modelFactory.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. '''
  2. Created on 2019年5月16日
  3. @author: User
  4. '''
  5. import os
  6. import sys
  7. sys.path.append(os.path.abspath("../.."))
  8. from keras import models
  9. from keras import layers
  10. # from keras_contrib.layers import CRF
  11. from keras.preprocessing.sequence import pad_sequences
  12. from keras import optimizers,losses,metrics
  13. from BiddingKG.dl.common.Utils import *
  14. import tensorflow as tf
  15. import json
  16. class Model_role_classify():
  17. def __init__(self,lazyLoad=getLazyLoad()):
  18. #self.model_role_file = os.path.abspath("../role/models/model_role.model.hdf5")
  19. self.model_role_file = os.path.dirname(__file__)+"/../role/log/new_biLSTM-ep012-loss0.028-val_loss0.040-f10.954.h5"
  20. self.model_role = None
  21. self.graph = tf.get_default_graph()
  22. if not lazyLoad:
  23. self.getModel()
  24. def getModel(self):
  25. if self.model_role is None:
  26. self.model_role = models.load_model(self.model_role_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  27. return self.model_role
  28. def encode(self,tokens,begin_index,end_index,**kwargs):
  29. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  30. def predict(self,x):
  31. x = np.transpose(np.array(x),(1,0,2,3))
  32. with self.graph.as_default():
  33. return self.getModel().predict([x[0],x[1]])
  34. class Model_role_classify_word():
  35. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  36. if USE_PAI_EAS:
  37. lazyLoad = True
  38. #self.model_role_file = os.path.abspath("../role/log/ep071-loss0.107-val_loss0.122-f10.956.h5")
  39. # self.model_role_file = os.path.dirname(__file__)+"/../role/models/ep038-loss0.140-val_loss0.149-f10.947.h5"
  40. #self.model_role_file = os.path.abspath("../role/log/textcnn_ep017-loss0.088-val_loss0.125-f10.955.h5")
  41. self.model_role = None
  42. self.sess_role = tf.Session(graph=tf.Graph(),config=config)
  43. if not lazyLoad:
  44. self.getModel()
  45. def getModel(self):
  46. if self.model_role is None:
  47. with self.sess_role.as_default() as sess:
  48. with self.sess_role.graph.as_default():
  49. meta_graph_def = tf.saved_model.loader.load(sess=self.sess_role, tags=["serve"], export_dir=os.path.dirname(__file__)+"/role_savedmodel")
  50. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  51. signature_def = meta_graph_def.signature_def
  52. input0 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  53. input1 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  54. # input2 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  55. output = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  56. self.model_role = [[input0,input1],output] #,input2
  57. return self.model_role
  58. '''
  59. def load_weights(self):
  60. model = self.getModel()
  61. model.load_weights(self.model_role_file)
  62. '''
  63. def encode(self,tokens,begin_index,end_index,entity_text,**kwargs):
  64. _span = spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20,center_include=False,word_flag=True,text=entity_text) #size=12 center_include=True
  65. # print(_span)
  66. _encode_span = encodeInput(_span, word_len=20, word_flag=True,userFool=False) # word_len=20
  67. # print(_encode_span)
  68. return _encode_span
  69. def predict(self,x):
  70. x = np.transpose(np.array(x),(1,0,2))
  71. model_role = self.getModel()
  72. assert len(x)==len(model_role[0])
  73. feed_dict = {}
  74. for _x,_t in zip(x,model_role[0]):
  75. feed_dict[_t] = _x
  76. list_result = limitRun(self.sess_role,[model_role[1]],feed_dict)[0]
  77. return list_result
  78. #return self.sess_role.run(model_role[1],feed_dict=feed_dict)
  79. class Model_money_classify():
  80. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  81. if USE_PAI_EAS:
  82. lazyLoad = True
  83. self.model_money_file = os.path.dirname(__file__)+"/../money/models/model_money_word.h5"
  84. self.model_money = None
  85. self.sess_money = tf.Session(graph=tf.Graph(),config=config)
  86. if not lazyLoad:
  87. self.getModel()
  88. def getModel(self):
  89. if self.model_money is None:
  90. with self.sess_money.as_default() as sess:
  91. with sess.graph.as_default():
  92. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel")
  93. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel_bilstmonly")
  94. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  95. signature_def = meta_graph_def.signature_def
  96. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  97. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  98. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  99. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  100. self.model_money = [[input0,input1,input2],output]
  101. return self.model_money
  102. '''
  103. if self.model_money is None:
  104. self.model_money = models.load_model(self.model_money_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  105. return self.model_money
  106. '''
  107. '''
  108. def load_weights(self):
  109. model = self.getModel()
  110. model.load_weights(self.model_money_file)
  111. '''
  112. def encode(self,tokens,begin_index,end_index,**kwargs):
  113. _span = spanWindow(tokens=tokens, begin_index=begin_index, end_index=end_index, size=10, center_include=True, word_flag=True)
  114. # print(_span)
  115. return encodeInput(_span, word_len=30, word_flag=True,userFool=False)
  116. return embedding_word(_span,shape=(3,100,60))
  117. def predict(self,x):
  118. # print("shape",np.shape(x))
  119. x = np.transpose(np.array(x),(1,0,2))
  120. model_money = self.getModel()
  121. assert len(x)==len(model_money[0])
  122. feed_dict = {}
  123. for _x,_t in zip(x,model_money[0]):
  124. feed_dict[_t] = _x
  125. list_result = limitRun(self.sess_money,[model_money[1]],feed_dict)[0]
  126. #return self.sess_money.run(model_money[1],feed_dict=feed_dict)
  127. return list_result
  128. '''
  129. with self.graph.as_default():
  130. return self.getModel().predict([x[0],x[1],x[2]])
  131. '''
  132. from itertools import groupby
  133. from BiddingKG.dl.relation_extraction.model import get_words_matrix
  134. class Model_relation_extraction():
  135. def __init__(self,lazyLoad=getLazyLoad()):
  136. if USE_PAI_EAS:
  137. lazyLoad = True
  138. self.subject_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/subject_model"
  139. self.object_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/object_model"
  140. self.model_subject = None
  141. self.model_object = None
  142. self.sess_subject = tf.Session(graph=tf.Graph())
  143. self.sess_object = tf.Session(graph=tf.Graph())
  144. if not lazyLoad:
  145. self.getModel1()
  146. self.getModel2()
  147. self.entity_type_dict = {
  148. 'org': '<company/org>',
  149. 'company': '<company/org>',
  150. 'location': '<location>',
  151. 'phone': '<phone>',
  152. 'person': '<contact_person>'
  153. }
  154. self.id2predicate = {
  155. 0: "rel_person", # 公司——联系人
  156. 1: "rel_phone", # 联系人——电话
  157. 2: "rel_address" # 公司——地址
  158. }
  159. self.words_size = 128
  160. # subject_model
  161. def getModel1(self):
  162. if self.model_subject is None:
  163. with self.sess_subject.as_default() as sess:
  164. with sess.graph.as_default():
  165. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.subject_model_file)
  166. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  167. signature_def = meta_graph_def.signature_def
  168. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  169. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  170. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  171. self.model_subject = [[input0,input1],output]
  172. return self.model_subject
  173. # object_model
  174. def getModel2(self):
  175. if self.model_object is None:
  176. with self.sess_object.as_default() as sess:
  177. with sess.graph.as_default():
  178. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.object_model_file)
  179. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  180. signature_def = meta_graph_def.signature_def
  181. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  182. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  183. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  184. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  185. self.model_object = [[input0,input1,input2],output]
  186. return self.model_object
  187. def encode(self,entity_list,list_sentence):
  188. list_sentence = sorted(list_sentence, key=lambda x: x.sentence_index)
  189. entity_list = sorted(entity_list, key=lambda x: (x.sentence_index, x.begin_index))
  190. pre_data = []
  191. text_data = []
  192. last_sentence_index = -1
  193. for key, group in groupby(entity_list, key=lambda x: x.sentence_index):
  194. if key - last_sentence_index > 1:
  195. for i in range(last_sentence_index + 1, key):
  196. pre_data.extend(list_sentence[i].tokens)
  197. text_data.extend([0] * len(list_sentence[i].tokens))
  198. group = list(group)
  199. for i in range(len(group)):
  200. ent = group[i]
  201. _tokens = list_sentence[key].tokens
  202. if i == len(group) - 1:
  203. if i == 0:
  204. pre_data.extend(_tokens[:ent.begin_index])
  205. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  206. pre_data.append(self.entity_type_dict[ent.entity_type])
  207. text_data.append(ent)
  208. pre_data.extend(_tokens[ent.end_index + 1:])
  209. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  210. break
  211. else:
  212. pre_data.append(self.entity_type_dict[ent.entity_type])
  213. text_data.append(ent)
  214. pre_data.extend(_tokens[ent.end_index + 1:])
  215. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  216. break
  217. if i == 0:
  218. pre_data.extend(_tokens[:ent.begin_index])
  219. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  220. pre_data.append(self.entity_type_dict[ent.entity_type])
  221. text_data.append(ent)
  222. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  223. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  224. else:
  225. pre_data.append(self.entity_type_dict[ent.entity_type])
  226. text_data.append(ent)
  227. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  228. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  229. last_sentence_index = key
  230. return text_data, pre_data
  231. def check_data(self, words):
  232. # 检查数据是否包含可预测的subject和object
  233. # 没有需要预测的链接属性,直接return
  234. company_relation = 0
  235. person_relation = 0
  236. if '<company/org>' in words:
  237. company_relation += 1
  238. if '<contact_person>' in words:
  239. person_relation += 1
  240. if company_relation:
  241. company_relation += 1
  242. # 暂时不考虑地址location实体
  243. # if '<location>' in words and company_relation:
  244. # company_relation += 1
  245. if '<phone>' in words and company_relation:
  246. person_relation += 1
  247. if company_relation < 2 and person_relation < 2:
  248. return False
  249. return True
  250. def predict_by_api(self,text_in,words,sentence_vetor):
  251. status_code = 0
  252. # save([words,sentence_vetor.tolist()],"C:/Users/Administrator/Desktop/test_data.pk")
  253. try:
  254. requests_result = requests.post(API_URL + "/predict_relation", json={"sentence_vetor": sentence_vetor.tolist(), "words": words},
  255. verify=True)
  256. status_code = requests_result.status_code
  257. triple_index_list = json.loads(requests_result.text)['triple_list']
  258. # print("triple_list:",json.loads(requests_result.text)['triple_list'])
  259. print("cost_time:",json.loads(requests_result.text)['cost_time'])
  260. triple_list = [(text_in[triple[0]], triple[1], text_in[triple[2]]) for triple in triple_index_list]
  261. return triple_list,status_code
  262. except Exception as e:
  263. print(e)
  264. return [],status_code
  265. def predict(self,text_in, words, rate=0.5):
  266. _t2 = np.zeros((len(words), self.words_size))
  267. for i in range(len(words)):
  268. _t2[i] = np.array(get_words_matrix(words[i]))
  269. # a = time.time()
  270. # triple_list, status_code = self.predict_by_api(text_in, words,_t2)
  271. # print('time',time.time()-a)
  272. # print("status_code",status_code)
  273. # if status_code==200:
  274. # return triple_list
  275. # else:
  276. # 使用模型预测
  277. triple_list = []
  278. # print("tokens:",words)
  279. # _t2 = [self.words2id.get(c, 1) for c in words]
  280. _t2 = np.array([_t2])
  281. _t3 = [1 for _ in words]
  282. _t3 = np.array([_t3])
  283. # _k1 = self.model_subject.predict([_t2, _t3])
  284. _k1 = limitRun(self.sess_subject,[self.model_subject[1]],feed_dict={self.model_subject[0][0]:_t2,
  285. self.model_subject[0][1]:_t3})[0]
  286. _k1 = _k1[0, :, 0]
  287. _k1 = np.where(_k1 > rate)[0]
  288. # print('k1',_k1)
  289. _subjects = []
  290. for i in _k1:
  291. _subject = text_in[i]
  292. _subjects.append((_subject, i, i))
  293. if _subjects:
  294. _t2 = np.repeat(_t2, len(_subjects), 0)
  295. _t3 = np.repeat(_t3, len(_subjects), 0)
  296. _k1, _ = np.array([_s[1:] for _s in _subjects]).T.reshape((2, -1, 1))
  297. # _o1 = self.model_object.predict([_t2, _t3, _k1])
  298. _o1 = limitRun(self.sess_object, [self.model_object[1]], feed_dict={self.model_object[0][0]: _t2,
  299. self.model_object[0][1]: _t3,
  300. self.model_object[0][2]: _k1})[0]
  301. for i, _subject in enumerate(_subjects):
  302. _oo1 = np.where(_o1[i] > 0.5)
  303. # print('_oo1', _oo1)
  304. for _ooo1, _c1 in zip(*_oo1):
  305. _object = text_in[_ooo1]
  306. _predicate = self.id2predicate[_c1]
  307. triple_list.append((_subject[0], _predicate, _object))
  308. # print([(t[0].entity_text,t[1],t[2].entity_text) for t in triple_list])
  309. return triple_list
  310. else:
  311. return []
  312. class Model_person_classify():
  313. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  314. if USE_PAI_EAS:
  315. lazyLoad = True
  316. self.model_person_file = os.path.dirname(__file__)+"/../person/models/model_person.model.hdf5"
  317. self.model_person = None
  318. self.sess_person = tf.Session(graph=tf.Graph(),config=config)
  319. if not lazyLoad:
  320. self.getModel()
  321. def getModel(self):
  322. if self.model_person is None:
  323. with self.sess_person.as_default() as sess:
  324. with sess.graph.as_default():
  325. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new")
  326. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new_znj")
  327. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  328. signature_def = meta_graph_def.signature_def
  329. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  330. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  331. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  332. self.model_person = [[input0,input1],output]
  333. return self.model_person
  334. '''
  335. if self.model_person is None:
  336. self.model_person = models.load_model(self.model_person_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  337. return self.model_person
  338. '''
  339. '''
  340. def load_weights(self):
  341. model = self.getModel()
  342. model.load_weights(self.model_person_file)
  343. '''
  344. def encode(self,tokens,begin_index,end_index,**kwargs):
  345. # return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  346. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20),shape=(2,20,128))
  347. def predict(self,x):
  348. x = np.transpose(np.array(x),(1,0,2,3))
  349. model_person = self.getModel()
  350. assert len(x)==len(model_person[0])
  351. feed_dict = {}
  352. for _x,_t in zip(x,model_person[0]):
  353. feed_dict[_t] = _x
  354. list_result = limitRun(self.sess_person,[model_person[1]],feed_dict)[0]
  355. return list_result
  356. #return self.sess_person.run(model_person[1],feed_dict=feed_dict)
  357. '''
  358. with self.graph.as_default():
  359. return self.getModel().predict([x[0],x[1]])
  360. '''
  361. class Model_form_line():
  362. def __init__(self,lazyLoad=getLazyLoad()):
  363. self.model_file = os.path.dirname(__file__)+"/../form/model/model_form.model - 副本.hdf5"
  364. self.model_form = None
  365. self.graph = tf.get_default_graph()
  366. if not lazyLoad:
  367. self.getModel()
  368. def getModel(self):
  369. if self.model_form is None:
  370. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  371. return self.model_form
  372. def encode(self,data,shape=(100,60),expand=False,**kwargs):
  373. embedding = np.zeros(shape)
  374. word_model = getModel_word()
  375. for i in range(len(data)):
  376. if i>=shape[0]:
  377. break
  378. if data[i] in word_model.vocab:
  379. embedding[i] = word_model[data[i]]
  380. if expand:
  381. embedding = np.expand_dims(embedding,0)
  382. return embedding
  383. def predict(self,x):
  384. with self.graph.as_default():
  385. return self.getModel().predict(x)
  386. class Model_form_item():
  387. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  388. self.model_file = os.path.dirname(__file__)+"/../form/log/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  389. self.model_form = None
  390. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  391. if not lazyLoad:
  392. self.getModel()
  393. def getModel(self):
  394. if self.model_form is None:
  395. with self.sess_form.as_default() as sess:
  396. with sess.graph.as_default():
  397. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_savedmodel"%(os.path.dirname(__file__)))
  398. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  399. signature_def = meta_graph_def.signature_def
  400. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  401. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  402. self.model_form = [[inputs],output]
  403. return self.model_form
  404. '''
  405. if self.model_form is None:
  406. with self.graph.as_defalt():
  407. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  408. return self.model_form
  409. '''
  410. def encode(self,data,**kwargs):
  411. return encodeInput([data], word_len=50, word_flag=True,userFool=False)[0]
  412. return encodeInput_form(data)
  413. def predict(self,x):
  414. if USE_API:
  415. requests_result = requests.post(API_URL+"/predict_form_item",json={"inputs":x.tolist()}, verify=True)
  416. list_result = json.loads(requests_result.text)['result']
  417. else:
  418. model_form = self.getModel()
  419. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  420. return list_result
  421. # return self.sess_form.run(model_form[1],feed_dict={model_form[0][0]:x})
  422. '''
  423. with self.graph.as_default():
  424. return self.getModel().predict(x)
  425. '''
  426. class Model_form_context():
  427. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  428. self.model_form = None
  429. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  430. if not lazyLoad:
  431. self.getModel()
  432. def getModel(self):
  433. if self.model_form is None:
  434. with self.sess_form.as_default() as sess:
  435. with sess.graph.as_default():
  436. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_context_savedmodel"%(os.path.dirname(__file__)))
  437. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  438. signature_def = meta_graph_def.signature_def
  439. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  440. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  441. self.model_form = [[inputs],output]
  442. return self.model_form
  443. '''
  444. if self.model_form is None:
  445. with self.graph.as_defalt():
  446. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  447. return self.model_form
  448. '''
  449. def encode_table(self,inner_table,size=30):
  450. def encode_item(_table,i,j):
  451. _x = [_table[j-1][i-1],_table[j-1][i],_table[j-1][i+1],
  452. _table[j][i-1],_table[j][i],_table[j][i+1],
  453. _table[j+1][i-1],_table[j+1][i],_table[j+1][i+1]]
  454. e_x = [encodeInput_form(_temp[0],MAX_LEN=30) for _temp in _x]
  455. _label = _table[j][i][1]
  456. # print(_x)
  457. # print(_x[4],_label)
  458. return e_x,_label,_x
  459. def copytable(inner_table):
  460. table = []
  461. for line in inner_table:
  462. list_line = []
  463. for item in line:
  464. list_line.append([item[0][:size],item[1]])
  465. table.append(list_line)
  466. return table
  467. table = copytable(inner_table)
  468. padding = ["#"*30,0]
  469. width = len(table[0])
  470. height = len(table)
  471. table.insert(0,[padding for i in range(width)])
  472. table.append([padding for i in range(width)])
  473. for item in table:
  474. item.insert(0,padding.copy())
  475. item.append(padding.copy())
  476. data_x = []
  477. data_y = []
  478. data_text = []
  479. data_position = []
  480. for _i in range(1,width+1):
  481. for _j in range(1,height+1):
  482. _x,_y,_text = encode_item(table,_i,_j)
  483. data_x.append(_x)
  484. _label = [0,0]
  485. _label[_y] = 1
  486. data_y.append(_label)
  487. data_text.append(_text)
  488. data_position.append([_i-1,_j-1])
  489. # input = table[_j][_i][0]
  490. # item_y = [0,0]
  491. # item_y[table[_j][_i][1]] = 1
  492. # data_x.append(encodeInput([input], word_len=50, word_flag=True,userFool=False)[0])
  493. # data_y.append(item_y)
  494. return data_x,data_y,data_text,data_position
  495. def encode(self,inner_table,**kwargs):
  496. data_x,_,_,data_position = self.encode_table(inner_table)
  497. return data_x,data_position
  498. def predict(self,x):
  499. model_form = self.getModel()
  500. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  501. return list_result
  502. # class Model_form_item():
  503. # def __init__(self,lazyLoad=False):
  504. # self.model_file = os.path.dirname(__file__)+"/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  505. # self.model_form = None
  506. #
  507. # if not lazyLoad:
  508. # self.getModel()
  509. # self.graph = tf.get_default_graph()
  510. #
  511. # def getModel(self):
  512. # if self.model_form is None:
  513. # self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  514. # return self.model_form
  515. #
  516. # def encode(self,data,**kwargs):
  517. #
  518. # return encodeInput_form(data)
  519. #
  520. # def predict(self,x):
  521. # with self.graph.as_default():
  522. # return self.getModel().predict(x)