Preprocessing.py 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110
  1. from bs4 import BeautifulSoup, Comment
  2. import copy
  3. import sys
  4. import os
  5. import time
  6. import codecs
  7. sys.setrecursionlimit(1000000)
  8. sys.path.append(os.path.abspath("../.."))
  9. sys.path.append(os.path.abspath(".."))
  10. from BiddingKG.dl.common.Utils import *
  11. from BiddingKG.dl.interface.Entitys import *
  12. from BiddingKG.dl.interface.predictor import getPredictor
  13. from BiddingKG.dl.common.nerUtils import *
  14. from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource
  15. from BiddingKG.dl.time.re_servicetime import extract_servicetime
  16. from BiddingKG.dl.bidway.re_bidway import extract_bidway
  17. from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint
  18. from BiddingKG.dl.entityLink.entityLink import *
  19. #
  20. def tableToText(soup):
  21. '''
  22. @param:
  23. soup:网页html的soup
  24. @return:处理完表格信息的网页text
  25. '''
  26. def getTrs(tbody):
  27. #获取所有的tr
  28. trs = []
  29. objs = tbody.find_all(recursive=False)
  30. for obj in objs:
  31. if obj.name=="tr":
  32. trs.append(obj)
  33. if obj.name=="tbody":
  34. for tr in obj.find_all("tr",recursive=False):
  35. trs.append(tr)
  36. return trs
  37. def fixSpan(tbody):
  38. # 处理colspan, rowspan信息补全问题
  39. #trs = tbody.findChildren('tr', recursive=False)
  40. trs = getTrs(tbody)
  41. ths_len = 0
  42. ths = list()
  43. trs_set = set()
  44. #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱
  45. # 遍历每一个tr
  46. for indtr, tr in enumerate(trs):
  47. ths_tmp = tr.findChildren('th', recursive=False)
  48. #不补全含有表格的tr
  49. if len(tr.findChildren('table'))>0:
  50. continue
  51. if len(ths_tmp) > 0:
  52. ths_len = ths_len + len(ths_tmp)
  53. for th in ths_tmp:
  54. ths.append(th)
  55. trs_set.add(tr)
  56. # 遍历每行中的element
  57. tds = tr.findChildren(recursive=False)
  58. for indtd, td in enumerate(tds):
  59. # 若有colspan 则补全同一行下一个位置
  60. if 'colspan' in td.attrs:
  61. if str(re.sub("[^0-9]","",str(td['colspan'])))!="":
  62. col = int(re.sub("[^0-9]","",str(td['colspan'])))
  63. if col<100 and len(td.get_text())<1000:
  64. td['colspan'] = 1
  65. for i in range(1, col, 1):
  66. td.insert_after(copy.copy(td))
  67. for indtr, tr in enumerate(trs):
  68. ths_tmp = tr.findChildren('th', recursive=False)
  69. #不补全含有表格的tr
  70. if len(tr.findChildren('table'))>0:
  71. continue
  72. if len(ths_tmp) > 0:
  73. ths_len = ths_len + len(ths_tmp)
  74. for th in ths_tmp:
  75. ths.append(th)
  76. trs_set.add(tr)
  77. # 遍历每行中的element
  78. tds = tr.findChildren(recursive=False)
  79. for indtd, td in enumerate(tds):
  80. # 若有rowspan 则补全下一行同样位置
  81. if 'rowspan' in td.attrs:
  82. if str(re.sub("[^0-9]","",str(td['rowspan'])))!="":
  83. row = int(re.sub("[^0-9]","",str(td['rowspan'])))
  84. td['rowspan'] = 1
  85. for i in range(1, row, 1):
  86. # 获取下一行的所有td, 在对应的位置插入
  87. if indtr+i<len(trs):
  88. tds1 = trs[indtr + i].findChildren(['td','th'], recursive=False)
  89. if len(tds1) >= (indtd) and len(tds1)>0:
  90. if indtd > 0:
  91. tds1[indtd - 1].insert_after(copy.copy(td))
  92. else:
  93. tds1[0].insert_before(copy.copy(td))
  94. elif indtd-2>0 and len(tds1) > 0 and len(tds1) == indtd - 1: # 修正某些表格最后一列没补全
  95. tds1[indtd-2].insert_after(copy.copy(td))
  96. def getTable(tbody):
  97. #trs = tbody.findChildren('tr', recursive=False)
  98. trs = getTrs(tbody)
  99. inner_table = []
  100. for tr in trs:
  101. tr_line = []
  102. tds = tr.findChildren(['td','th'], recursive=False)
  103. for td in tds:
  104. tr_line.append([re.sub('\xa0','',segment(td,final=False)),0])
  105. #tr_line.append([td.get_text(),0])
  106. inner_table.append(tr_line)
  107. return inner_table
  108. #处理表格不对齐的问题
  109. def fixTable(inner_table,fix_value="~~"):
  110. maxWidth = 0
  111. for item in inner_table:
  112. if len(item)>maxWidth:
  113. maxWidth = len(item)
  114. for i in range(len(inner_table)):
  115. if len(inner_table[i])<maxWidth:
  116. for j in range(maxWidth-len(inner_table[i])):
  117. inner_table[i].append([fix_value,0])
  118. return inner_table
  119. def removePadding(inner_table,pad_row = "@@",pad_col = "##"):
  120. height = len(inner_table)
  121. width = len(inner_table[0])
  122. for i in range(height):
  123. point = ""
  124. for j in range(width):
  125. if inner_table[i][j][0]==point and point!="":
  126. inner_table[i][j][0] = pad_row
  127. else:
  128. if inner_table[i][j][0] not in [pad_row,pad_col]:
  129. point = inner_table[i][j][0]
  130. for j in range(width):
  131. point = ""
  132. for i in range(height):
  133. if inner_table[i][j][0]==point and point!="":
  134. inner_table[i][j][0] = pad_col
  135. else:
  136. if inner_table[i][j][0] not in [pad_row,pad_col]:
  137. point = inner_table[i][j][0]
  138. def addPadding(inner_table,pad_row = "@@",pad_col = "##"):
  139. height = len(inner_table)
  140. width = len(inner_table[0])
  141. for i in range(height):
  142. for j in range(width):
  143. if inner_table[i][j][0]==pad_row:
  144. inner_table[i][j][0] = inner_table[i][j-1][0]
  145. inner_table[i][j][1] = inner_table[i][j-1][1]
  146. if inner_table[i][j][0]==pad_col:
  147. inner_table[i][j][0] = inner_table[i-1][j][0]
  148. inner_table[i][j][1] = inner_table[i-1][j][1]
  149. def repairTable(inner_table,dye_set = set(),key_set = set(),fix_value="~~"):
  150. '''
  151. @summary: 修复表头识别,将明显错误的进行修正
  152. '''
  153. def repairNeeded(line):
  154. first_1 = -1
  155. last_1 = -1
  156. first_0 = -1
  157. last_0 = -1
  158. count_1 = 0
  159. count_0 = 0
  160. for i in range(len(line)):
  161. if line[i][0]==fix_value:
  162. continue
  163. if line[i][1]==1:
  164. if first_1==-1:
  165. first_1 = i
  166. last_1 = i
  167. count_1 += 1
  168. if line[i][1]==0:
  169. if first_0 == -1:
  170. first_0 = i
  171. last_0 = i
  172. count_0 += 1
  173. if first_1 ==-1 or last_0 == -1:
  174. return False
  175. #异常情况:第一个不是表头;最后一个是表头;表头个数远大于属性值个数
  176. if first_1-0>0 or last_0-len(line)+1<0 or last_1==len(line)-1 or count_1-count_0>=3:
  177. return True
  178. return False
  179. def getsimilarity(line,line1):
  180. same_count = 0
  181. for item,item1 in zip(line,line1):
  182. if item[1]==item1[1]:
  183. same_count += 1
  184. return same_count/len(line)
  185. def selfrepair(inner_table,index,dye_set,key_set):
  186. '''
  187. @summary: 计算每个节点受到的挤压度来判断是否需要染色
  188. '''
  189. #print("B",inner_table[index])
  190. min_presure = 3
  191. list_dye = []
  192. first = None
  193. count = 0
  194. temp_set = set()
  195. _index = 0
  196. for item in inner_table[index]:
  197. if first is None:
  198. first = item[1]
  199. if item[0] not in temp_set:
  200. count += 1
  201. temp_set.add(item[0])
  202. else:
  203. if first == item[1]:
  204. if item[0] not in temp_set:
  205. temp_set.add(item[0])
  206. count += 1
  207. else:
  208. list_dye.append([first,count,_index])
  209. first = item[1]
  210. temp_set.add(item[0])
  211. count = 1
  212. _index += 1
  213. list_dye.append([first,count,_index])
  214. if len(list_dye)>1:
  215. begin = 0
  216. end = 0
  217. for i in range(len(list_dye)):
  218. end = list_dye[i][2]
  219. dye_flag = False
  220. #首尾要求压力减一
  221. if i==0:
  222. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1:
  223. dye_flag = True
  224. dye_type = list_dye[i+1][0]
  225. elif i==len(list_dye)-1:
  226. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1:
  227. dye_flag = True
  228. dye_type = list_dye[i-1][0]
  229. else:
  230. if list_dye[i][1]>1:
  231. if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure:
  232. dye_flag = True
  233. dye_type = list_dye[i+1][0]
  234. if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  235. dye_flag = True
  236. dye_type = list_dye[i-1][0]
  237. else:
  238. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  239. dye_flag = True
  240. dye_type = list_dye[i+1][0]
  241. if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure:
  242. dye_flag = True
  243. dye_type = list_dye[i-1][0]
  244. if dye_flag:
  245. for h in range(begin,end):
  246. inner_table[index][h][1] = dye_type
  247. dye_set.add((inner_table[index][h][0],dye_type))
  248. key_set.add(inner_table[index][h][0])
  249. begin = end
  250. #print("E",inner_table[index])
  251. def otherrepair(inner_table,index,dye_set,key_set):
  252. list_provide_repair = []
  253. if index==0 and len(inner_table)>1:
  254. list_provide_repair.append(index+1)
  255. elif index==len(inner_table)-1:
  256. list_provide_repair.append(index-1)
  257. else:
  258. list_provide_repair.append(index+1)
  259. list_provide_repair.append(index-1)
  260. for provide_index in list_provide_repair:
  261. if not repairNeeded(inner_table[provide_index]):
  262. same_prob = getsimilarity(inner_table[index], inner_table[provide_index])
  263. if same_prob>=0.8:
  264. for i in range(len(inner_table[provide_index])):
  265. if inner_table[index][i][1]!=inner_table[provide_index][i][1]:
  266. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  267. key_set.add(inner_table[index][i][0])
  268. inner_table[index][i][1] = inner_table[provide_index][i][1]
  269. elif same_prob<=0.2:
  270. for i in range(len(inner_table[provide_index])):
  271. if inner_table[index][i][1]==inner_table[provide_index][i][1]:
  272. dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1]))
  273. key_set.add(inner_table[index][i][0])
  274. inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1
  275. len_dye_set = len(dye_set)
  276. height = len(inner_table)
  277. for i in range(height):
  278. if repairNeeded(inner_table[i]):
  279. selfrepair(inner_table,i,dye_set,key_set)
  280. #otherrepair(inner_table,i,dye_set,key_set)
  281. for h in range(len(inner_table)):
  282. for w in range(len(inner_table[0])):
  283. if inner_table[h][w][0] in key_set:
  284. for item in dye_set:
  285. if inner_table[h][w][0]==item[0]:
  286. inner_table[h][w][1] = item[1]
  287. #如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代
  288. if len(dye_set)!=len(key_set):
  289. for i in range(height):
  290. if repairNeeded(inner_table[i]):
  291. selfrepair(inner_table,i,dye_set,key_set)
  292. #otherrepair(inner_table,i,dye_set,key_set)
  293. return
  294. if len(dye_set)==len_dye_set:
  295. '''
  296. for i in range(height):
  297. if repairNeeded(inner_table[i]):
  298. otherrepair(inner_table,i,dye_set,key_set)
  299. '''
  300. return
  301. repairTable(inner_table, dye_set, key_set)
  302. def sliceTable(inner_table,fix_value="~~"):
  303. #进行分块
  304. height = len(inner_table)
  305. width = len(inner_table[0])
  306. head_list = []
  307. head_list.append(0)
  308. last_head = None
  309. last_is_same_value = False
  310. for h in range(height):
  311. is_all_key = True#是否是全表头行
  312. is_all_value = True#是否是全属性值
  313. is_same_with_lastHead = True#和上一行的结构是否相同
  314. is_same_value=True#一行的item都一样
  315. #is_same_first_item = True#与上一行的第一项是否相同
  316. same_value = inner_table[h][0][0]
  317. for w in range(width):
  318. if last_head is not None:
  319. if inner_table[h-1][w][0]!=fix_value and inner_table[h-1][w][1] == 0:
  320. is_all_key = False
  321. if inner_table[h][w][0]==1:
  322. is_all_value = False
  323. if inner_table[h][w][1]!= inner_table[h-1][w][1]:
  324. is_same_with_lastHead = False
  325. if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value:
  326. is_same_value = False
  327. else:
  328. if re.search("\d+",same_value) is not None:
  329. is_same_value = False
  330. if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]:
  331. is_same_first_item = False
  332. last_head = h
  333. if last_is_same_value:
  334. last_is_same_value = is_same_value
  335. continue
  336. if is_same_value:
  337. head_list.append(h)
  338. last_is_same_value = is_same_value
  339. continue
  340. if not is_all_key:
  341. if not is_same_with_lastHead:
  342. head_list.append(h)
  343. head_list.append(height)
  344. return head_list
  345. def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  346. set_item = set()
  347. height = len(inner_table)
  348. width = len(inner_table[0])
  349. for i in range(height):
  350. for j in range(width):
  351. item = inner_table[i][j][0]
  352. set_item.add(item)
  353. list_item = list(set_item)
  354. x = []
  355. for item in list_item:
  356. x.append(getPredictor("form").encode(item))
  357. predict_y = getPredictor("form").predict(np.array(x),type="item")
  358. _dict = dict()
  359. for item,values in zip(list_item,list(predict_y)):
  360. _dict[item] = values[1]
  361. # print("##",item,values)
  362. #print(_dict)
  363. for i in range(height):
  364. for j in range(width):
  365. item = inner_table[i][j][0]
  366. inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0)
  367. # print("=====")
  368. # for item in inner_table:
  369. # print(item)
  370. # print("======")
  371. repairTable(inner_table)
  372. head_list = sliceTable(inner_table)
  373. return inner_table,head_list
  374. def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5):
  375. data_x,data_position = getPredictor("form").getModel("context").encode(inner_table)
  376. predict_y = getPredictor("form").getModel("context").predict(data_x)
  377. for _position,_y in zip(data_position,predict_y):
  378. _w = _position[0]
  379. _h = _position[1]
  380. if _y[1]>prob_min:
  381. inner_table[_h][_w][1] = 1
  382. else:
  383. inner_table[_h][_w][1] = 0
  384. _item = inner_table[_h][_w][0]
  385. if re.search(pat_head,_item) is not None and len(_item)<8:
  386. inner_table[_h][_w][1] = 1
  387. # print("=====")
  388. # for item in inner_table:
  389. # print(item)
  390. # print("======")
  391. height = len(inner_table)
  392. width = len(inner_table[0])
  393. for i in range(height):
  394. for j in range(width):
  395. if re.search("[::]$", inner_table[i][j][0]) and len(inner_table[i][j][0])<8:
  396. inner_table[i][j][1] = 1
  397. repairTable(inner_table)
  398. head_list = sliceTable(inner_table)
  399. return inner_table,head_list
  400. #设置表头
  401. def setHead_inline(inner_table,prob_min=0.64):
  402. pad_row = "@@"
  403. pad_col = "##"
  404. removePadding(inner_table, pad_row, pad_col)
  405. pad_pattern = re.compile(pad_row+"|"+pad_col)
  406. height = len(inner_table)
  407. width = len(inner_table[0])
  408. head_list = []
  409. head_list.append(0)
  410. #行表头
  411. is_head_last = False
  412. for i in range(height):
  413. is_head = False
  414. is_long_value = False
  415. #判断是否是全padding值
  416. is_same_value = True
  417. same_value = inner_table[i][0][0]
  418. for j in range(width):
  419. if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row:
  420. is_same_value = False
  421. break
  422. #predict is head or not with model
  423. temp_item = ""
  424. for j in range(width):
  425. temp_item += inner_table[i][j][0]+"|"
  426. temp_item = re.sub(pad_pattern,"",temp_item)
  427. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  428. if form_prob is not None:
  429. if form_prob[0][1]>prob_min:
  430. is_head = True
  431. else:
  432. is_head = False
  433. #print(temp_item,form_prob)
  434. if len(inner_table[i][0][0])>40:
  435. is_long_value = True
  436. if is_head or is_long_value or is_same_value:
  437. #不把连续表头分开
  438. if not is_head_last:
  439. head_list.append(i)
  440. if is_long_value or is_same_value:
  441. head_list.append(i+1)
  442. if is_head:
  443. for j in range(width):
  444. inner_table[i][j][1] = 1
  445. is_head_last = is_head
  446. head_list.append(height)
  447. #列表头
  448. for i in range(len(head_list)-1):
  449. head_begin = head_list[i]
  450. head_end = head_list[i+1]
  451. #最后一列不设置为列表头
  452. for i in range(width-1):
  453. is_head = False
  454. #predict is head or not with model
  455. temp_item = ""
  456. for j in range(head_begin,head_end):
  457. temp_item += inner_table[j][i][0]+"|"
  458. temp_item = re.sub(pad_pattern,"",temp_item)
  459. form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line")
  460. if form_prob is not None:
  461. if form_prob[0][1]>prob_min:
  462. is_head = True
  463. else:
  464. is_head = False
  465. if is_head:
  466. for j in range(head_begin,head_end):
  467. inner_table[j][i][1] = 2
  468. addPadding(inner_table, pad_row, pad_col)
  469. return inner_table,head_list
  470. #设置表头
  471. def setHead_withRule(inner_table,pattern,pat_value,count):
  472. height = len(inner_table)
  473. width = len(inner_table[0])
  474. head_list = []
  475. head_list.append(0)
  476. #行表头
  477. is_head_last = False
  478. for i in range(height):
  479. set_match = set()
  480. is_head = False
  481. is_long_value = False
  482. is_same_value = True
  483. same_value = inner_table[i][0][0]
  484. for j in range(width):
  485. if inner_table[i][j][0]!=same_value:
  486. is_same_value = False
  487. break
  488. for j in range(width):
  489. if re.search(pat_value,inner_table[i][j][0]) is not None:
  490. is_head = False
  491. break
  492. str_find = re.findall(pattern,inner_table[i][j][0])
  493. if len(str_find)>0:
  494. set_match.add(inner_table[i][j][0])
  495. if len(set_match)>=count:
  496. is_head = True
  497. if len(inner_table[i][0][0])>40:
  498. is_long_value = True
  499. if is_head or is_long_value or is_same_value:
  500. if not is_head_last:
  501. head_list.append(i)
  502. if is_head:
  503. for j in range(width):
  504. inner_table[i][j][1] = 1
  505. is_head_last = is_head
  506. head_list.append(height)
  507. #列表头
  508. for i in range(len(head_list)-1):
  509. head_begin = head_list[i]
  510. head_end = head_list[i+1]
  511. #最后一列不设置为列表头
  512. for i in range(width-1):
  513. set_match = set()
  514. is_head = False
  515. for j in range(head_begin,head_end):
  516. if re.search(pat_value,inner_table[j][i][0]) is not None:
  517. is_head = False
  518. break
  519. str_find = re.findall(pattern,inner_table[j][i][0])
  520. if len(str_find)>0:
  521. set_match.add(inner_table[j][i][0])
  522. if len(set_match)>=count:
  523. is_head = True
  524. if is_head:
  525. for j in range(head_begin,head_end):
  526. inner_table[j][i][1] = 2
  527. return inner_table,head_list
  528. #取得表格的处理方向
  529. def getDirect(inner_table,begin,end):
  530. '''
  531. column_head = set()
  532. row_head = set()
  533. widths = len(inner_table[0])
  534. for height in range(begin,end):
  535. for width in range(widths):
  536. if inner_table[height][width][1] ==1:
  537. row_head.add(height)
  538. if inner_table[height][width][1] ==2:
  539. column_head.add(width)
  540. company_pattern = re.compile("公司")
  541. if 0 in column_head and begin not in row_head:
  542. return "column"
  543. if 0 in column_head and begin in row_head:
  544. for height in range(begin,end):
  545. count = 0
  546. count_flag = True
  547. for width_index in range(width):
  548. if inner_table[height][width_index][1]==0:
  549. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  550. count += 1
  551. else:
  552. count_flag = False
  553. if count_flag and count>=2:
  554. return "column"
  555. return "row"
  556. '''
  557. count_row_keys = 0
  558. count_column_keys = 0
  559. width = len(inner_table[0])
  560. if begin<end:
  561. for w in range(len(inner_table[begin])):
  562. if inner_table[begin][w][1]!=0:
  563. count_row_keys += 1
  564. for h in range(begin,end):
  565. if inner_table[h][0][1]!=0:
  566. count_column_keys += 1
  567. company_pattern = re.compile("有限(责任)?公司")
  568. for height in range(begin,end):
  569. count_set = set()
  570. count_flag = True
  571. for width_index in range(width):
  572. if inner_table[height][width_index][1]==0:
  573. if re.search(company_pattern,inner_table[height][width_index][0]) is not None:
  574. count_set.add(inner_table[height][width_index][0])
  575. else:
  576. count_flag = False
  577. if count_flag and len(count_set)>=2:
  578. return "column"
  579. if count_column_keys>count_row_keys:
  580. return "column"
  581. return "row"
  582. #根据表格处理方向生成句子,
  583. def getTableText(inner_table,head_list,key_direct=False):
  584. # packPattern = "(标包|[标包][号段名])"
  585. packPattern = "(标包|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名
  586. rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标|推荐意见)" # 2020/11/23 大网站规则,添加序号为排序
  587. entityPattern = "((候选|([中投]标|报价))(单位|公司|人|供应商))"
  588. moneyPattern = "([中投]标|报价)(金额|价)"
  589. height = len(inner_table)
  590. width = len(inner_table[0])
  591. text = ""
  592. for head_i in range(len(head_list)-1):
  593. head_begin = head_list[head_i]
  594. head_end = head_list[head_i+1]
  595. direct = getDirect(inner_table, head_begin, head_end)
  596. #若只有一行,则直接按行读取
  597. if head_end-head_begin==1:
  598. text_line = ""
  599. for i in range(head_begin,head_end):
  600. for w in range(len(inner_table[i])):
  601. if inner_table[i][w][1]==1:
  602. _punctuation = ":"
  603. else:
  604. _punctuation = ","
  605. if w>0:
  606. if inner_table[i][w][0]!= inner_table[i][w-1][0]:
  607. text_line += inner_table[i][w][0]+_punctuation
  608. else:
  609. text_line += inner_table[i][w][0]+_punctuation
  610. text_line = text_line+"。" if text_line!="" else text_line
  611. text += text_line
  612. else:
  613. #构建一个共现矩阵
  614. table_occurence = []
  615. for i in range(head_begin,head_end):
  616. line_oc = []
  617. for j in range(width):
  618. cell = inner_table[i][j]
  619. line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0})
  620. table_occurence.append(line_oc)
  621. occu_height = len(table_occurence)
  622. occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0
  623. #为每个属性值寻找表头
  624. for i in range(occu_height):
  625. for j in range(occu_width):
  626. cell = table_occurence[i][j]
  627. #是属性值
  628. if cell["type"]==0 and cell["text"]!="":
  629. left_head = ""
  630. top_head = ""
  631. find_flag = False
  632. temp_head = ""
  633. for loop_i in range(1,i+1):
  634. if not key_direct:
  635. key_values = [1,2]
  636. else:
  637. key_values = [1]
  638. if table_occurence[i-loop_i][j]["type"] in key_values:
  639. if find_flag:
  640. if table_occurence[i-loop_i][j]["text"]!=temp_head:
  641. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  642. else:
  643. top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head
  644. find_flag = True
  645. temp_head = table_occurence[i-loop_i][j]["text"]
  646. table_occurence[i-loop_i][j]["occu_count"] += 1
  647. else:
  648. #找到表头后遇到属性值就返回
  649. if find_flag:
  650. break
  651. cell["top_head"] += top_head
  652. find_flag = False
  653. temp_head = ""
  654. for loop_j in range(1,j+1):
  655. if not key_direct:
  656. key_values = [1,2]
  657. else:
  658. key_values = [2]
  659. if table_occurence[i][j-loop_j]["type"] in key_values:
  660. if find_flag:
  661. if table_occurence[i][j-loop_j]["text"]!=temp_head:
  662. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  663. else:
  664. left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head
  665. find_flag = True
  666. temp_head = table_occurence[i][j-loop_j]["text"]
  667. table_occurence[i][j-loop_j]["occu_count"] += 1
  668. else:
  669. if find_flag:
  670. break
  671. cell["left_head"] += left_head
  672. if direct=="row":
  673. for i in range(occu_height):
  674. pack_text = ""
  675. rank_text = ""
  676. entity_text = ""
  677. text_line = ""
  678. money_text = ""
  679. #在同一句话中重复的可以去掉
  680. text_set = set()
  681. for j in range(width):
  682. cell = table_occurence[i][j]
  683. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  684. cell = table_occurence[i][j]
  685. head = (cell["top_head"]+":") if len(cell["top_head"])>0 else ""
  686. head += cell["left_head"]
  687. if str(head+cell["text"]) in text_set:
  688. continue
  689. if re.search(packPattern,head) is not None:
  690. pack_text += head+cell["text"]+","
  691. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  692. #排名替换为同一种表达
  693. rank_text += head+cell["text"]+","
  694. #print(rank_text)
  695. elif re.search(entityPattern,head) is not None:
  696. entity_text += head+cell["text"]+","
  697. #print(entity_text)
  698. else:
  699. if re.search(moneyPattern,head) is not None and entity_text!="":
  700. money_text += head+cell["text"]+","
  701. else:
  702. text_line += head+cell["text"]+","
  703. text_set.add(str(head+cell["text"]))
  704. text += pack_text+rank_text+entity_text+money_text+text_line
  705. text = text[:-1]+"。" if len(text)>0 else text
  706. else:
  707. for j in range(occu_width):
  708. pack_text = ""
  709. rank_text = ""
  710. entity_text = ""
  711. text_line = ""
  712. text_set = set()
  713. for i in range(occu_height):
  714. cell = table_occurence[i][j]
  715. if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0):
  716. cell = table_occurence[i][j]
  717. head = (cell["left_head"]+"") if len(cell["left_head"])>0 else ""
  718. head += cell["top_head"]
  719. if str(head+cell["text"]) in text_set:
  720. continue
  721. if re.search(packPattern,head) is not None:
  722. pack_text += head+cell["text"]+","
  723. elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  724. #排名替换为同一种表达
  725. rank_text += head+cell["text"]+","
  726. #print(rank_text)
  727. elif re.search(entityPattern,head) is not None:
  728. entity_text += head+cell["text"]+","
  729. #print(entity_text)
  730. else:
  731. text_line += head+cell["text"]+","
  732. text_set.add(str(head+cell["text"]))
  733. text += pack_text+rank_text+entity_text+text_line
  734. text = text[:-1]+"。" if len(text)>0 else text
  735. # if direct=="row":
  736. # for i in range(head_begin,head_end):
  737. # pack_text = ""
  738. # rank_text = ""
  739. # entity_text = ""
  740. # text_line = ""
  741. # #在同一句话中重复的可以去掉
  742. # text_set = set()
  743. # for j in range(width):
  744. # cell = inner_table[i][j]
  745. # #是属性值
  746. # if cell[1]==0 and cell[0]!="":
  747. # head = ""
  748. #
  749. # find_flag = False
  750. # temp_head = ""
  751. # for loop_i in range(0,i+1-head_begin):
  752. # if not key_direct:
  753. # key_values = [1,2]
  754. # else:
  755. # key_values = [1]
  756. # if inner_table[i-loop_i][j][1] in key_values:
  757. # if find_flag:
  758. # if inner_table[i-loop_i][j][0]!=temp_head:
  759. # head = inner_table[i-loop_i][j][0]+":"+head
  760. # else:
  761. # head = inner_table[i-loop_i][j][0]+":"+head
  762. # find_flag = True
  763. # temp_head = inner_table[i-loop_i][j][0]
  764. # else:
  765. # #找到表头后遇到属性值就返回
  766. # if find_flag:
  767. # break
  768. #
  769. # find_flag = False
  770. # temp_head = ""
  771. #
  772. #
  773. #
  774. # for loop_j in range(1,j+1):
  775. # if not key_direct:
  776. # key_values = [1,2]
  777. # else:
  778. # key_values = [2]
  779. # if inner_table[i][j-loop_j][1] in key_values:
  780. # if find_flag:
  781. # if inner_table[i][j-loop_j][0]!=temp_head:
  782. # head = inner_table[i][j-loop_j][0]+":"+head
  783. # else:
  784. # head = inner_table[i][j-loop_j][0]+":"+head
  785. # find_flag = True
  786. # temp_head = inner_table[i][j-loop_j][0]
  787. # else:
  788. # if find_flag:
  789. # break
  790. #
  791. # if str(head+inner_table[i][j][0]) in text_set:
  792. # continue
  793. # if re.search(packPattern,head) is not None:
  794. # pack_text += head+inner_table[i][j][0]+","
  795. # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif
  796. # #排名替换为同一种表达
  797. # rank_text += head+inner_table[i][j][0]+","
  798. # #print(rank_text)
  799. # elif re.search(entityPattern,head) is not None:
  800. # entity_text += head+inner_table[i][j][0]+","
  801. # #print(entity_text)
  802. # else:
  803. # text_line += head+inner_table[i][j][0]+","
  804. # text_set.add(str(head+inner_table[i][j][0]))
  805. # text += pack_text+rank_text+entity_text+text_line
  806. # text = text[:-1]+"。" if len(text)>0 else text
  807. # else:
  808. # for j in range(width):
  809. #
  810. # rank_text = ""
  811. # entity_text = ""
  812. # text_line = ""
  813. # text_set = set()
  814. # for i in range(head_begin,head_end):
  815. # cell = inner_table[i][j]
  816. # #是属性值
  817. # if cell[1]==0 and cell[0]!="":
  818. # find_flag = False
  819. # head = ""
  820. # temp_head = ""
  821. #
  822. # for loop_j in range(1,j+1):
  823. # if not key_direct:
  824. # key_values = [1,2]
  825. # else:
  826. # key_values = [2]
  827. # if inner_table[i][j-loop_j][1] in key_values:
  828. # if find_flag:
  829. # if inner_table[i][j-loop_j][0]!=temp_head:
  830. # head = inner_table[i][j-loop_j][0]+":"+head
  831. # else:
  832. # head = inner_table[i][j-loop_j][0]+":"+head
  833. # find_flag = True
  834. # temp_head = inner_table[i][j-loop_j][0]
  835. # else:
  836. # if find_flag:
  837. # break
  838. # find_flag = False
  839. # temp_head = ""
  840. # for loop_i in range(0,i+1-head_begin):
  841. # if not key_direct:
  842. # key_values = [1,2]
  843. # else:
  844. # key_values = [1]
  845. # if inner_table[i-loop_i][j][1] in key_values:
  846. # if find_flag:
  847. # if inner_table[i-loop_i][j][0]!=temp_head:
  848. # head = inner_table[i-loop_i][j][0]+":"+head
  849. # else:
  850. # head = inner_table[i-loop_i][j][0]+":"+head
  851. # find_flag = True
  852. # temp_head = inner_table[i-loop_i][j][0]
  853. # else:
  854. # if find_flag:
  855. # break
  856. # if str(head+inner_table[i][j][0]) in text_set:
  857. # continue
  858. # if re.search(rankPattern,head) is not None:
  859. # rank_text += head+inner_table[i][j][0]+","
  860. # #print(rank_text)
  861. # elif re.search(entityPattern,head) is not None:
  862. # entity_text += head+inner_table[i][j][0]+","
  863. # #print(entity_text)
  864. # else:
  865. # text_line += head+inner_table[i][j][0]+","
  866. # text_set.add(str(head+inner_table[i][j][0]))
  867. # text += rank_text+entity_text+text_line
  868. # text = text[:-1]+"。" if len(text)>0 else text
  869. return text
  870. def removeFix(inner_table,fix_value="~~"):
  871. height = len(inner_table)
  872. width = len(inner_table[0])
  873. for h in range(height):
  874. for w in range(width):
  875. if inner_table[h][w][0]==fix_value:
  876. inner_table[h][w][0] = ""
  877. def trunTable(tbody):
  878. fixSpan(tbody)
  879. inner_table = getTable(tbody)
  880. inner_table = fixTable(inner_table)
  881. if len(inner_table)>0 and len(inner_table[0])>0:
  882. #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3)
  883. #inner_table,head_list = setHead_inline(inner_table)
  884. # inner_table,head_list = setHead_initem(inner_table,pat_head)
  885. inner_table,head_list = setHead_incontext(inner_table,pat_head)
  886. # print(inner_table)
  887. # for begin in range(len(head_list[:-1])):
  888. # for item in inner_table[head_list[begin]:head_list[begin+1]]:
  889. # print(item)
  890. # print("====")
  891. removeFix(inner_table)
  892. # print("----")
  893. # print(head_list)
  894. # for item in inner_table:
  895. # print(item)
  896. tbody.string = getTableText(inner_table,head_list)
  897. #print(tbody.string)
  898. tbody.name = "turntable"
  899. return inner_table
  900. return None
  901. pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标)$')
  902. #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)')
  903. pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)")
  904. list_innerTable = []
  905. tbodies = soup.find_all('table')
  906. # 遍历表格中的每个tbody
  907. #逆序处理嵌套表格
  908. for tbody_index in range(1,len(tbodies)+1):
  909. tbody = tbodies[len(tbodies)-tbody_index]
  910. inner_table = trunTable(tbody)
  911. list_innerTable.append(inner_table)
  912. tbodies = soup.find_all('tbody')
  913. # 遍历表格中的每个tbody
  914. #逆序处理嵌套表格
  915. for tbody_index in range(1,len(tbodies)+1):
  916. tbody = tbodies[len(tbodies)-tbody_index]
  917. inner_table = trunTable(tbody)
  918. list_innerTable.append(inner_table)
  919. return soup
  920. # return list_innerTable
  921. #数据清洗
  922. def segment(soup,final=True):
  923. # print("==")
  924. # print(soup)
  925. # print("====")
  926. #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"]
  927. subspaceList = ["td",'a',"span","p"]
  928. if soup.name in subspaceList:
  929. #判断有值叶子节点数
  930. _count = 0
  931. for child in soup.find_all(recursive=True):
  932. if child.get_text().strip()!="" and len(child.find_all())==0:
  933. _count += 1
  934. if _count<=1:
  935. text = soup.get_text()
  936. # 2020/11/24 大网站规则添加
  937. if 'title' in soup.attrs:
  938. if '...' in soup.get_text() and (soup.get_text()[:-3]).strip() in soup.attrs['title']:
  939. text = soup.attrs['title']
  940. _list = []
  941. for x in re.split("\s+",text):
  942. if x.strip()!="":
  943. _list.append(len(x))
  944. if len(_list)>0:
  945. _minLength = min(_list)
  946. if _minLength>2:
  947. _substr = ","
  948. else:
  949. _substr = ""
  950. else:
  951. _substr = ""
  952. text = text.replace("\r\n",",").replace("\n",",")
  953. text = re.sub("\s+",_substr,text)
  954. # text = re.sub("\s+","##space##",text)
  955. return text
  956. segList = ["title"]
  957. commaList = ["div","br","td","p"]
  958. #commaList = []
  959. spaceList = ["span"]
  960. tbodies = soup.find_all('tbody')
  961. if len(tbodies) == 0:
  962. tbodies = soup.find_all('table')
  963. # 递归遍历所有节点,插入符号
  964. for child in soup.find_all(recursive=True):
  965. if child.name in segList:
  966. child.insert_after("。")
  967. if child.name in commaList:
  968. child.insert_after(",")
  969. # if child.name in subspaceList:
  970. # child.insert_before("#subs"+str(child.name)+"#")
  971. # child.insert_after("#sube"+str(child.name)+"#")
  972. # if child.name in spaceList:
  973. # child.insert_after(" ")
  974. text = str(soup.get_text())
  975. #替换英文冒号为中文冒号
  976. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  977. #替换为中文逗号
  978. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  979. #替换为中文分号
  980. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  981. #替换"?"为 " " ,update:2021/7/20
  982. text = re.sub("?+"," ",text)
  983. #替换"""为"“",否则导入deepdive出错
  984. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  985. # print('==1',text)
  986. # text = re.sub("\s{4,}",",",text)
  987. # 解决公告中的" "空格替换问题
  988. if re.search("\s{4,}",text):
  989. _text = ""
  990. for _sent in re.split("。+",text):
  991. for _sent2 in re.split(',+',_sent):
  992. for _sent3 in re.split(":+",_sent2):
  993. for _t in re.split("\s{4,}",_sent3):
  994. if len(_t)<3:
  995. _text += _t
  996. else:
  997. _text += ","+_t
  998. _text += ":"
  999. _text = _text[:-1]
  1000. _text += ","
  1001. _text = _text[:-1]
  1002. _text += "。"
  1003. _text = _text[:-1]
  1004. text = _text
  1005. # print('==2',text)
  1006. #替换标点
  1007. #替换连续的标点
  1008. if final:
  1009. text = re.sub("##space##"," ",text)
  1010. punc_pattern = "(?P<del>[。,;::,\s]+)"
  1011. list_punc = re.findall(punc_pattern,text)
  1012. list_punc.sort(key=lambda x:len(x),reverse=True)
  1013. for punc_del in list_punc:
  1014. if len(punc_del)>1:
  1015. if len(punc_del.strip())>0:
  1016. if ":" in punc_del.strip():
  1017. text = re.sub(punc_del,":",text)
  1018. else:
  1019. text = re.sub(punc_del,punc_del.strip()[-1],text)
  1020. else:
  1021. text = re.sub(punc_del,"",text)
  1022. #将连续的中文句号替换为一个
  1023. text_split = text.split("。")
  1024. text_split = [x for x in text_split if len(x)>0]
  1025. text = "。".join(text_split)
  1026. # #删除标签中的所有空格
  1027. # for subs in subspaceList:
  1028. # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#"
  1029. # while(True):
  1030. # oneMatch = re.search(re.compile(patten),text)
  1031. # if oneMatch is not None:
  1032. # _match = oneMatch.group(1)
  1033. # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match)
  1034. # else:
  1035. # break
  1036. # text过大报错
  1037. LOOP_LEN = 10000
  1038. LOOP_BEGIN = 0
  1039. _text = ""
  1040. if len(text)<10000000:
  1041. while(LOOP_BEGIN<len(text)):
  1042. _text += re.sub(")",")",re.sub("(","(",re.sub("\s+","",text[LOOP_BEGIN:LOOP_BEGIN+LOOP_LEN])))
  1043. LOOP_BEGIN += LOOP_LEN
  1044. text = _text
  1045. return text
  1046. '''
  1047. #数据清洗
  1048. def segment(soup):
  1049. segList = ["title"]
  1050. commaList = ["p","div","h1", "h2", "h3", "h4", "h5", "h6", "header", "dl", "ul", "label"]
  1051. spaceList = ["span"]
  1052. tbodies = soup.find_all('tbody')
  1053. if len(tbodies) == 0:
  1054. tbodies = soup.find_all('table')
  1055. # 递归遍历所有节点,插入符号
  1056. for child in soup.find_all(recursive=True):
  1057. if child.name == 'br':
  1058. child.insert_before(',')
  1059. child_text = re.sub('\s', '', child.get_text())
  1060. if child_text == '' or child_text[-1] in ['。',',',':',';']:
  1061. continue
  1062. if child.name in segList:
  1063. child.insert_after("。")
  1064. if child.name in commaList:
  1065. if len(child_text)>3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号
  1066. child.insert_after(",")
  1067. elif len(child_text) >=50:
  1068. child.insert_after("。")
  1069. #if child.name in spaceList:
  1070. #child.insert_after(" ")
  1071. text = str(soup.get_text())
  1072. text = re.sub("\s{5,}",",",text)
  1073. text = text.replace('"',"“").replace("\r","").replace("\n",",")
  1074. #替换"""为"“",否则导入deepdive出错
  1075. text = text.replace('"',"“")
  1076. #text = text.replace('"',"“").replace("\r","").replace("\n","")
  1077. #删除所有空格
  1078. text = re.sub("\s+","#nbsp#",text)
  1079. text_list = text.split('#nbsp#')
  1080. new_text = ''
  1081. for i in range(len(text_list)-1):
  1082. if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']:
  1083. new_text += text_list[i]
  1084. elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []:
  1085. new_text += text_list[i] + '。'
  1086. elif re.findall('([0-9]、)', text_list[i+1][:4]) != []:
  1087. new_text += text_list[i] + ';'
  1088. elif text_list[i].isdigit() and text_list[i+1].isdigit():
  1089. new_text += text_list[i] + ' '
  1090. elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']:
  1091. new_text += text_list[i]
  1092. elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3:
  1093. new_text += text_list[i] + ','
  1094. else:
  1095. new_text += text_list[i]
  1096. new_text += text_list[-1]
  1097. text = new_text
  1098. #替换英文冒号为中文冒号
  1099. text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text)
  1100. #替换为中文逗号
  1101. text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text)
  1102. #替换为中文分号
  1103. text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text)
  1104. #替换标点
  1105. while(True):
  1106. #替换连续的标点
  1107. punc = re.search(",(?P<punc>:|。|,|;)\s*",text)
  1108. if punc is not None:
  1109. text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text)
  1110. punc = re.search("(?P<punc>:|。|,|;)\s*,",text)
  1111. if punc is not None:
  1112. text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text)
  1113. else:
  1114. #替换标点之后的空格
  1115. punc = re.search("(?P<punc>:|。|,|;)\s+",text)
  1116. if punc is not None:
  1117. text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text)
  1118. else:
  1119. break
  1120. #将连续的中文句号替换为一个
  1121. text_split = text.split("。")
  1122. text_split = [x for x in text_split if len(x)>0]
  1123. text = "。".join(text_split)
  1124. #替换中文括号为英文括号
  1125. text = re.sub("(","(",text)
  1126. text = re.sub(")",")",text)
  1127. return text
  1128. '''
  1129. #连续实体合并(弃用)
  1130. def union_ner(list_ner):
  1131. result_list = []
  1132. union_index = []
  1133. union_index_set = set()
  1134. for i in range(len(list_ner)-1):
  1135. if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2:
  1136. if list_ner[i][1]-list_ner[i+1][0]==1:
  1137. union_index_set.add(i)
  1138. union_index_set.add(i+1)
  1139. union_index.append((i,i+1))
  1140. for i in range(len(list_ner)):
  1141. if i not in union_index_set:
  1142. result_list.append(list_ner[i])
  1143. for item in union_index:
  1144. #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))
  1145. result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3])))
  1146. return result_list
  1147. # def get_preprocessed(articles,useselffool=False):
  1148. # '''
  1149. # @summary:预处理步骤,NLP处理、实体识别
  1150. # @param:
  1151. # articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1152. # @return:list of articles,list of each article of sentences,list of each article of entitys
  1153. # '''
  1154. # list_articles = []
  1155. # list_sentences = []
  1156. # list_entitys = []
  1157. # cost_time = dict()
  1158. # for article in articles:
  1159. # list_sentences_temp = []
  1160. # list_entitys_temp = []
  1161. # doc_id = article[0]
  1162. # sourceContent = article[1]
  1163. # _send_doc_id = article[3]
  1164. # _title = article[4]
  1165. # #表格处理
  1166. # key_preprocess = "tableToText"
  1167. # start_time = time.time()
  1168. # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1169. #
  1170. # # log(article_processed)
  1171. #
  1172. # if key_preprocess not in cost_time:
  1173. # cost_time[key_preprocess] = 0
  1174. # cost_time[key_preprocess] += time.time()-start_time
  1175. #
  1176. # #article_processed = article[1]
  1177. # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title))
  1178. # #nlp处理
  1179. # if article_processed is not None and len(article_processed)!=0:
  1180. # split_patten = "。"
  1181. # sentences = []
  1182. # _begin = 0
  1183. # for _iter in re.finditer(split_patten,article_processed):
  1184. # sentences.append(article_processed[_begin:_iter.span()[1]])
  1185. # _begin = _iter.span()[1]
  1186. # sentences.append(article_processed[_begin:])
  1187. #
  1188. # lemmas = []
  1189. # doc_offsets = []
  1190. # dep_types = []
  1191. # dep_tokens = []
  1192. #
  1193. # time1 = time.time()
  1194. #
  1195. # '''
  1196. # tokens_all = fool.cut(sentences)
  1197. # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1198. # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1199. # ner_entitys_all = fool.ner(sentences)
  1200. # '''
  1201. # #限流执行
  1202. # key_nerToken = "nerToken"
  1203. # start_time = time.time()
  1204. # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool)
  1205. # if key_nerToken not in cost_time:
  1206. # cost_time[key_nerToken] = 0
  1207. # cost_time[key_nerToken] += time.time()-start_time
  1208. #
  1209. #
  1210. # for sentence_index in range(len(sentences)):
  1211. #
  1212. #
  1213. #
  1214. # list_sentence_entitys = []
  1215. # sentence_text = sentences[sentence_index]
  1216. # tokens = tokens_all[sentence_index]
  1217. #
  1218. # list_tokenbegin = []
  1219. # begin = 0
  1220. # for i in range(0,len(tokens)):
  1221. # list_tokenbegin.append(begin)
  1222. # begin += len(str(tokens[i]))
  1223. # list_tokenbegin.append(begin+1)
  1224. # #pos_tag = pos_all[sentence_index]
  1225. # pos_tag = ""
  1226. #
  1227. # ner_entitys = ner_entitys_all[sentence_index]
  1228. #
  1229. # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1230. #
  1231. # #识别package
  1232. #
  1233. #
  1234. # #识别实体
  1235. # for ner_entity in ner_entitys:
  1236. # begin_index_temp = ner_entity[0]
  1237. # end_index_temp = ner_entity[1]
  1238. # entity_type = ner_entity[2]
  1239. # entity_text = ner_entity[3]
  1240. #
  1241. # for j in range(len(list_tokenbegin)):
  1242. # if list_tokenbegin[j]==begin_index_temp:
  1243. # begin_index = j
  1244. # break
  1245. # elif list_tokenbegin[j]>begin_index_temp:
  1246. # begin_index = j-1
  1247. # break
  1248. # begin_index_temp += len(str(entity_text))
  1249. # for j in range(begin_index,len(list_tokenbegin)):
  1250. # if list_tokenbegin[j]>=begin_index_temp:
  1251. # end_index = j-1
  1252. # break
  1253. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1254. #
  1255. # #去掉标点符号
  1256. # entity_text = re.sub("[,,。:]","",entity_text)
  1257. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1258. #
  1259. #
  1260. # #使用正则识别金额
  1261. # entity_type = "money"
  1262. #
  1263. # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1264. #
  1265. # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*",
  1266. # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1267. # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*",
  1268. # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"}
  1269. #
  1270. # set_begin = set()
  1271. # for pattern_key in list_money_pattern.keys():
  1272. # pattern = re.compile(list_money_pattern[pattern_key])
  1273. # all_match = re.findall(pattern, sentence_text)
  1274. # index = 0
  1275. # for i in range(len(all_match)):
  1276. # if len(all_match[i][0])>0:
  1277. # # print("===",all_match[i])
  1278. # #print(all_match[i][0])
  1279. # unit = ""
  1280. # entity_text = all_match[i][3]
  1281. # if pattern_key in ["key_word","front_m"]:
  1282. # unit = all_match[i][1]
  1283. # else:
  1284. # unit = all_match[i][4]
  1285. # if entity_text.find("元")>=0:
  1286. # unit = ""
  1287. #
  1288. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1289. #
  1290. # begin_index_temp = index
  1291. # for j in range(len(list_tokenbegin)):
  1292. # if list_tokenbegin[j]==index:
  1293. # begin_index = j
  1294. # break
  1295. # elif list_tokenbegin[j]>index:
  1296. # begin_index = j-1
  1297. # break
  1298. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1299. # end_index_temp = index
  1300. # #index += len(str(all_match[i][0]))
  1301. # for j in range(begin_index,len(list_tokenbegin)):
  1302. # if list_tokenbegin[j]>=index:
  1303. # end_index = j-1
  1304. # break
  1305. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1306. #
  1307. #
  1308. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1309. # if len(unit)>0:
  1310. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1311. # else:
  1312. # entity_text = str(getUnifyMoney(entity_text))
  1313. #
  1314. # _exists = False
  1315. # for item in list_sentence_entitys:
  1316. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1317. # _exists = True
  1318. # if not _exists:
  1319. # if float(entity_text)>10:
  1320. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1321. #
  1322. # else:
  1323. # index += 1
  1324. #
  1325. # list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1326. # list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1327. # list_sentences.append(list_sentences_temp)
  1328. # list_entitys.append(list_entitys_temp)
  1329. # return list_articles,list_sentences,list_entitys,cost_time
  1330. def get_preprocessed(articles,useselffool=False):
  1331. '''
  1332. @summary:预处理步骤,NLP处理、实体识别
  1333. @param:
  1334. articles:待处理的文章list [[id,source,jointime,doc_id,title]]
  1335. @return:list of articles,list of each article of sentences,list of each article of entitys
  1336. '''
  1337. cost_time = dict()
  1338. list_articles = get_preprocessed_article(articles,cost_time)
  1339. list_sentences = get_preprocessed_sentences(list_articles,True,cost_time)
  1340. list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time)
  1341. calibrateEnterprise(list_articles,list_sentences,list_entitys)
  1342. return list_articles,list_sentences,list_entitys,cost_time
  1343. def get_preprocessed_article(articles,cost_time = dict(),useselffool=True):
  1344. '''
  1345. :param articles: 待处理的article source html
  1346. :param useselffool: 是否使用selffool
  1347. :return: list_articles
  1348. '''
  1349. list_articles = []
  1350. for article in articles:
  1351. doc_id = article[0]
  1352. sourceContent = article[1]
  1353. sourceContent = re.sub("<html>|</html>|<body>|</body>","",sourceContent)
  1354. _send_doc_id = article[3]
  1355. _title = article[4]
  1356. #表格处理
  1357. key_preprocess = "tableToText"
  1358. start_time = time.time()
  1359. article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml")))
  1360. # 提取bidway
  1361. list_bidway = extract_bidway(article_processed, _title)
  1362. if list_bidway:
  1363. bidway = list_bidway[0].get("body")
  1364. else:
  1365. bidway = ""
  1366. # 修正被","逗号分隔的时间
  1367. repair_time = re.compile("[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d|"
  1368. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[:时点],?[0-6]\d分?|"
  1369. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[时点]|"
  1370. "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]|"
  1371. "[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d"
  1372. )
  1373. for _time in set(re.findall(repair_time,article_processed)):
  1374. if re.search(",",_time):
  1375. _time2 = re.sub(",", "", _time)
  1376. item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time2)
  1377. if item:
  1378. _time2 = _time2.replace(item.group(),item.group() + " ")
  1379. article_processed = article_processed.replace(_time, _time2)
  1380. else:
  1381. item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time)
  1382. if item:
  1383. _time2 = _time.replace(item.group(),item.group() + " ")
  1384. article_processed = article_processed.replace(_time, _time2)
  1385. # print('re_rtime',re.findall(repair_time,article_processed))
  1386. # log(article_processed)
  1387. if key_preprocess not in cost_time:
  1388. cost_time[key_preprocess] = 0
  1389. cost_time[key_preprocess] += time.time()-start_time
  1390. #article_processed = article[1]
  1391. _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title,
  1392. bidway=bidway)
  1393. _article.fingerprint = getFingerprint(_title+sourceContent)
  1394. list_articles.append(_article)
  1395. return list_articles
  1396. def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()):
  1397. '''
  1398. :param list_articles: 经过预处理的article text
  1399. :return: list_sentences
  1400. '''
  1401. list_sentences = []
  1402. for article in list_articles:
  1403. list_sentences_temp = []
  1404. list_entitys_temp = []
  1405. doc_id = article.id
  1406. _send_doc_id = article.doc_id
  1407. _title = article.title
  1408. #表格处理
  1409. key_preprocess = "tableToText"
  1410. start_time = time.time()
  1411. article_processed = article.content
  1412. if key_preprocess not in cost_time:
  1413. cost_time[key_preprocess] = 0
  1414. cost_time[key_preprocess] += time.time()-start_time
  1415. #nlp处理
  1416. if article_processed is not None and len(article_processed)!=0:
  1417. split_patten = "。"
  1418. sentences = []
  1419. _begin = 0
  1420. sentences_set = set()
  1421. for _iter in re.finditer(split_patten,article_processed):
  1422. _sen = article_processed[_begin:_iter.span()[1]]
  1423. if len(_sen)>0 and _sen not in sentences_set:
  1424. sentences.append(_sen)
  1425. sentences_set.add(_sen)
  1426. _begin = _iter.span()[1]
  1427. _sen = article_processed[_begin:]
  1428. if len(_sen)>0 and _sen not in sentences_set:
  1429. sentences.append(_sen)
  1430. sentences_set.add(_sen)
  1431. article.content = "".join(sentences)
  1432. # sentences.append(article_processed[_begin:])
  1433. lemmas = []
  1434. doc_offsets = []
  1435. dep_types = []
  1436. dep_tokens = []
  1437. time1 = time.time()
  1438. '''
  1439. tokens_all = fool.cut(sentences)
  1440. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1441. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1442. ner_entitys_all = fool.ner(sentences)
  1443. '''
  1444. #限流执行
  1445. key_nerToken = "nerToken"
  1446. start_time = time.time()
  1447. tokens_all = getTokens(sentences,useselffool=useselffool)
  1448. if key_nerToken not in cost_time:
  1449. cost_time[key_nerToken] = 0
  1450. cost_time[key_nerToken] += time.time()-start_time
  1451. for sentence_index in range(len(sentences)):
  1452. sentence_text = sentences[sentence_index]
  1453. tokens = tokens_all[sentence_index]
  1454. #pos_tag = pos_all[sentence_index]
  1455. pos_tag = ""
  1456. ner_entitys = ""
  1457. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys))
  1458. if len(list_sentences_temp)==0:
  1459. list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags=""))
  1460. list_sentences.append(list_sentences_temp)
  1461. return list_sentences
  1462. def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()):
  1463. '''
  1464. :param list_sentences:分局情况
  1465. :param cost_time:
  1466. :return: list_entitys
  1467. '''
  1468. list_entitys = []
  1469. for list_sentence in list_sentences:
  1470. sentences = []
  1471. list_entitys_temp = []
  1472. for _sentence in list_sentence:
  1473. sentences.append(_sentence.sentence_text)
  1474. lemmas = []
  1475. doc_offsets = []
  1476. dep_types = []
  1477. dep_tokens = []
  1478. time1 = time.time()
  1479. '''
  1480. tokens_all = fool.cut(sentences)
  1481. #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all)
  1482. #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all)
  1483. ner_entitys_all = fool.ner(sentences)
  1484. '''
  1485. #限流执行
  1486. key_nerToken = "nerToken"
  1487. start_time = time.time()
  1488. found_yeji = 0 # 2021/8/6 增加判断是否正文包含评标结果 及类似业绩判断用于过滤后面的金额
  1489. # found_pingbiao = False
  1490. ner_entitys_all = getNers(sentences,useselffool=useselffool)
  1491. if key_nerToken not in cost_time:
  1492. cost_time[key_nerToken] = 0
  1493. cost_time[key_nerToken] += time.time()-start_time
  1494. for sentence_index in range(len(list_sentence)):
  1495. list_sentence_entitys = []
  1496. sentence_text = list_sentence[sentence_index].sentence_text
  1497. tokens = list_sentence[sentence_index].tokens
  1498. doc_id = list_sentence[sentence_index].doc_id
  1499. list_tokenbegin = []
  1500. begin = 0
  1501. for i in range(0,len(tokens)):
  1502. list_tokenbegin.append(begin)
  1503. begin += len(str(tokens[i]))
  1504. list_tokenbegin.append(begin+1)
  1505. #pos_tag = pos_all[sentence_index]
  1506. pos_tag = ""
  1507. ner_entitys = ner_entitys_all[sentence_index]
  1508. #识别package
  1509. #识别实体
  1510. for ner_entity in ner_entitys:
  1511. begin_index_temp = ner_entity[0]
  1512. end_index_temp = ner_entity[1]
  1513. entity_type = ner_entity[2]
  1514. entity_text = ner_entity[3]
  1515. if entity_type in ["org","company"] and not isLegalEnterprise(entity_text):
  1516. continue
  1517. for j in range(len(list_tokenbegin)):
  1518. if list_tokenbegin[j]==begin_index_temp:
  1519. begin_index = j
  1520. break
  1521. elif list_tokenbegin[j]>begin_index_temp:
  1522. begin_index = j-1
  1523. break
  1524. begin_index_temp += len(str(entity_text))
  1525. for j in range(begin_index,len(list_tokenbegin)):
  1526. if list_tokenbegin[j]>=begin_index_temp:
  1527. end_index = j-1
  1528. break
  1529. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1530. #去掉标点符号
  1531. entity_text = re.sub("[,,。:!&@$\*]","",entity_text)
  1532. entity_text = entity_text.replace("(","(").replace(")",")") if isinstance(entity_text,str) else entity_text
  1533. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1))
  1534. # 标记文章末尾的"发布人”、“发布时间”实体
  1535. if sentence_index==len(list_sentence)-1:
  1536. if len(list_sentence_entitys[-2:])>2:
  1537. second2last = list_sentence_entitys[-2]
  1538. last = list_sentence_entitys[-1]
  1539. if (second2last.entity_type in ["company",'org'] and last.entity_type=="time") or (
  1540. second2last.entity_type=="time" and last.entity_type in ["company",'org']):
  1541. if last.wordOffset_begin - second2last.wordOffset_end < 6 and len(sentence_text) - last.wordOffset_end<6:
  1542. last.is_tail = True
  1543. second2last.is_tail = True
  1544. #使用正则识别金额
  1545. entity_type = "money"
  1546. #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*"
  1547. # list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1548. # "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限]价|金额|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万元]*(?P<filter_unit2>[台个只]*))\s*[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,8}?))(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?(?P<filter_>[%])*\s*(?P<unit_key_word_behind>[万元]*(?P<filter_unit1>[台个只]*))\s*[)\)]?))",
  1549. # "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万元]+)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())",
  1550. # "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?(?P<unit_behind_m>[万元]+(?P<filter_unit3>[台个只]*))[\))]?)"}
  1551. list_money_pattern = {"cn":"(()()(?P<money_cn>[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())",
  1552. "key_word":"((?P<text_key_word>(?:[¥¥]+,?|[单报标限总]价|金额|成交报?价|价格|标的基本情况|CNY|成交结果:)(?:[,(\(]*\s*(?P<unit_key_word_before>[万亿]?元?(?P<filter_unit2>[台个只吨]*))\s*(/?费率)?[)\)]?)\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元编号]{,8}?))(第[123一二三]名[::])?(?P<money_key_word>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]{,1})(?:[(\(]?(?P<filter_>[%])*\s*(单位[::])?(?P<unit_key_word_behind>[万亿]?元?(?P<filter_unit1>[台个只吨斤棵株页亩方条米]*))\s*[)\)]?))",
  1553. "front_m":"((?P<text_front_m>(?:[(\(]?\s*(?P<unit_front_m_before>[万亿]?元)\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元]{,7}?))(?P<money_front_m>[0-9][\d,]*(?:\.\d+)?(?:,?)[百千]*)())",
  1554. "behind_m":"(()()(?P<money_behind_m>[0-9][\d,,]*(?:\.\d+)?(?:,?)[百千]*)[\((]?(?P<unit_behind_m>[万亿]?元(?P<filter_unit3>[台个只吨斤棵株页亩方条米]*))[\))]?)"}
  1555. # 2021/7/19 调整金额,单位提取正则,修复部分金额因为单位提取失败被过滤问题。
  1556. pattern_money = re.compile("%s|%s|%s|%s"%(list_money_pattern["cn"],list_money_pattern["key_word"],list_money_pattern["behind_m"],list_money_pattern["front_m"]))
  1557. set_begin = set()
  1558. # for pattern_key in list_money_pattern.keys():
  1559. # for pattern_key in ["cn","key_word","behind_m","front_m"]:
  1560. # # pattern = re.compile(list_money_pattern[pattern_key])
  1561. # pattern = re.compile("(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*|((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)(?:[(\(]?\s*([万元]*)\s*[)\)]?))*|(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*|((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*")
  1562. # all_match = re.findall(pattern, sentence_text)
  1563. # index = 0
  1564. # for i in range(len(all_match)):
  1565. # if len(all_match[i][0])>0:
  1566. # print("===",all_match[i])
  1567. # #print(all_match[i][0])
  1568. # unit = ""
  1569. # entity_text = all_match[i][3]
  1570. # if pattern_key in ["key_word","front_m"]:
  1571. # unit = all_match[i][1]
  1572. # if pattern_key=="key_word":
  1573. # if all_match[i][1]=="" and all_match[i][4]!="":
  1574. # unit = all_match[i][4]
  1575. # else:
  1576. # unit = all_match[i][4]
  1577. # if entity_text.find("元")>=0:
  1578. # unit = ""
  1579. #
  1580. # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征
  1581. # begin_index_temp = index
  1582. # for j in range(len(list_tokenbegin)):
  1583. # if list_tokenbegin[j]==index:
  1584. # begin_index = j
  1585. # break
  1586. # elif list_tokenbegin[j]>index:
  1587. # begin_index = j-1
  1588. # break
  1589. # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体
  1590. # end_index_temp = index
  1591. # #index += len(str(all_match[i][0]))
  1592. # for j in range(begin_index,len(list_tokenbegin)):
  1593. # if list_tokenbegin[j]>=index:
  1594. # end_index = j-1
  1595. # break
  1596. # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1597. #
  1598. # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text)
  1599. # if len(unit)>0:
  1600. # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1601. # else:
  1602. # entity_text = str(getUnifyMoney(entity_text))
  1603. #
  1604. # _exists = False
  1605. # for item in list_sentence_entitys:
  1606. # if item.entity_id==entity_id and item.entity_type==entity_type:
  1607. # _exists = True
  1608. # if not _exists:
  1609. # if float(entity_text)>1:
  1610. # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1611. #
  1612. # else:
  1613. # index += 1
  1614. # if re.search('评标结果|候选人公示', sentence_text):
  1615. # found_pingbiao = True
  1616. if re.search('业绩', sentence_text):
  1617. found_yeji += 1
  1618. if found_yeji >= 2: # 过滤掉业绩后面的所有金额
  1619. all_match = []
  1620. else:
  1621. all_match = re.finditer(pattern_money, sentence_text)
  1622. index = 0
  1623. for _match in all_match:
  1624. if len(_match.group())>0:
  1625. # print("===",_match.group())
  1626. # # print(_match.groupdict())
  1627. notes = '' # 2021/7/20 新增备注金额大写或金额单位 if 金额大写 notes=大写 elif 单位 notes=单位
  1628. unit = ""
  1629. entity_text = ""
  1630. text_beforeMoney = ""
  1631. filter = ""
  1632. filter_unit = False
  1633. notSure = False
  1634. if re.search('业绩', sentence_text[:_match.span()[0]]): # 2021/7/21过滤掉业绩后面金额
  1635. # print('金额在业绩后面: ', _match.group(0))
  1636. found_yeji += 1
  1637. break
  1638. for k,v in _match.groupdict().items():
  1639. if v!="" and v is not None:
  1640. if k=='text_key_word':
  1641. notSure = True
  1642. if k.split("_")[0]=="money":
  1643. entity_text = v
  1644. if k.split("_")[0]=="unit":
  1645. unit = v
  1646. if k.split("_")[0]=="text":
  1647. text_beforeMoney = v
  1648. if k.split("_")[0]=="filter":
  1649. filter = v
  1650. if re.search("filter_unit",k) is not None:
  1651. filter_unit = True
  1652. if re.search('(^\d{2,},\d{4,}万?$)|(^\d{2,},\d{2}万?$)', entity_text.strip()): # 2021/7/19 修正OCR识别小数点为逗号
  1653. if re.search('[幢栋号楼层]', sentence_text[_match.span()[0]-2:_match.span()[0]]):
  1654. entity_text = re.sub('\d+,', '', entity_text)
  1655. else:
  1656. entity_text = entity_text.replace(',', '.')
  1657. # print(' 修正OCR识别小数点为逗号')
  1658. if entity_text.find("元")>=0:
  1659. unit = ""
  1660. if unit == "": #2021/7/21 有明显金额特征的补充单位,避免被过滤
  1661. if ('¥' in text_beforeMoney or '¥' in text_beforeMoney):
  1662. unit = '元'
  1663. # print('明显金额特征补充单位 元')
  1664. elif re.search('[单报标限]价|金额|价格[::]+$', text_beforeMoney.strip()) and \
  1665. re.search('\d{5,}',entity_text) and re.search('^0|1[3|4|5|6|7|8|9]\d{9}',entity_text)==None:
  1666. unit = '元'
  1667. # print('明显金额特征补充单位 元')
  1668. elif re.search('(^\d{,3}(,?\d{3})+(\.\d{2,7})$)|(^\d{,3}(,\d{3})+$)',entity_text):
  1669. unit = '元'
  1670. # print('明显金额特征补充单位 元')
  1671. if unit.find("万") >= 0 and entity_text.find("万") >= 0: #2021/7/19修改为金额文本有万,不计算单位
  1672. # print('修正金额及单位都有万, 金额:',entity_text, '单位:',unit)
  1673. unit = "元"
  1674. if re.search('.*万元万元', entity_text): #2021/7/19 修正两个万元
  1675. # print(' 修正两个万元',entity_text)
  1676. entity_text = entity_text.replace('万元万元','万元')
  1677. else:
  1678. if filter_unit:
  1679. continue
  1680. if filter!="":
  1681. continue
  1682. index = _match.span()[0]+len(text_beforeMoney)
  1683. begin_index_temp = index
  1684. for j in range(len(list_tokenbegin)):
  1685. if list_tokenbegin[j]==index:
  1686. begin_index = j
  1687. break
  1688. elif list_tokenbegin[j]>index:
  1689. begin_index = j-1
  1690. break
  1691. index = _match.span()[1]
  1692. end_index_temp = index
  1693. #index += len(str(all_match[i][0]))
  1694. for j in range(begin_index,len(list_tokenbegin)):
  1695. if list_tokenbegin[j]>=index:
  1696. end_index = j-1
  1697. break
  1698. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  1699. entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]","",entity_text)
  1700. # print('转换前金额:', entity_text, '单位:', unit)
  1701. if re.search('总投资', sentence_text[_match.span()[0] - 6:_match.span()[0]]): # 2021/8/5过滤掉总投资金额
  1702. # print('总投资金额: ', _match.group(0))
  1703. notes = '总投资'
  1704. if re.search('[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆]', entity_text) != None:
  1705. notes = '大写'
  1706. # print("补充备注:notes = 大写")
  1707. elif re.search('单价', sentence_text[_match.span()[0]:_match.span()[1]]):
  1708. notes = '单价'
  1709. # print("补充备注:单价 ",sentence_text[_match.span()[0]-2:_match.span()[1]])
  1710. if len(unit)>0:
  1711. if unit.find('万')>=0 and len(entity_text.split('.')[0])>=8: # 2021/7/19 修正万元金额过大的情况
  1712. print('修正单位万元金额过大的情况 金额:', entity_text, '单位:', unit)
  1713. entity_text = str(getUnifyMoney(entity_text) * getMultipleFactor(unit[0])/10000)
  1714. unit = '元' # 修正金额后单位 重置为元
  1715. else:
  1716. # print('str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0])):')
  1717. entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0]))
  1718. else:
  1719. if entity_text.find('万')>=0 and entity_text.split('.')[0].isdigit() and len(entity_text.split('.')[0])>=8:
  1720. entity_text = str(getUnifyMoney(entity_text)/10000)
  1721. # print('修正金额字段含万 过大的情况')
  1722. else:
  1723. entity_text = str(getUnifyMoney(entity_text))
  1724. if float(entity_text)<100 or float(entity_text)>100000000000:
  1725. # print('过滤掉金额:float(entity_text)<100 or float(entity_text)>100000000000', entity_text, unit)
  1726. continue
  1727. if notSure and unit=="" and float(entity_text)>100*10000:
  1728. # print('过滤掉金额 notSure and unit=="" and float(entity_text)>100*10000:', entity_text, unit)
  1729. continue
  1730. _exists = False
  1731. for item in list_sentence_entitys:
  1732. if item.entity_id==entity_id and item.entity_type==entity_type:
  1733. _exists = True
  1734. if (begin_index >=item.begin_index and begin_index<=item.end_index) or (end_index>=item.begin_index and end_index<=item.end_index):
  1735. _exists = True
  1736. if not _exists:
  1737. if float(entity_text)>1:
  1738. list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp))
  1739. list_sentence_entitys[-1].notes = notes # 2021/7/20 新增金额备注
  1740. list_sentence_entitys[-1].money_unit = unit # 2021/7/20 新增金额备注
  1741. # print('预处理中的 金额:%s, 单位:%s'%(entity_text,unit))
  1742. else:
  1743. index += 1
  1744. # 资金来源提取 2020/12/30 新增
  1745. list_moneySource = extract_moneySource(sentence_text)
  1746. entity_type = "moneysource"
  1747. for moneySource in list_moneySource:
  1748. begin_index_temp = moneySource['begin_index']
  1749. for j in range(len(list_tokenbegin)):
  1750. if list_tokenbegin[j] == begin_index_temp:
  1751. begin_index = j
  1752. break
  1753. elif list_tokenbegin[j] > begin_index_temp:
  1754. begin_index = j - 1
  1755. break
  1756. index = moneySource['end_index']
  1757. end_index_temp = index
  1758. for j in range(begin_index, len(list_tokenbegin)):
  1759. if list_tokenbegin[j] >= index:
  1760. end_index = j - 1
  1761. break
  1762. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1763. entity_text = moneySource['body']
  1764. list_sentence_entitys.append(
  1765. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1766. begin_index_temp, end_index_temp))
  1767. # 服务期限提取 2020/12/30 新增
  1768. list_servicetime = extract_servicetime(sentence_text)
  1769. entity_type = "serviceTime"
  1770. for servicetime in list_servicetime:
  1771. begin_index_temp = servicetime['begin_index']
  1772. for j in range(len(list_tokenbegin)):
  1773. if list_tokenbegin[j] == begin_index_temp:
  1774. begin_index = j
  1775. break
  1776. elif list_tokenbegin[j] > begin_index_temp:
  1777. begin_index = j - 1
  1778. break
  1779. index = servicetime['end_index']
  1780. end_index_temp = index
  1781. for j in range(begin_index, len(list_tokenbegin)):
  1782. if list_tokenbegin[j] >= index:
  1783. end_index = j - 1
  1784. break
  1785. entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1786. entity_text = servicetime['body']
  1787. list_sentence_entitys.append(
  1788. Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1789. begin_index_temp, end_index_temp))
  1790. # 招标方式提取 2020/12/30 新增
  1791. # list_bidway = extract_bidway(sentence_text, )
  1792. # entity_type = "bidway"
  1793. # for bidway in list_bidway:
  1794. # begin_index_temp = bidway['begin_index']
  1795. # end_index_temp = bidway['end_index']
  1796. # begin_index = changeIndexFromWordToWords(tokens, begin_index_temp)
  1797. # end_index = changeIndexFromWordToWords(tokens, end_index_temp)
  1798. # if begin_index is None or end_index is None:
  1799. # continue
  1800. # print(begin_index_temp,end_index_temp,begin_index,end_index)
  1801. # entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index)
  1802. # entity_text = bidway['body']
  1803. # list_sentence_entitys.append(
  1804. # Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index,
  1805. # begin_index_temp, end_index_temp))
  1806. list_sentence_entitys.sort(key=lambda x:x.begin_index)
  1807. list_entitys_temp = list_entitys_temp+list_sentence_entitys
  1808. list_entitys.append(list_entitys_temp)
  1809. return list_entitys
  1810. def union_result(codeName,prem):
  1811. '''
  1812. @summary:模型的结果拼成字典
  1813. @param:
  1814. codeName:编号名称模型的结果字典
  1815. prem:拿到属性的角色的字典
  1816. @return:拼接起来的字典
  1817. '''
  1818. result = []
  1819. assert len(codeName)==len(prem)
  1820. for item_code,item_prem in zip(codeName,prem):
  1821. result.append(dict(item_code,**item_prem))
  1822. return result
  1823. def persistenceData(data):
  1824. '''
  1825. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1826. '''
  1827. import psycopg2
  1828. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1829. cursor = conn.cursor()
  1830. for item_index in range(len(data)):
  1831. item = data[item_index]
  1832. doc_id = item[0]
  1833. dic = item[1]
  1834. code = dic['code']
  1835. name = dic['name']
  1836. prem = dic['prem']
  1837. if len(code)==0:
  1838. code_insert = ""
  1839. else:
  1840. code_insert = ";".join(code)
  1841. prem_insert = ""
  1842. for item in prem:
  1843. for x in item:
  1844. if isinstance(x, list):
  1845. if len(x)>0:
  1846. for x1 in x:
  1847. prem_insert+="/".join(x1)+","
  1848. prem_insert+="$"
  1849. else:
  1850. prem_insert+=str(x)+"$"
  1851. prem_insert+=";"
  1852. sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')"
  1853. cursor.execute(sql)
  1854. conn.commit()
  1855. conn.close()
  1856. def persistenceData1(list_entitys,list_sentences):
  1857. '''
  1858. @summary:将中间结果保存到数据库-线上生产的时候不需要执行
  1859. '''
  1860. import psycopg2
  1861. conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101")
  1862. cursor = conn.cursor()
  1863. for list_entity in list_entitys:
  1864. for entity in list_entity:
  1865. if entity.values is not None:
  1866. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")"
  1867. else:
  1868. sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")"
  1869. cursor.execute(sql)
  1870. for list_sentence in list_sentences:
  1871. for sentence in list_sentence:
  1872. str_tokens = "["
  1873. for item in sentence.tokens:
  1874. str_tokens += "'"
  1875. if item=="'":
  1876. str_tokens += "''"
  1877. else:
  1878. str_tokens += item
  1879. str_tokens += "',"
  1880. str_tokens = str_tokens[:-1]+"]"
  1881. sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")"
  1882. cursor.execute(sql)
  1883. conn.commit()
  1884. conn.close()
  1885. def _handle(item,result_queue):
  1886. dochtml = item["dochtml"]
  1887. docid = item["docid"]
  1888. list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml"))
  1889. flag = False
  1890. if list_innerTable:
  1891. flag = True
  1892. for table in list_innerTable:
  1893. result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)})
  1894. def getPredictTable():
  1895. filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv"
  1896. import pandas as pd
  1897. import json
  1898. from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue
  1899. df = pd.read_csv(filename)
  1900. df_data = {"json_table":[],"docid":[]}
  1901. _count = 0
  1902. _sum = len(df["docid"])
  1903. task_queue = Queue()
  1904. result_queue = Queue()
  1905. _index = 0
  1906. for dochtml,docid in zip(df["dochtmlcon"],df["docid"]):
  1907. task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None})
  1908. _index += 1
  1909. mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1)
  1910. mh.run()
  1911. while True:
  1912. try:
  1913. item = result_queue.get(block=True,timeout=1)
  1914. df_data["docid"].append(item["docid"])
  1915. df_data["json_table"].append(item["json_table"])
  1916. except Exception as e:
  1917. print(e)
  1918. break
  1919. df_1 = pd.DataFrame(df_data)
  1920. df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"])
  1921. if __name__=="__main__":
  1922. '''
  1923. import glob
  1924. for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"):
  1925. file_txt = str(file).replace("html","txt")
  1926. with codecs.open(file_txt,"a+",encoding="utf8") as f:
  1927. f.write("\n================\n")
  1928. content = codecs.open(file,"r",encoding="utf8").read()
  1929. f.write(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1930. '''
  1931. # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read()
  1932. # print(segment(tableToText(BeautifulSoup(content,"lxml"))))
  1933. getPredictTable()