Z][a-zA-Z0-9=&_—-]{3,}', 'abc', text)
  80. text = re.sub('[【(\[][0-9]{2,}[\])】]|\d+([::.-]\d+)+', 'd', text)
  81. text = re.sub('[一二三四五六七八九十]{2,}|[四五六七八九十]+', 'd', text)
  82. text = re.sub('\d{2,}(\.\d+)?|\d\.\d+|[04-9]', 'd', text)
  83. text = re.sub('序号:\d+|第?[一二三四五六七八九十\d]+次|[一二三四五六七八九十\d]+、|([^\w]|^)序:?\d+', ' d', text) # ,序:1,单位名称:
  84. text = re.sub('(中标|成交|中选|入围)(工程|项目)', '工程', text) # 修复易错分为中标人
  85. text = re.sub('约定|(盖章|签名):?', ' ', text) # 修复 233233636 错分为中标人 国有产权网上竞价有关约定 辽阳市公共资源交易中心 ,标 修复 273505905 乡镇签名:盖章: 次村产权交易服务中心 预测为中标
  86. text = re.sub('中介机构', '投标机构', text) # 251058999 错分为中标人 序号:2,中介机构名称:
  87. text = re.sub('(采购|招标)人名称、地址和联系方式:|采购方,指', '采购人:', text) # 275065998 修复 224703143 采购的中标人;采购方,指 预测为中标
  88. if re.search('(最终)?排名:', text) and re.search('(最终)?排名:第?[123一二三]', text)==None:
  89. text = re.sub('(最终)?排名:', ' ', text)
  90. text = re.sub('交易单位', '发布单位', text)
  91. text = re.sub('[,:]各种数据:', ':', text) # 20240620优化 478331984 山东省交通运输厅站源提取不到 各种数据:中标单位,各种数据:济南金曰公路工程有限公司,
  92. text = re.sub('电子签章', '', text) # 20240924 修复 529923459 电子签名:投标人名称(电子签章:西君兰信息科技有限公司,2024年9月7日 预测为中标
  93. text = re.sub('采购方式', 'xxxx', text) # 修复 499096797 招标人预测错误
  94. text = re.sub('中标人\d名称', '中标人名称', text) # 修复 499096797 中标人预测错误
  95. return text.replace('(', '(').replace(')', ')').replace('單', '单').replace('稱','承').replace('標', '标').replace('採購', '采购').replace('機構', '机构')
  96. def encode_word(self, sentence_text, begin_index, end_index, size=20, **kwargs):
  97. '''
  98. 上下文数字化,使用字偏移
  99. :param sentence_text: 句子文本
  100. :param begin_index: 实体字开始位置
  101. :param end_index: 实体字结束位置
  102. :param size: 字偏移量
  103. :param kwargs:
  104. :return:
  105. '''
  106. _span = get_context(sentence_text, begin_index, end_index,size=size, center_include=False) # size=12 center_include=True
  107. # print(_span)
  108. _span = [self.fix_digit_eng(text) for text in _span]
  109. _encode_span = encodeInput(_span, word_len=30, word_flag=True, userFool=False) # word_len=20
  110. # print(_encode_span)
  111. return _encode_span
  112. def predict(self,x):
  113. x = np.transpose(np.array(x),(1,0,2))
  114. model_role = self.getModel()
  115. assert len(x)==len(model_role[0])
  116. feed_dict = {}
  117. for _x,_t in zip(x,model_role[0]):
  118. feed_dict[_t] = _x
  119. list_result = limitRun(self.sess_role,[model_role[1]],feed_dict)[0]
  120. return list_result
  121. #return self.sess_role.run(model_role[1],feed_dict=feed_dict)
  122. class Model_money_classify():
  123. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  124. if USE_PAI_EAS:
  125. lazyLoad = True
  126. self.model_money_file = os.path.dirname(__file__)+"/../money/models/model_money_word.h5"
  127. self.model_money = None
  128. self.sess_money = tf.Session(graph=tf.Graph(),config=config)
  129. if not lazyLoad:
  130. self.getModel()
  131. def getModel(self):
  132. if self.model_money is None:
  133. with self.sess_money.as_default() as sess:
  134. with sess.graph.as_default():
  135. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel")
  136. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel_bilstmonly")
  137. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  138. signature_def = meta_graph_def.signature_def
  139. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  140. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  141. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  142. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  143. self.model_money = [[input0,input1,input2],output]
  144. return self.model_money
  145. '''
  146. if self.model_money is None:
  147. self.model_money = models.load_model(self.model_money_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  148. return self.model_money
  149. '''
  150. '''
  151. def load_weights(self):
  152. model = self.getModel()
  153. model.load_weights(self.model_money_file)
  154. '''
  155. def encode(self,tokens,begin_index,end_index,**kwargs):
  156. _span = spanWindow(tokens=tokens, begin_index=begin_index, end_index=end_index, size=10, center_include=True, word_flag=True)
  157. # print(_span)
  158. return encodeInput(_span, word_len=30, word_flag=True,userFool=False)
  159. return embedding_word(_span,shape=(3,100,60))
  160. def predict(self,x):
  161. # print("shape",np.shape(x))
  162. x = np.transpose(np.array(x),(1,0,2))
  163. model_money = self.getModel()
  164. assert len(x)==len(model_money[0])
  165. feed_dict = {}
  166. for _x,_t in zip(x,model_money[0]):
  167. feed_dict[_t] = _x
  168. list_result = limitRun(self.sess_money,[model_money[1]],feed_dict)[0]
  169. #return self.sess_money.run(model_money[1],feed_dict=feed_dict)
  170. return list_result
  171. '''
  172. with self.graph.as_default():
  173. return self.getModel().predict([x[0],x[1],x[2]])
  174. '''
  175. from itertools import groupby
  176. from BiddingKG.dl.relation_extraction.model import get_words_matrix
  177. class Model_relation_extraction():
  178. def __init__(self,lazyLoad=getLazyLoad()):
  179. if USE_PAI_EAS:
  180. lazyLoad = True
  181. self.subject_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/subject_model"
  182. self.object_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/object_model"
  183. self.model_subject = None
  184. self.model_object = None
  185. self.sess_subject = tf.Session(graph=tf.Graph())
  186. self.sess_object = tf.Session(graph=tf.Graph())
  187. if not lazyLoad:
  188. self.getModel1()
  189. self.getModel2()
  190. self.entity_type_dict = {
  191. 'org': '<company/org>',
  192. 'company': '<company/org>',
  193. 'location': '<location>',
  194. 'phone': '<phone>',
  195. 'person': '<contact_person>'
  196. }
  197. self.id2predicate = {
  198. 0: "rel_person", # 公司——联系人
  199. 1: "rel_phone", # 联系人——电话
  200. 2: "rel_address" # 公司——地址
  201. }
  202. self.words_size = 128
  203. # subject_model
  204. def getModel1(self):
  205. if self.model_subject is None:
  206. with self.sess_subject.as_default() as sess:
  207. with sess.graph.as_default():
  208. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.subject_model_file)
  209. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  210. signature_def = meta_graph_def.signature_def
  211. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  212. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  213. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  214. self.model_subject = [[input0,input1],output]
  215. return self.model_subject
  216. # object_model
  217. def getModel2(self):
  218. if self.model_object is None:
  219. with self.sess_object.as_default() as sess:
  220. with sess.graph.as_default():
  221. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.object_model_file)
  222. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  223. signature_def = meta_graph_def.signature_def
  224. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  225. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  226. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  227. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  228. self.model_object = [[input0,input1,input2],output]
  229. return self.model_object
  230. def encode(self,entity_list,list_sentence):
  231. list_sentence = sorted(list_sentence, key=lambda x: x.sentence_index)
  232. entity_list = sorted(entity_list, key=lambda x: (x.sentence_index, x.begin_index))
  233. pre_data = []
  234. text_data = []
  235. last_sentence_index = -1
  236. for key, group in groupby(entity_list, key=lambda x: x.sentence_index):
  237. if key - last_sentence_index > 1:
  238. for i in range(last_sentence_index + 1, key):
  239. pre_data.extend(list_sentence[i].tokens)
  240. text_data.extend([0] * len(list_sentence[i].tokens))
  241. group = list(group)
  242. for i in range(len(group)):
  243. ent = group[i]
  244. _tokens = list_sentence[key].tokens
  245. if i == len(group) - 1:
  246. if i == 0:
  247. pre_data.extend(_tokens[:ent.begin_index])
  248. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  249. pre_data.append(self.entity_type_dict[ent.entity_type])
  250. text_data.append(ent)
  251. pre_data.extend(_tokens[ent.end_index + 1:])
  252. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  253. break
  254. else:
  255. pre_data.append(self.entity_type_dict[ent.entity_type])
  256. text_data.append(ent)
  257. pre_data.extend(_tokens[ent.end_index + 1:])
  258. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  259. break
  260. if i == 0:
  261. pre_data.extend(_tokens[:ent.begin_index])
  262. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  263. pre_data.append(self.entity_type_dict[ent.entity_type])
  264. text_data.append(ent)
  265. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  266. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  267. else:
  268. pre_data.append(self.entity_type_dict[ent.entity_type])
  269. text_data.append(ent)
  270. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  271. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  272. last_sentence_index = key
  273. return text_data, pre_data
  274. def check_data(self, words):
  275. # 检查数据是否包含可预测的subject和object
  276. # 没有需要预测的链接属性,直接return
  277. company_relation = 0
  278. person_relation = 0
  279. if '<company/org>' in words:
  280. company_relation += 1
  281. if '<contact_person>' in words:
  282. person_relation += 1
  283. if company_relation:
  284. company_relation += 1
  285. # 暂时不考虑地址location实体
  286. # if '<location>' in words and company_relation:
  287. # company_relation += 1
  288. if '<phone>' in words and company_relation:
  289. person_relation += 1
  290. if company_relation < 2 and person_relation < 2:
  291. return False
  292. return True
  293. def predict_by_api(self,text_in,words,sentence_vetor):
  294. status_code = 0
  295. # save([words,sentence_vetor.tolist()],"C:/Users/Administrator/Desktop/test_data.pk")
  296. try:
  297. requests_result = requests.post(API_URL + "/predict_relation", json={"sentence_vetor": sentence_vetor.tolist(), "words": words},
  298. verify=True)
  299. status_code = requests_result.status_code
  300. triple_index_list = json.loads(requests_result.text)['triple_list']
  301. # print("triple_list:",json.loads(requests_result.text)['triple_list'])
  302. print("cost_time:",json.loads(requests_result.text)['cost_time'])
  303. triple_list = [(text_in[triple[0]], triple[1], text_in[triple[2]]) for triple in triple_index_list]
  304. return triple_list,status_code
  305. except Exception as e:
  306. print(e)
  307. return [],status_code
  308. def predict(self,text_in, words, rate=0.5):
  309. _t2 = np.zeros((len(words), self.words_size))
  310. for i in range(len(words)):
  311. _t2[i] = np.array(get_words_matrix(words[i]))
  312. # a = time.time()
  313. # triple_list, status_code = self.predict_by_api(text_in, words,_t2)
  314. # print('time',time.time()-a)
  315. # print("status_code",status_code)
  316. # if status_code==200:
  317. # return triple_list
  318. # else:
  319. # 使用模型预测
  320. triple_list = []
  321. # print("tokens:",words)
  322. # _t2 = [self.words2id.get(c, 1) for c in words]
  323. _t2 = np.array([_t2])
  324. _t3 = [1 for _ in words]
  325. _t3 = np.array([_t3])
  326. # _k1 = self.model_subject.predict([_t2, _t3])
  327. _k1 = limitRun(self.sess_subject,[self.model_subject[1]],feed_dict={self.model_subject[0][0]:_t2,
  328. self.model_subject[0][1]:_t3})[0]
  329. _k1 = _k1[0, :, 0]
  330. _k1 = np.where(_k1 > rate)[0]
  331. # print('k1',_k1)
  332. _subjects = []
  333. for i in _k1:
  334. _subject = text_in[i]
  335. _subjects.append((_subject, i, i))
  336. if _subjects:
  337. _t2 = np.repeat(_t2, len(_subjects), 0)
  338. _t3 = np.repeat(_t3, len(_subjects), 0)
  339. _k1, _ = np.array([_s[1:] for _s in _subjects]).T.reshape((2, -1, 1))
  340. # _o1 = self.model_object.predict([_t2, _t3, _k1])
  341. _o1 = limitRun(self.sess_object, [self.model_object[1]], feed_dict={self.model_object[0][0]: _t2,
  342. self.model_object[0][1]: _t3,
  343. self.model_object[0][2]: _k1})[0]
  344. for i, _subject in enumerate(_subjects):
  345. _oo1 = np.where(_o1[i] > 0.5)
  346. # print('_oo1', _oo1)
  347. for _ooo1, _c1 in zip(*_oo1):
  348. _object = text_in[_ooo1]
  349. _predicate = self.id2predicate[_c1]
  350. triple_list.append((_subject[0], _predicate, _object))
  351. # print([(t[0].entity_text,t[1],t[2].entity_text) for t in triple_list])
  352. return triple_list
  353. else:
  354. return []
  355. class Model_person_classify():
  356. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  357. if USE_PAI_EAS:
  358. lazyLoad = True
  359. self.model_person_file = os.path.dirname(__file__)+"/../person/models/model_person.model.hdf5"
  360. self.model_person = None
  361. self.sess_person = tf.Session(graph=tf.Graph(),config=config)
  362. if not lazyLoad:
  363. self.getModel()
  364. def getModel(self):
  365. if self.model_person is None:
  366. with self.sess_person.as_default() as sess:
  367. with sess.graph.as_default():
  368. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new")
  369. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new_znj")
  370. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  371. signature_def = meta_graph_def.signature_def
  372. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  373. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  374. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  375. self.model_person = [[input0,input1],output]
  376. return self.model_person
  377. '''
  378. if self.model_person is None:
  379. self.model_person = models.load_model(self.model_person_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  380. return self.model_person
  381. '''
  382. '''
  383. def load_weights(self):
  384. model = self.getModel()
  385. model.load_weights(self.model_person_file)
  386. '''
  387. def encode(self,tokens,begin_index,end_index,**kwargs):
  388. # return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  389. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20),shape=(2,20,128))
  390. def predict(self,x):
  391. x = np.transpose(np.array(x),(1,0,2,3))
  392. model_person = self.getModel()
  393. assert len(x)==len(model_person[0])
  394. feed_dict = {}
  395. for _x,_t in zip(x,model_person[0]):
  396. feed_dict[_t] = _x
  397. list_result = limitRun(self.sess_person,[model_person[1]],feed_dict)[0]
  398. return list_result
  399. #return self.sess_person.run(model_person[1],feed_dict=feed_dict)
  400. '''
  401. with self.graph.as_default():
  402. return self.getModel().predict([x[0],x[1]])
  403. '''
  404. class Model_form_line():
  405. def __init__(self,lazyLoad=getLazyLoad()):
  406. self.model_file = os.path.dirname(__file__)+"/../form/model/model_form.model - 副本.hdf5"
  407. self.model_form = None
  408. self.graph = tf.get_default_graph()
  409. if not lazyLoad:
  410. self.getModel()
  411. def getModel(self):
  412. if self.model_form is None:
  413. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  414. return self.model_form
  415. def encode(self,data,shape=(100,60),expand=False,**kwargs):
  416. embedding = np.zeros(shape)
  417. word_model = getModel_word()
  418. for i in range(len(data)):
  419. if i>=shape[0]:
  420. break
  421. if data[i] in word_model.vocab:
  422. embedding[i] = word_model[data[i]]
  423. if expand:
  424. embedding = np.expand_dims(embedding,0)
  425. return embedding
  426. def predict(self,x):
  427. with self.graph.as_default():
  428. return self.getModel().predict(x)
  429. class Model_form_item():
  430. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  431. self.model_file = os.path.dirname(__file__)+"/../form/log/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  432. self.model_form = None
  433. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  434. if not lazyLoad:
  435. self.getModel()
  436. def getModel(self):
  437. if self.model_form is None:
  438. with self.sess_form.as_default() as sess:
  439. with sess.graph.as_default():
  440. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_savedmodel"%(os.path.dirname(__file__)))
  441. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  442. signature_def = meta_graph_def.signature_def
  443. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  444. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  445. self.model_form = [[inputs],output]
  446. return self.model_form
  447. '''
  448. if self.model_form is None:
  449. with self.graph.as_defalt():
  450. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  451. return self.model_form
  452. '''
  453. def encode(self,data,**kwargs):
  454. return encodeInput([data], word_len=50, word_flag=True,userFool=False)[0]
  455. return encodeInput_form(data)
  456. def predict(self,x):
  457. if USE_API:
  458. requests_result = requests.post(API_URL+"/predict_form_item",json={"inputs":x.tolist()}, verify=True)
  459. list_result = json.loads(requests_result.text)['result']
  460. else:
  461. model_form = self.getModel()
  462. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  463. return list_result
  464. # return self.sess_form.run(model_form[1],feed_dict={model_form[0][0]:x})
  465. '''
  466. with self.graph.as_default():
  467. return self.getModel().predict(x)
  468. '''
  469. class Model_form_context():
  470. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  471. self.model_form = None
  472. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  473. if not lazyLoad:
  474. self.getModel()
  475. def getModel(self):
  476. if self.model_form is None:
  477. with self.sess_form.as_default() as sess:
  478. with sess.graph.as_default():
  479. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_context_savedmodel"%(os.path.dirname(__file__)))
  480. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  481. signature_def = meta_graph_def.signature_def
  482. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  483. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  484. self.model_form = [[inputs],output]
  485. return self.model_form
  486. '''
  487. if self.model_form is None:
  488. with self.graph.as_defalt():
  489. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  490. return self.model_form
  491. '''
  492. def encode_table(self,inner_table,size=30):
  493. def encode_item(_table,i,j):
  494. _x = [_table[j-1][i-1],_table[j-1][i],_table[j-1][i+1],
  495. _table[j][i-1],_table[j][i],_table[j][i+1],
  496. _table[j+1][i-1],_table[j+1][i],_table[j+1][i+1]]
  497. e_x = [encodeInput_form(_temp[0],MAX_LEN=30) for _temp in _x]
  498. _label = _table[j][i][1]
  499. # print(_x)
  500. # print(_x[4],_label)
  501. return e_x,_label,_x
  502. def copytable(inner_table):
  503. table = []
  504. for line in inner_table:
  505. list_line = []
  506. for item in line:
  507. list_line.append([item[0][:size],item[1]])
  508. table.append(list_line)
  509. return table
  510. table = copytable(inner_table)
  511. padding = ["#"*30,0]
  512. width = len(table[0])
  513. height = len(table)
  514. table.insert(0,[padding for i in range(width)])
  515. table.append([padding for i in range(width)])
  516. for item in table:
  517. item.insert(0,padding.copy())
  518. item.append(padding.copy())
  519. data_x = []
  520. data_y = []
  521. data_text = []
  522. data_position = []
  523. for _i in range(1,width+1):
  524. for _j in range(1,height+1):
  525. _x,_y,_text = encode_item(table,_i,_j)
  526. data_x.append(_x)
  527. _label = [0,0]
  528. _label[_y] = 1
  529. data_y.append(_label)
  530. data_text.append(_text)
  531. data_position.append([_i-1,_j-1])
  532. # input = table[_j][_i][0]
  533. # item_y = [0,0]
  534. # item_y[table[_j][_i][1]] = 1
  535. # data_x.append(encodeInput([input], word_len=50, word_flag=True,userFool=False)[0])
  536. # data_y.append(item_y)
  537. return data_x,data_y,data_text,data_position
  538. def encode(self,inner_table,**kwargs):
  539. data_x,_,_,data_position = self.encode_table(inner_table)
  540. return data_x,data_position
  541. def predict(self,x):
  542. model_form = self.getModel()
  543. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  544. return list_result
  545. # class Model_form_item():
  546. # def __init__(self,lazyLoad=False):
  547. # self.model_file = os.path.dirname(__file__)+"/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  548. # self.model_form = None
  549. #
  550. # if not lazyLoad:
  551. # self.getModel()
  552. # self.graph = tf.get_default_graph()
  553. #
  554. # def getModel(self):
  555. # if self.model_form is None:
  556. # self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  557. # return self.model_form
  558. #
  559. # def encode(self,data,**kwargs):
  560. #
  561. # return encodeInput_form(data)
  562. #
  563. # def predict(self,x):
  564. # with self.graph.as_default():
  565. # return self.getModel().predict(x)