DatasTransport.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. import psycopg2
  2. import pandas as pd
  3. def trans():
  4. conn1 = psycopg2.connect(dbname="BiddingKM_test_10000",user="postgres",password="postgres",host="192.168.2.101")
  5. cursor1 = conn1.cursor()
  6. conn2 = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  7. cursor2 = conn2.cursor()
  8. cursor1.execute(" select * from articles ")
  9. rows_1 = cursor1.fetchmany(1000)
  10. count = 0
  11. while(rows_1):
  12. count += 1
  13. print(count)
  14. for row in rows_1:
  15. sql = "insert into articles values("
  16. for i in range(len(row)):
  17. sql += "'"+str(row[i])+"',"
  18. sql = sql[:-1]+")"
  19. print(sql)
  20. cursor2.execute(sql)
  21. rows_1 = cursor1.fetchmany(1000)
  22. conn2.commit()
  23. conn2.close()
  24. conn1.close()
  25. if __name__=="__main__":
  26. conn1 = psycopg2.connect(dbname="BiddingKM_test_10000",user="postgres",password="postgres",host="192.168.2.101")
  27. cursor1 = conn1.cursor()
  28. cursor1.execute(" select * from articles ")
  29. rows_1 = cursor1.fetchall()
  30. id = []
  31. l_content = []
  32. l_tenderee = []
  33. l_agency = []
  34. l_win_tenderer = []
  35. l_first_tenderer = []
  36. l_second_tenderer = []
  37. l_third_tenderer = []
  38. for row in rows_1:
  39. id.append(row[0])
  40. l_content.append(row[1])
  41. l_tenderee.append(row[2])
  42. l_agency.append("" if row[3]=="None" else row[3])
  43. l_win_tenderer.append("" if row[4]=="None" else row[4])
  44. l_first_tenderer.append("" if row[5]=="None" else row[5])
  45. l_second_tenderer.append("" if row[6]=="None" else row[6])
  46. l_third_tenderer.append("" if row[7]=="None" else row[7])
  47. dataframe = pd.DataFrame({'id':id,'content':l_content,"tenderee":l_tenderee,"agency":l_agency,"win_tenderer":l_win_tenderer,"first_tenderer":l_first_tenderer,"second_tenderer":l_second_tenderer,"third_tenderer":l_third_tenderer})
  48. columns = ['id','content',"tenderee","agency","win_tenderer","first_tenderer","second_tenderer","third_tenderer"]
  49. dataframe.to_csv("articles.csv",index=False,header=False,sep=",",encoding="utf8",columns=columns)