val_multi.py 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. '''
  2. Created on 2019年11月11日
  3. @author: User
  4. '''
  5. from BiddingKG.dl.common.Utils import *
  6. import json
  7. #from test4 import predict
  8. def val():
  9. data = load("article_label_1000_muti.pk")
  10. count = 0
  11. for item in data:
  12. count += 1
  13. print("====",count)
  14. item["predict"] = predict("12",item["content"])
  15. save(data,"article_label_1000_muti_val.pk")
  16. def compare():
  17. data = load("article_label_1000_muti_val.pk")
  18. same_tenderee_money = 0
  19. notsame_tenderee_money_label = 0
  20. notsame_tenderee_money_predict = 0
  21. same_role = 0
  22. notsame_role_label = 0
  23. notsame_role_predict = 0
  24. _index = 0
  25. for item in data:
  26. _index += 1
  27. set_pack_role_label = set()
  28. set_pack_role_predict = set()
  29. set_pack_money_label = set()
  30. set_pack_money_predict = set()
  31. _label = json.loads(item["label"])
  32. _predict = json.loads(item["predict"])
  33. for _pack in _label["prem"].keys():
  34. tenderee_money = getUnifyMoney(str(_label["prem"][_pack]["tendereeMoney"]))
  35. if tenderee_money>0:
  36. set_pack_money_label.add((_pack,tenderee_money))
  37. for _role in _label["prem"][_pack]["roleList"]:
  38. set_pack_role_label.add((_pack,_role[0],_role[1]))
  39. for _pack in _predict["prem"].keys():
  40. tenderee_money = getUnifyMoney(str(_predict["prem"][_pack]["tendereeMoney"]))
  41. if tenderee_money>0:
  42. set_pack_money_predict.add((_pack,tenderee_money))
  43. for _role in _predict["prem"][_pack]["roleList"]:
  44. set_pack_role_predict.add((_pack,_role[0],_role[1]))
  45. same_tenderee_money += len(set_pack_money_label&set_pack_money_predict)
  46. notsame_tenderee_money_label += len(set_pack_money_label)-len(set_pack_money_label&set_pack_money_predict)
  47. notsame_tenderee_money_predict += len(set_pack_money_predict)-len(set_pack_money_label&set_pack_money_predict)
  48. same_role += len(set_pack_role_label&set_pack_role_predict)
  49. notsame_role_label += len(set_pack_role_label)-len(set_pack_role_label&set_pack_role_predict)
  50. notsame_role_predict += len(set_pack_role_predict)-len(set_pack_role_label&set_pack_role_predict)
  51. if len(set_pack_money_label)-len(set_pack_money_label&set_pack_money_predict)>0:
  52. print(item["filename"],_index,set_pack_money_label,"--",set_pack_money_predict)
  53. print(item["label"])
  54. print("pack-role precision:",same_role/(same_role+notsame_role_predict)," recall:",same_role/(same_role+notsame_role_label))
  55. print("pack-tendereemoney precision:",same_tenderee_money/(same_tenderee_money+notsame_tenderee_money_predict)," recall:",same_tenderee_money/(same_tenderee_money+notsame_tenderee_money_label))
  56. from tensorflow.examples.tutorials.mnist import input_data
  57. mnist = input_data.read_data_sets("data/", one_hot=True)
  58. if __name__=="__main__":
  59. #val()
  60. #compare()
  61. print({"image":mnist.test.images[0],"keep_prob":1.0})